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Abstract
Wireless channels are characterized by more serious
bursty and location-dependent errors. Many packet
scheduling algorithms have been proposed for wire-
less networks to guarantee fairness and delay bounds.
However, most existing schemes do not consider the
difference of traffic natures among packet flows. This
will cause the delay-weight coupling problem. In par-
ticular, serious queuing delays may be incurred for
real-time flows. To resolve this problem, we propose a
Traffic-Dependent wireless Fair Queuing (TD-FQ) al-
gorithm that takes traffic types of flows into considera-
tion when scheduling packets. The proposed TD-FQ
algorithm not only alleviates queuing delay of real-
time flows, but also guarantees bounded delays and
fairness for all flows.

1 Introduction
To meet QoS requirements, many packet schedul-
ing algorithms [1, 2, 3, 4, 5, 6] have been proposed
for wireline networks to guarantee fairness and delay
bounds. However, it is not a trivial task to directly
apply these algorithms to wireless domain. In partic-
ular, wireless channels are characterized by more seri-
ous bursty and location-dependent errors [7, 8]. Bursty
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errors may break a flow’s continuous services, while
location-dependent errors are likely to allow error-free
flows to receive more services than they deserve, thus
violating the fairness and delay bound properties.

To solve these problems, several wireless packet
scheduling algorithms have been proposed [9, 10, 11,
12, 13, 14]. In IWFQ (Idealized Wireless Fair Queu-
ing) [9], each packet is associated with a finish tag,
which is computed according to the principles of WFQ
(Weight Fair Queuing) [2]. The scheduler always se-
lects the error-free packet with the smallest finish tag
to serve. When a flow suffers from channel errors, all
its packets will keep their old tags. Therefore, when
the flow exits from errors, its packets are likely to
have smaller finish tags, thus achieving the compen-
sation purpose. In CIF-Q (Channel-condition Inde-
pendent Fair Queuing) [10], fairness is achieved by
transferring the time allocated to those error flows to
those error-free flows. Later on, compensation ser-
vices will be dispatched to the former proportional to
their weights. However, as [13] shows, an inherent
limitation of fluid fair queuing is that the delay ob-
served by a flow is tightly coupled with the fraction
of bandwidth given to that flow among all backlogged
flows. Since the fraction is in turn coupled with the
weight assigned to the flow, we call this the delay-
weight coupling problem. Both IWFQ and CIF-Q may
suffer from this problem.

In this work, we consider the fair scheduling prob-
lem in a wireless network whose input includes both
real-time and non-real-time traffics. This problem is
especially important with the recently emerging multi-
media services (MMS) in next-generation wireless net-
works. Real-time applications are typically delay-
sensitive. If wireless fair scheduling is supported with-
out special consideration for real-time flows, the delay-
weight dilemma would either hurt real-time flows or
the system performance. Several wireless scheduling
algorithms have been proposed to address this concern



[11, 12, 13, 14]. However, they still suffer from certain
weaknesses (refer to Section 2).

In this work, we propose a new algorithm called
Traffic-Dependent wireless Fair Queuing (TD-FQ).
Traffics arriving at a base station are mixed with real-
time and non-real-time flows. TD-FQ is developed
based on CIF-Q [10], but it adds extra mechanisms
to reduce queuing delays of real-time flows by giving
them higher priorities. Nevertheless, TD-FQ guaran-
tees that the special treatment of real-time flows will
not starve non-real-time flows. Thus, it still maintains
fairness and bounded delays for all flows.

The rest of this paper is organized as follows. Re-
lated work is discussed in Section 2. Section 3 presents
our TD-FQ algorithm. Section 4 formally proves sev-
eral properties of TD-FQ. Simulation results are pre-
sented in Section 5. Conclusions are drawn in Sec-
tion 6.

2 Related Work
In SBFA (Server Based Fairness Approach) [11], a
fraction of bandwidth is reserved particularly for com-
pensation purpose. A number of virtual servers called
LTFS (Long Term Fairness Servers) are created for
those flows that experienced errors. Then the reserved
bandwidth will be used to compensate those LTFS
flows. However, since the erroneous flows are com-
pensated in a first-come-first-served manner, real-time
lagging flows may still suffer from long queuing delay.

ELF (Effort-Limited Fair) [12] suggests to adjust
each flow’s weight in response to the error rate of that
flow, up to a maximum defined by that flow’s power
factor. However, since the scheduler does not have
immediate knowledge about the error rates of a flow,
there could be some delay in adjusting its weight to
respond to its channel and queue condition. Besides,
when a real-time flow just exits from errors, it is emer-
gent to deliver packets for the flow, or these pack-
ets may be dropped. Unfortunately, adjusting weights
cannot guarantee higher priorities for such flows.

WFS (Wireless Fair Service) [13] assigns each flow
i with a rate weight ri and a delay weight Φi, and as-
sociates every packet pk

i with a start tag S(pk
i ) and a

finish tag F (pk
i ),

S(pk
i ) = max{V (A(pk

i )), S(pk−1
i ) + Lk−1

i /ri},
F (pk

i ) = S(pk
i ) + Lk

i /Φi,

where Lk
i is the length of the kth packet of flow i,

A(pk
i ) is the arrival time of the packet, and V (t) is

the virtual time at time t. Essentially, flow i is drained
into the scheduler according to the rate weight ri, but
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Figure 1: System architecture of TD-FQ.

served according to the delay weight Φi. The flow with
the smallest finish tag will be picked by the sched-
uler. By introducing the delay weight, WFS decou-
ples delay and bandwidth to a certain degree. How-
ever, since the computation of start tags is still based
on rate weights, real-time flows may not get much ben-
efit. Besides, WFS adopts a compensation mechanism
based on a weighted round robin approach, where the
lagging degree of a flow is used as its weight. Without
distinguishing real-time and non-real-time flows, this
algorithm may still cause serious queuing delays for
real-time flows.

Lee et al [14] classify flows into four groups: poor,
poorer, rich, and normal. A flow is said poor if it re-
ceives less service than it expects. When a poor flow
transmitting real-time traffic is about to drop packets
due to long waiting time, this flow is changed to a
poorer flow. When there are compensation services
available, the poorer flows always have the highest pri-
ority to receive such services. However, this behavior
may cause other poor flows to starve if there are many
poorer flows.

3 The TD-FQ Algorithm

Below, we first introduce the system model and basic
operations of TD-FQ, followed by some special de-
signs of TD-FQ, including graceful degradation, com-
pensation, and lag redistribution.

3.1 System Model

We consider a packet-cellular network as in Fig. 1.
Packets arriving at a base station (BS) are classified
into real-time traffic and non-real-time traffic and dis-
patched into different queues depending on their des-
tination mobile stations. These traffic flows are sent
to the TD-FQ scheduler, which is responsible for
scheduling flows and transmitting their head-of-line
(HOL) packets via the MAC protocol. The Channel
state monitor provides information about the channel



state of each mobile station (there are different alterna-
tives to achieve this, but this is out of the scope of this
work). For simplicity, we assume that BS has immedi-
ate and accurate knowledge of each channel’s state.

In this paper, we focus on the design of TD-FQ
scheduler. Mobile stations may suffer from bursty and
location-dependent channel errors. However, error pe-
riods are assumed to be sporadic and short relative to
the whole lifetime of flows so that long-term unfair-
ness would not happen.

3.2 Basic Operations

Following most fair queuing works, each flow i is as-
signed a weight ri to represent the ideal fraction of
bandwidth that the system commits to it. However, the
real services received by flow i may not match exactly
its assigned weight. So we maintain a virtual time vi to
record the nominal services received by it, and a lag-
ging level lagi to record its credits/debits. The former
is to compete with other flows for services, while the
latter is to arrange compensation services. The actual
normalized service received by flow i is vi − lagi/ri.
Flow i is called leading if lagi < 0, called lagging if
lagi > 0, and called satisfied if lagi = 0. Further,
depending on its queue content, a flow is called back-
logged if its queue is nonempty, called unbacklogged
if its queue is empty, and called active if it is back-
logged or unbacklogged but leading. Note that TD-FQ
will only choose active flows to serve. When an un-
backlogged but leading flow (i.e., an active flow) is
chosen, its service will actually be transferred to an-
other flow for compensation purpose. Also, following
the principle of CIF-Q, whenever a flow i transits from
unbacklogged to backlogged, its virtual time vi is set
to max{vi,minj∈A{vj}}, where A is the set of all
active flows.

Fig. 2 outlines the scheduling policy of TD-FQ.
TD-FQ follows the design principle of CIF-Q. First,
the active flow i with the smallest virtual time vi is
selected. If flow i is backlogged and its channel con-
dition is good, the HOL packet of flow i can be served
if flow i is non-leading, in which case the service is
called a normal service (NS). Then we update the vir-
tual time vi as (vi + lp/ri), where lp is the length of
the packet. In case that flow i has to give up its service
due to an empty queue or a bad channel condition, the
service will become an extra service (ES). On the other
hand, if flow i is over-served (i.e., leading), the Grace-
ful Degradation Scheme will be activated to check if
flow i is still eligible for the service. If flow i has to
give up its service, the service will be transferred to
a compensation service (CS). In both cases of CS and
ES, the Compensation Scheme will be triggered, trying
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Figure 2: Scheduling policy of TD-FQ.

to select another flow j to serve. If the scheme fails to
select any flow, this service is wasted, called a lost ser-
vice (LS). If the scheme still selects flow i to serve,
then we update vi and send its HOL packet. If a flow
j (6= i) is selected, flow j’s packet will be sent and the
values of vi, lagi, and lagj are updated as follows:

vi = vi + lp′/ri, (1)
lagi = lagi + lp′ , (2)
lagj = lagj − lp′ , (3)

where p′ is the packet being sent. Note that in this case
we charge to flow i by increasing its virtual time, but
credit (respectively, debit) to lagi (respectively, lagj)
of flow i (respectively, j).

Whenever the scheduler serves the HOL packet of
any flow i, it has to check the queue size of flow i.
If it finds that flow i’s queue is empty, it will invoke
the Lag Redistributing Scheme to adjust flow i’s lag, if
necessary.

Below, we introduce the three schemes in TD-FQ.
Table 1 summarizes notations used in TD-FQ.

3.3 Graceful Degradation Scheme
When a leading flow i is selected for service, the
Graceful Degradation Scheme will be triggered to
check its leading amount. Here we adopt the idea in
CIF-Q to limit the amount of such services a lead-
ing flow may enjoy. The scheme in CIF-Q works
as follows. A leading flow is allowed to receive an
amount of extra service proportional to its normal ser-



Table 1: Summary of symbols used in TD-FQ.
Symbols Definition

vi virtual time of flow i
lagi the credits/debits of flow i
ri weight of flow i
si graceful degradation service index of flow i when lagi < 0

αR, αN graceful degradation ratios for real-time and non-real-time flows
δ the threshold to distinguish seriously/moderately lagging flows

LR, LN , LS
R,LM

R , LS
N , LM

N lagging flows (defined in CWC)
WR, WN , W S

R ,W M
R , W S

N , W M
N weights of lagging flows LR, LN , LS

R, LM
R , LS

N , and LM
N , respectively

GR, GN , GS
R,GM

R , GS
N , GM

N normalized amounts of ES/CS received by
LR, LN , LS

R, LM
R , LS

N , and LM
N , respectively

B bound of differences of services (used in CWC)
cS
i , cM

i normalized amounts of ES/CS received by flow i when
lagi/ri ≥ δ and 0 < lagi/ri < δ, respectively

fi normalized amount of ES received by flow i when lagi ≤ 0

vices. Specifically, when a flow i transits from lag-
ging/satisfied to leading, we set up a parameter si =
α · vi, where α (0 ≤ α ≤ 1) is a system-defined con-
stant. Later on, flow i’s virtual time will be increased
every time it is selected by the scheduler (note that ‘se-
lected’ does not mean that it is actually served). Let
v′i be flow i’s current virtual time when it is selected.
We will allow flow i to be served if si ≤ αv′i. If so,
si is updated as si + lp/ri, where lp is the length of
the packet. Intuitively, flow i can enjoy approximately
α(v′i − vi) services, and this is called graceful degra-
dation.

TD-FQ adopts the above idea. Further, to distin-
guish real-time from non-real-time flows, we substi-
tute α by a parameter αR for real-time flows, and by
αN for non-real-time flows. We set αR > αN to dis-
tinguish their priorities.

3.4 Compensation Scheme

When the selected flow i has a bad channel or fails to
satisfy the graceful degradation condition, the Com-
pensation Scheme will be triggered (reflected by ES
and CS in Fig. 2). In this case, lagging flows should
always have a higher priority over non-lagging flows
to receive such additional services. Section 3.4.1 dis-
cusses how to choose a lagging flow. Section 3.4.2
deals with the case when all lagging flows are experi-
encing error.

3.4.1 Dispatching ES and CS to Lagging Flows

The Compensation Scheme first tries to dispatch
ES/CS to lagging flows. We propose a class-based
weight compensation (CWC) mechanism, as illustrated
in Fig. 3. CWC first divides lagging flows into a real-
time set LR and a non-real-time set LN . These sets are
each further divided into a seriously lagging set and a
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Figure 3: Structure of the class-based weight compen-
sation (CWC) scheme.

moderately lagging set. Individual flows are at the bot-
tom. The concept of weight is used to dispatch services
to these sets.

To dispatch ES/CS to LR and LN , we assign
weights WR and WN to them, respectively. (Nor-
mally, we would set WR ≥ WN .) Also, a variable
GR (respectively, GN ) is used to record the normal-
ized ES/CS received by LR (respectively, LN ). When
both LR and LN have error-free flows, the service will
be given to LR if GR ≤ GN , and to LN otherwise.
When only one of LR and LN has error-free flows, the
service will be given to that one, independent of the
values of GR and GN . When LR receives the service,
GR is updated as

GR = min

{
GR +

lp
WR

,
B + GNWN

WR

}
, (4)

where lp is the length of the transmitted packet, and B
is a predefined value to bound the difference between



GR and GN . Similarly, when LN receives the service,
GN is updated as

GN = min

{
GN +

lp
WN

,
B + GRWR

WN

}
. (5)

Note that to avoid the cases of GR À GN or GN À
GR, which may cause LR or LN to starve when
the other set recovers from error, we set up a bound
|GRWR − GNWN | ≤ B. This gives the second term
in the righthand side of Eqs. (4) and (5).

The flows in LR are further divided into a seriously
lagging set LS

R and a moderately lagging set LM
R . We

assign a real-time lagging flow i to LS
R if lagi/ri ≥ δ,

where δ is a predefined value. Otherwise, flow i is
assigned to LM

R . Similarly, the flows in LN are di-
vided into a seriously lagging set LS

N and a moder-
ately lagging set LM

N . Again, services are dispatched
to sets LS

R, LM
R , LS

N , and LM
N according their weights

WS
R ,WM

R ,WS
N , and WM

N , respectively. To favor se-
riously lagging flows, we suggest that WS

R ≥ WM
R

and WS
N ≥ WM

N . Services are dispatched to these
sets similar to the earlier case (i.e., the service distri-
bution to LR and LN ). We use GS

R, GM
R , GS

N , and GM
N

to record the services received by these sets. Again a
bound B is set to limit the differences between GS

R and
GM

R and between GS
N and GM

N .
At the bottom of CWC are four groups of individ-

ual flows of the same properties (traffic types and lag-
ging degrees). Here the scheduler dispatches ES/CS
proportional to flows’ weights. Specifically, for each
flow i, we maintain two compensation virtual times cS

i

and cM
i , which keep track of the normalized amount

of ES/CS received by flow i when lagi/ri ≥ δ and
0 < lagi/ri < δ, respectively. When the scheduler
chooses the seriously lagging set (LS

R or LS
N ), it selects

the error-free flow i with the smallest cS
i in the set to

serve. Similarly, when the scheduler chooses the mod-
erately lagging set (LM

R or LM
N ), it selects the error-

free flow i with the smallest cM
i in the set to serve.

When a lagging flow i receives such a service, its com-
pensation virtual times are updated as

{
cS
i = cS

i + lp/ri, if lagi/ri ≥ δ
cM
i = cM

i + lp/ri, otherwise .

When a flow i newly enters one of the sets LS
R, LM

R ,
LS

N , and LM
N or transits from one set to another, we

have to assign its cS
i or cM

i as follows. If flow i is
seriously lagging (i.e., lagi/ri ≥ δ), we set

cS
i =

{
max{cS

i , cSR
min}, if flow i is real-time

max{cS
i , cSN

min}, if flow i is non-real-time .

Otherwise, we set

cM
i =

{
max{cM

i , cMR
min}, if flow i is real-time

max{cM
i , cMN

min}, if flow i is non-real-time ,

where cSR
min (respectively, cSN

min) is the minimum value
of cS

j such that j ∈ LS
R (respectively, j ∈ LS

N ), and
cMR
min (respectively, cMN

min ) is the minimum value of cM
j

such that j ∈ LM
R (respectively, j ∈ LM

N ). One ex-
ception is when the set LS

R/LS
N /LM

R /LM
N is empty, in

which case cSR
min/cSN

min/cMR
min/cMN

min is undefined. If so,
we set cSR

min/cSN
min/cMR

min/cMN
min to the value of cS

j /cM
j of

the last flow j that left the set LS
R/LS

N /LM
R /LM

N .
The main contribution of CWC is that it compen-

sates more services for real-time flows and for seri-
ously lagging flows, thus alleviating these flows’ queu-
ing delays. Besides, CWC does not starve other lag-
ging flows because these flows can still share a fraction
of ES/CS.

3.4.2 Dispatching ES to Non-lagging Flows

If there is no lagging flow selected in the previous stage
(due to errors), the service will be dispatched accord-
ing to its original type. If the service comes from CS,
it will be returned back to the originally selected flow.
Otherwise, the (ES) service will be given to a non-
lagging flow. Just like CIF-Q, TD-FQ also dispatches
ES proportional to those non-lagging flows’ weights.
That is, each flow i is assigned with an extra virtual
time fi to keep track of the normalized amount of ES
received by flow i when it is non-lagging (lagi ≤ 0).
Whenever a backlogged flow i becomes error-free and
non-lagging, fi is set to

fi = max{fi,min{fj | flow j is error-free,
backlogged, non-lagging, and j 6= i}}.

The scheduler selects the flow i with the smallest
fi value among all error-free, backlogged, and non-
lagging flows to serve. When flow i receives the ser-
vice, fi is updated as (fi + lp/ri). An exception occurs
when there is no selectable non-lagging flow, in which
case this time slot will simply be wasted.

3.5 Lag Redistribution for Unbacklogged
Flows

After a flow is served, if its queue state changes to un-
backlogged and it is still lagging, we will distribute
its credit to other flows that are in debet and reset its
credit to zero. This is because the flow does not need
the credit any more [15]. This is done by the Lag Re-
distribution Scheme.

The scheme examines the flow i that is actually
served in this round. After the service, if flow i’s queue
becomes empty and lagi > 0, we will give its credit to
other flows in debet proportional to their weights, i.e.,



for each flow k such that lagk < 0, we set

lagk = lagk + lagi × rk∑
lagm<0 rm

.

Then we reset lagi = 0. Our redistribution rule is
slightly different from CIF-Q (where all flows, includ-
ing lagging ones, will share the credit). We feel that it
makes sense to give these credits to only those flows in
need of services.

4 Theoretical Analyses

In this section, we analyze the fairness and delay prop-
erties of TD-FQ. Our proofs rely on the following
assumptions: (i) αR ≥ αN , (ii) WR ≥ WN , (iii)
WS

R ≥ WM
R , (iv) WS

N ≥ WM
N , and (v) B ≥ L̂max,

where L̂max is the maximum length of a packet. The
complete proofs can be found in [16].

4.1 Fairness Properties

Theorems 1–3 show the fairness property guaranteed
by TD-FQ. Theorem 1 is for flows of the same traffic
type, while Theorem 2 is for flows of different types.
Theorem 3 provides some bounds on differences of
services received by LR, LN , LS

R, LM
R , LS

N , and LM
N .

Theorem 1. For any two active flows i and j of the
same traffic type, the difference between the normal-
ized services received by flows i and j in any time
interval [t1, t2) during which both flows are continu-
ously backlogged, error-free, and remain in the same
state (leading, seriously lagging, moderately lagging,
or satisfied) satisfies the inequality:

∣∣∣∣
Φi(t1, t2)

ri
− Φj(t1, t2)

rj

∣∣∣∣ ≤ ε ·
(

L̂max

ri
+

L̂max

rj

)
,

where Φi(t1, t2) represents the services received by
flow i during [t1, t2), ε = 3 if both flows belong to
the same lagging set (LS

R, LM
R , LS

N , or LM
N ) or both

flows are satisfied, ε = 3 + αR if both flows are real-
time leading flows, and ε = 3 + αN if both flows are
non-real-time leading flows.

Theorem 2. For any real-time flow i and non-real-
time flow j, the difference between the normalized ser-
vices received by flows i and j in any time interval
[t1, t2) during which both flows are continuously back-
logged, error-free, and remain leading satisfies the in-

equality:
∣∣∣∣
Φi(t1, t2)

ri
− Φj(t1, t2)

rj

∣∣∣∣ ≤ 3

(
L̂max

ri
+

L̂max

rj

)

+ 2αN
L̂max

rj
.

Theorem 3. The difference between normalized
ES/CS received by any two lagging sets in any time
interval [t1, t2) during which both sets remain active
satisfies the inequalities:
(1) for LR and LN :
∣∣∣∣
ΦR(t1, t2)

WR
− ΦN (t1, t2)

WN

∣∣∣∣ ≤
B + L̂max

WR
+

B + L̂max

WN
,

(2) for LS
R and LM

R :
∣∣∣∣
ΦS

R(t1, t2)

W S
R

− ΦM
R (t1, t2)

W M
R

∣∣∣∣ ≤
B + L̂max

W S
R

+
B + L̂max

W M
R

,

(3) for LS
N and LM

N :
∣∣∣∣
ΦS

N (t1, t2)

W S
N

− ΦM
N (t1, t2)

W M
N

∣∣∣∣ ≤
B + L̂max

W S
N

+
B + L̂max

W M
N

,

where ΦR(t1, t2), ΦN (t1, t2), ΦS
R(t1, t2), ΦM

R (t1, t2),
ΦS

N (t1, t2), and ΦM
N (t1, t2) represents ES/CS received

by LR, LN , LS
R, LM

R , LS
N , and LN

M during [t1, t2),
respectively.

4.2 Delay Bounds
When a backlogged flow suffers from errors, it be-
comes lagging. Theorem 4 shows that if a lagging flow
becomes error-free and has sufficient service demand,
it can get back all its lagging services within bounded
time.

Theorem 4. If an active but lagging flow i becomes
error-free at time t and remains backlogged contin-
uously after time t, it is guaranteed that flow i will
become non-lagging (i.e., lagi ≤ 0) within time ∆t,
where

∆t ≤ ϕ(Ψ + 2L̂max)

rmin(1− αR)Ĉ
+ (n + 1 +

ϕ

rmin
)
L̂max

Ĉ
,

n is the number of active flows, Ĉ is the channel ca-
pacity, ϕ is the aggregate weight of all flows, ϕR is the
aggregate weight of all real-time flows, ϕN is the ag-
gregate weight of all non-real-time flows, rmin is the
minimum weight of all flows,

Ψ =
(WR + WN )(W S

R + W M
R )

WRW S
R

(
lagi(t)

ri
ϕR + B

+(
ϕR

ri
+ n− 2)L̂max

)
+

WR + WN

WR
(δϕR + B

+ (
2ϕR

ri
+ n− 1)L̂max)



if flow i is real-time, and

Ψ =
(WR + WN )(W S

N + W M
N )

WNW S
N

(
lagi(t)

ri
ϕN + B

+(
ϕN

ri
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if flow i is non-real-time.

5 Simulation Results
In this section, we present some experimental results to
verify the effectiveness of the proposed algorithm. We
mix real-time and non-real-time traffics together. We
mainly compare TD-FQ and CIF-Q and observe two
performance metrics, queuing delay and throughput.
Five flows are used, as shown in Table 2. Flows 1 and
2 are real-time constant-bit-rate (CBR) flows, flows 3
and 4 are non-real-time FTP flows, and flow 5 has a
Poisson packet arrival. Suffering from channel errors
during [5, 15) period, flows 2 and 3 will become active
but lagging after the 15th second. The other flows are
all leading in this experiment. For CIF-Q, we set α =
0.5, while for TD-FQ we set αR = 0.8, αN = 0.2,
WR = 2, and WN = 1.

Table 2: Traffic specification of the flows.
Flow no. Traffic type Rate Error scenario

1 CBR 320 Kbps Error-free
2 CBR 160 Kbps Errors in [5,15) sec.
3 FTP 2 Mbps Errors in [5,15) sec.
4 FTP 2 Mbps Error-free
5 Poisson 1 Mbps Error-free

Fig. 4 compares the queuing delays for flows 1, 2,
and 5. In TD-FQ, the real-time flow 1 will experience
less queuing delay compared to CIF-Q even if flow 1
remains leading all the time. This is because TD-FQ
allows a real-time leading flow to keep more fraction
of its normal services while remaining in the leading
status. Even for the real-time lagging flow 2, TD-FQ
still incurs lower queuing delay than CIF-Q due to its
compensation mechanism for real-time lagging flows.
The cost, as shown in Fig. 4(c), is at the slightly higher
queuing delay of flow 5, which is non-real-time and
leading and which contributes more compensation ser-
vices in TD-FQ than that in CIF-Q.

Based on the same environment, Fig. 5 shows the
throughputs of flows 2, 3, and 4. For the real-time lag-
ging flow 2, TD-FQ gives it more services than CIF-
Q due to its compensation mechanism. Even for the
non-real-time lagging flow 3, TD-FQ still gives it more

services than CIF-Q, because total compensation ser-
vices in TD-FQ are more than that in CIF-Q. However,
the cost, as shown in Fig. 5(c), is at lower through-
put of flow 4, which is non-real-time and leading, and
which contributes more compensation services in TD-
FQ than that in CIF-Q.

6 Conclusions
We have addressed the delay-weight coupling problem
that exists in many existing fair-queuing schemes. A
new algorithm, TD-FQ, is proposed to solve this prob-
lem. By taking traffic types of flows into considera-
tion when scheduling packets, TD-FQ not only allevi-
ates queuing delay of real-time flows, but also guaran-
tees bounded delays and fairness for all flows. Fair-
ness properties and delay bounds guaranteed by TD-
FQ are derived analytically. Simulation results have
also shown that TD-FQ has smaller queuing delay for
real-time flows when compared to CIF-Q.
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Figure 4: Comparison of queuing delays with hybrid traffics: (a) real-time leading flow 1, (b) real-time lagging
flow 2, and (c) non-real-time leading flow 5.
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Figure 5: Comparison of throughputs with hybrid traffics: (a) real-time lagging flow 2, (b) non-real-time lagging
flow 3, and (c) non-real-time leading flow 4.
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