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Mobile Solutions to Air Quality Monitoring
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Abstract—Air pollution is one of the most compelling global problems since it poses a serious threat on everyone’s health. Governments

and people thus put a premium on the reduction of air pollution in the living environment. Consequently, it draws considerable attention on

how to efficiently collect air-quality data, especially in cities. In the past, the job of air quality monitoring was usually conducted by installing a

few monitoring stations on fixed locations. However, this scheme provides just coarse-grained monitoring, where the resolution of air-quality

samplings may be poor. Even worse, it is difficult to move monitoring stations after installation, but the monitoring mission could be often

changed. To deal with the problems, many studies propose various mobile solutions to air quality monitoring by equipping gas sensors on

mobile devices or vehicles, which allow people to actively and cooperatively detect air pollution in their surroundings. In the chapter, we

provide a comprehensive survey of these mobile solutions, and our discussion has four parts. First, we introduce the techniques to evaluate

air quality, including an index to report the quality of air and models to predict the dispersion of air pollution. Then, we present the mobile

solutions to collect air quality, which can be realized by pedestrians, cyclists, and drivers. Afterwards, we discuss how to analyze raw data

collected by smart phones, followed by the issue of reporting sensing data collected by cars. Some research directions and challenges for

future mobile solutions to air quality monitoring will be also addressed in the chapter.

Index Terms—air quality monitoring, air pollution, mobile solution, participatory sensing, wireless sensor network.
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1 INTRODUCTION

Since the industrial revolution, numerous factories and vehi-
cles have been discharging a large amount of exhaust gases
and airborne contaminants to the atmosphere. These air pollu-
tants are harmful to humans, animals, and the ecosystem. The
World Health Organization also warns that air pollution has
become one of the most serious environmental health risks in
the world [1]. Nowadays, people pay more and more attention
to environmental protection and health, which prompts the
governments and scientists to keep monitoring air quality in
our living environment and strive to reduce air pollution.

A traditional solution to air quality monitoring is to install
some large, expensive monitoring stations on the dedicated
locations in a city [2]. These stations provide large-scale moni-
toring of air quality around their locations. However, the sam-
ples of air-quality data are pretty few, causing the resolution to
be poor. Besides, it lacks flexibility to use static monitoring
stations, since some sites chosen to install stations such as
displaced plants or new parks may become redundant due to
the development of a city. Unfortunately, these stations are not
easy to move to support dynamic monitoring missions (e.g., to
detect air pollution in a new industry district).

In recent decades, the rapid advances of micro-
electromechanical systems and wireless communication tech-
nologies have made wireless sensor networks (WSNs) become
popularized [3]. A WSN is composed of many tiny sensor
nodes deployed in a region of interest, where each node
contains sensing modules to detect events and a wireless
transceiver to send its sensing data to a remote sink [4].
Therefore, WSNs provide a cheap and convenient manner to
monitor the physical environment. Many WSN applications
have been also developed to enrich our life, from health care
[5], [6] to intelligent buildings [7], [8], light control [9], [10],
security surveillance [11], [12], and smart shopping [13], [14].
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Thanks to their context-aware sensing capabilities, many
studies adopt WSNs in the applications of air quality moni-
toring. For example, Tsujitaa et al. [15] use a WSN along with
monitoring stations to increase samplings of air quality. Each
sensor compares its sensing data with the data collected by
neighbors and nearby monitoring stations, so as to calibrate its
sensing module. Wang et al. [16] deploy a WSN to monitor the
concentration of CO (carbon monoxide) and PM (particulate
matter) pollutants. Sensors are powered by solar batteries
for energy harvesting. Besides, they can turn off transceivers
during a suspended period to extend lifetime. Penza et al. [17]
install gas sensors on some positions in a city to measure the
variation of CO, PM, H2S (hydrogen sulfide), NO2 (nitrogen
dioxide), and SO2 (sulfur dioxide) gases. The collected data
are transferred to the format of data quality objective defined by
European Directive [18]. Brienza et al. [19] develop a sensor
suite for people to easily install gas sensors on their houses
to monitor air quality in the community, and share their
monitoring data through social networking.

Introducing mobility to a WSN further improves its flexibil-
ity and allows it to conduct different missions such as moving
sensors to replace broken nodes or dispatching sensors to ana-
lyze events [20]. Mobile sensors can be implemented by putting
sensing devices on mobile platforms like smart phones, robots,
or vehicles [21]. With the concept of mobile sensors, a number
of researchers develop their mobile solutions to air quality
monitoring, which allows pedestrians, cyclists, or drivers to
carry sensors to measure air quality when they move in a
city. Two interesting issues are also arisen from these mobile
solutions. In particular, people may prefer using simple (and
cheap) gas sensors or even in-built (non-gas) sensors on their
smart phones to collect air quality. In this case, how can we
estimate the concentration of monitoring pollutants by analyz-
ing the raw data collected by these sensors? In addition, some
mobile solutions are implemented by equipping gas sensors on
cars to collect air quality in a city. Because the mobility of cars
is usually uncontrollable [22], how can we make cars collect
air quality on desired positions and report their sensing data
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TABLE 1: Six AQI classes defined by U.S. EPA.
class AQI range dedicated color
good 0 to 50 green
moderate 51 to 100 yellow
unhealthy for sensitive groups 101 to 150 orange
unhealthy 151 to 200 red
very unhealthy 201 to 300 purple
hazardous 301 to 500 maroon

accordingly?
This chapter gives a comprehensive survey of existing

mobile solutions to the problem of monitoring air quality. It is
organized as follows. In the next section, we give background
knowledge of some techniques to evaluate air quality. Section 3
presents the mobile solutions to collecting air quality in cities.
We discuss how to analyze raw data collected by smart phones
in Section 4, and also how to report sensing data collected from
cars in Section 5. Then, Section 6 addresses research directions
and challenges. Finally, Section 7 concludes this chapter.

2 TECHNIQUES TO EVALUATE AIR QUALITY

There are a number of common techniques to evaluate air qual-
ity and model air pollution. In this section, we first introduce
the technique of air quality index (AQI) to measure the degree of
air pollution. Afterwards, we present the mathematical models
used to simulate the dispersion of air pollutants. Among
these models, we detail one popular dispersion model, called
industrial source complex (ISC3), to evaluate the effect of air
pollution.

2.1 The AQI Technique

AQI provides an intelligible index to measure and report to
the public how clean or polluted the air is during one day. We
take AQI defined by the U.S. Environmental Protection Agency
(EPA) [23] as an example, whose range is within [0, 500]. It is
divided into six classes, where each class is assigned with one
color for ease of understanding, as presented in Table 1.

In addition, each AQI class is also associated with some
health effects that people may experience when they are doing
outdoor activities.

• Good: The air pollution poses little or no risk on health,
so the outdoor air is basically safe to breathe.

• Moderate: Although the quality of air is acceptable,
unusually sensitive people, for example, patients who
have lung diseases, are suggested to reduce prolonged
or heavy outdoor exertion.

• Unhealthy for sensitive groups: Most people are not
likely to be affected by the air pollution, but members
of sensitive groups such as the elderly, children, outdoor
workers, and patients with asthma, need to reduce
prolonged or heavy outdoor exertion.

• Unhealthy: Members of sensitive groups should avoid
prolonged or heavy outdoor exertion. Everyone else
has to reduce prolonged or heavy outdoor exertion for
health concern.

• Very Unhealthy: Members of sensitive groups have to
avoid all outdoor exertion. Everyone else should reduce
outdoor exertion.

• Hazardous: The government will announce health
warning of emergency conditions. Everybody should
avoid possible outdoor activities.

To compute the value of AQI, EPA suggests sampling five
common kinds of air pollutants, including ground-level O3

(ozone, measured in parts per million, which is abbreviated
to ‘ppm’), CO (measured in ppm), SO2 (measured in parts per
billion, which is abbreviated to ‘ppb’), NO2 (measured in ppb),
and PM (measured in microgram per cubic meter, which is
denoted by µg/m3). In particular, for each air pollutant k, its
AQI value Ak is calculated by

Ak =
Ahigh −Alow

Bhigh −Blow

× (Ck −Blow) +Alow, (1)

where Ck is the rounded concentration of pollutant k, Bhigh

is a concentration breakpoint no smaller than Ck, Blow is
a concentration breakpoint no larger than Ck, Ahigh is an
AQI value corresponding to Bhigh, and Alow is an AQI value
corresponding to Blow. The suggested values for breakpoints
can refer to EPA’s technical assistance document in [24]. To
estimate the value of Ck, EPA suggests taking the average
concentration of different pollutants as follows:

• O3 (short term), SO2, and NO2: one hour.
• O3 (long term) and CO: eight hours.
• PM: 24 hours.

The overall AQI value is the maximum value of Ak from all
observing pollutants.

2.2 Air Pollution Dispersion Models

Air pollution is caused by the emission of pollutants such as
particulates or harmful gases to the atmosphere from some
sources. According to their dimensions, these emission sources
can be divided into four categories. In particular, a point source
has zero dimension (0D), where there is only one identifiable
source which diffuses air pollutants. Examples of point sources
include a single smokestack, a flue, or a furnace. On the other
hand, a sequence of point sources together will form a 1D
line source. One can image traffic congestion in a road, where
each car is viewed as a point source but they together form
a line source. Then, an area source is a 2D plane on which air
pollutants are emitted, for instance, methane gases diffused
from a landfill. Finally, a volume source can be treated as an
area source but it has a third dimension (i.e., the height). One
representative is the smoke emission caused by the forest fire
in a mountain.

Given the emission sources in a monitoring region, there
are five common mathematical models used to imitate the
dispersion of air pollution in that region:

• Box model: This model considers a simplified environ-
ment, where the given volume of atmospheric air in
the monitoring region is constrained to a box-shaped
space. Based on the assumption that air pollutants are
homogeneously distributed, the box model calculates
the average concentration of pollutants in the space.
Consequently, the box model cannot provide accurate
estimation of air pollution dispersion due to its imprac-
tical assumptions.

• Lagrangian model: In the Lagrangian model, we as-
sume that an observer follows along with the emission
plume of air pollution, which is a flow of pollutants
in the form of smoke or vapor discharged into the
air. Suppose that the motion of each pollution plume
parcel (i.e., a particle) complies with the random-walk
mobility model [25]. The Lagrangian model associates
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with a mobile reference system for particles to predict
their trajectories when they move in the air. Then, the
dispersion of air pollution can be estimated according
to the statistics of moving trajectories caused by a great
deal of particles.

• Eulerian model: The Eulerian model can be viewed
as one variation of the Lagrangian model, where it
also computes the moving paths of particles inside the
emission plume of air pollution. However, this model
considers that an observer is watching the emission
plume of air pollution as plume goes by. Besides, in-
stead of using a mobile reference system, the Eulerian
model adopts a fixed 3D Cartesian coordinate system to
track the trajectories of particles when they leave from
their initial positions.

• Dense-gas model: As its name would suggest, the
dense-gas model aims at simulating the diffusion of gas
pollution plumes which are heavier than the general
air (usually toxic gases such as the leakage of chlorine
from a trunk). When a stream of dense gas is injected
into the flowing air, it may produce a wide and flat
plume at the ground level. There are many variations
of this model, including ALOHA, HGSYSTEM, SLAB,
SCIPUFF, PHAST, and TRACE. The work of [26] gives
a comparison of these six variations in actual railcar
accidents.

• Gaussian model: This model adopts a Gaussian dis-
tribution to evaluate the dispersion of air pollutants.
In other words, the dissemination of pollutants has a
normal probability distribution. The major application
of the Gaussian model is to estimate the diffusion of
continuous, floating air pollution plumes from ground-
level or elevated emission sources. However, the Gaus-
sian model can be also used to estimate the dispersion
of non-continuous air pollution plumes, which is usu-
ally called the puff model.

These dispersion models are useful for scientists to evaluate
the effect of industrial districts on air quality or forecast AQI
after some disasters, for example, haze and smog caused by
a large-scale wild fire. Among these models, the Gaussian
model is the most popular one to evaluate the diffusion of
air pollution due to its flexibility.

2.3 The ISC3 Model

ISC3 (‘3’ indicates the version) is developed from the Gaus-
sian model to evaluate both diffusion and sedimentation of
pollutants in the air, which is able to estimate different types
of emission sources including point, line, area, and volume
sources discussed in Section 2.2. It can also deal with the sepa-
ration of point sources. In addition, ISC3 is usually adopted to
analyze some characteristics of air pollutants, such as settling
and dry deposition of particles, effect of down-wash, and
limited terrain adjustment.

In ISC3, the concentration of air pollutants on a position
(x, y, z) in the 3D space is calculated as follows:

Ĉ(x, y, z) =
ϕξRV

2πµsδyδz
× exp

[

−0.5× (y/δy)
2
]

, (2)

where ϕ is a coefficient used to convert the output into
concentration, ξ is a coefficient of disintegration, which is
used for certain pollutants with a half-life period (e.g., SO2),
R is the discharge rate of the pollutant (measured in grams
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Fig. 1: An example of the ISC3 model.

per second), V denotes the reflection in the vertical direction,
µs is the wind’s speed (measured in meters per second), δy
is the diffusion factor in the horizontal direction, δz is the
diffusion factor in the vertical direction, and exp[·] denotes
the exponential function. In Eq. (2), we use parameter V to
measure the pollutant concentration in the earth surface or the
inversion layer of the atmosphere. Given the height H of an
emission source, it can be derived by

V = exp

[

−0.5×

(

z −H

δz

)2
]

+ exp

[

−0.5×

(

z +H

δz

)2
]

.

(3)

Fig. 1 illustrates an example of ISC3, where the smokestack
has a height of H and the wind blows along the x axis. In
this case, the air pollutant spreads in both horizontal and
vertical directions, which depends on the parameters of δy
and δz , respectively. The colored area points out the range
of the emission plume of air pollution. It is worth of noting
that the coefficients in Eqs. (2) and (3) will be determined by
the weather and temperature. In addition, EPA suggests the
minimum observing period of ISC3 to be one hour.

3 MOBILE SOLUTIONS TO COLLECTING AIR

QUALITY

In this section, we discuss the mobile solutions to collecting
air quality. Based on their collecting methods, we classify
these solutions into three categories: pedestrian-based, bike-based,
and car-based solutions. The pedestrian-based solutions ask
pedestrians to carry smart phones along with gas sensors and
walk in the monitoring region to collect air-quality data. On
the other hand, bike-based and car-based solutions equip gas
sensors and communication devices on bikes and cars, respec-
tively, which support the collection of air quality in a much
larger region. These solutions also have different mobility
models [25]. Generally speaking, pedestrians may follow either
random waypoint or reference-point group mobility models.
On the other hand, the Manhattan grid model is suitable to
depict the moving behavior of bikes and cars, as they usually
move along roads and streets.

3.1 Pedestrian-based Solutions

Many people choose smart phones as their major computing
and communication devices. Smart phones are programmable,
so most phone vendors provide their APP stores to allow de-
velopers delivering new applications to the public. Moreover,
each smart phone can be viewed as a sensor suite, as it usually
has accelerometer, camera, digital compass, GPS (global po-
sitioning system) receiver, and microphone. Therefore, a new
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sensing paradigm called participatory sensing [27] is proposed
to allow people using smart phones to collect environmental
information on their own. Based on the motivation, a number
of studies develop their mobile solutions for pedestrians to
collect air quality by their smart phones and exterior sensors.

Nikzad et al. [28] propose a participatory sensing sys-
tem called CitiSense, which allows pedestrians to carry smart
phones and wearable sensor boards to monitor air quality
throughout one day, especially during times when exposure
to air pollutants will be the highest, for instance, during a
rush-hour commute. A lightweight sensor board that contains
CO, NO2, and O3 detectors is developed for pedestrians to
easily carry. It also includes weather-related sensing devices
to monitor temperature, humidity, and barometric pressure.
The sensor board can communicate with the user’s smart
phone wirelessly through Bluetooth, whose communication
range is below 60 meters (in Bluetooth version 4.0). Besides,
an Android-based APP is developed to display the current air
quality on the smart phone and also help the user post the
collected data to social networks such as facebook and twitter.
The APP reports the last estimated AQI along with the health-
effect class presented in Table 1. Each sensor reading collected
by the sensor board is tagged with the user’s position gotten
from GPS. However, since the GPS receiver is an energy-
consuming module, it is used only when the user is moving.
Moreover, CitiSense has a web interface to let users browse
through the readings of air quality that they collected on any
given day, which is displayed on the Google Maps. Each
sensor reading is placed on the map as a color-coded and
numbered marker, which are ordered by its monitoring time.
Therefore, users can identify the hotspots of air pollution in
locations where they passed through during the commute. A
prototype of CitiSense was deployed in San Diego, California,
U.S., where 16 participators each had a commute journey for
at least 20 minutes, and they were regular users of the same
social network.

Yang and Li [29] develop a smart sensor system for air
quality monitoring, where each pedestrian can carry a smart
phone and a box of embedded sensors (called a sensor unit) to
detect various air pollutants in the surroundings. The smart
phone serves as the middleware between the sensor unit and
the server. When a user wants to measure air quality, he/she
can execute a specific APP installed on the smart phone, which
triggers the sensor unit to detect air pollutants and report
sensing data. The data of air quality will be immediately
displayed on the smart phone, and the user can also feed back
these data to the server. Afterwards, the server manages the
collected data and present the monitoring result of air quality
through a map-based interface. In [29], the following sensors
are included in the sensor unit to monitor different types of air
pollutants:

• PM sensor, which detects particles in the size of around
one micrometer (i.e., 10−6 m) in diameter, with the
detection range from 0 to 1.4 mg/m3;

• CO sensor, which can estimate the CO concentration
from 20 to 2,000 ppm;

• CO2 sensor, which measures the concentration of CO2

(carbon dioxide) gas to at most 2,000 ppm, with the
maximum inaccuracy of ±50 ppm;

• temperature and humidity sensor, where the humidity
measurement range is between 0% and 100% with at
most ±2% error, and the temperature measurement

range is between -40◦C and 80◦C with no more than
±0.5◦C inaccuracy;

• hazard gas sensor, which is used to detect noxious gases
such as ammonia, benzene, nitrogen oxide, and smoke;

• volatile organic compound (VOC) gas sensor, which can
detect acetone, alcohol, formaldehyde, methanol, nitro-
gen, styrene, sulfur, and toluene in the air.

With the hazard and VOC gas sensors, users can be warned
in real time once they enter a region with high concentration
of harmful gases. These sensors are coordinated by an ARM-
based microcontroller and their readings are transmitted to
the nearby smart phone through a Bluetooth chip. Since all
modules in the sensor unit are powered by small batteries,
they usually stay in the sleeping state to save energy unless the
smart phone sends a command to wake them up. A prototype
of the proposed system was demonstrated in Prairie View,
Texas, U.S.

Dutta et al. [30] propose an AirSense system to let people
participate in monitoring air quality in their neighborhood,
which is composed of four tiers:

• Crowd sensing tier: Participators can carry both sensor
suites and smart phones to collect air quality indoor
and outdoor, which offers raw data to AirSense. They
can also consume the service provided by AirSense (i.e.,
the analyzed result of air quality monitoring) through
their smart phones.

• Air quality sensing tier: Each sensor suite sends the
collected data to a nearby smart phone through Blue-
tooth. Instead of sending data periodically, the sensor
suite reports its data only when there is a significant
change in the measurement of sensor readings. Thus,
the Bluetooth bandwidth can be saved accordingly.

• Data forwarding tier: Sensing data collected by smart
phones will be transmitted to a cloud server via 4G
or Wi-Fi connections. Since GPS receivers are the basic
modules in most smart phones, these sensing data
can be associated with the positions where they are
monitored.

• Data analysis tier: The cloud server finally calculates
the AQI value according to the collected data. It can
also construct a pollution footprint for each participator,
which is shown on the smart phone in the form of a
mobile APP.

To implement the sensor suite, [30] adopts an Arduino board
to integrate with multiple gas sensors to monitor PM, O3,
NO2, SO2 pollutants and also a Bluetooth device for data
transmissions. Arduino is an open-source, single-board micro-
controller kits for developers to easily build digital devices and
embed sensing modules [31]. On the other hand, a free cloud
service provider, called OPENSHIFT [32], is used to manage
and analyze the collected data. OPENSHIFT adopts MySQL as
its database to store sensing data, where the identification of
each sensor suite is selected as a primary key to query data.
A prototype of the AirSense system was deployed in Kolkata,
India for demonstration.

3.2 Bike-based Solutions

Since bikes provide better mobility than human walking and
it is easy to ask cyclists to ride along the pre-scheduled
routes, some researchers suggest putting multiple sensors and
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communication devices on bikes to collect environmental in-
formation.

Eisenman et al. [33] propose a BikeNet framework, whose
objective is to use multiple sensors installed on each bike to
gather quantitative data related to the ride of a cyclist. In
particular, BikeNet provides two types of information collected
from these sensors. One is the context in terms of the cyclist’s
performance, for instance, the riding speed, distance traveled,
and calories burned by the cyclist. The other is about the
environmental conditions for the ride, for example, the degree
of air pollution, allergen, noise, and terrain roughness of the
given route. To do so, each bike carries the following sensors
and devices to conduct the monitoring job:

• microphone, which detects the surrounding noise;
• magnetometer, which detects the moving direction;
• pedal speed monitor, which is used to estimate the

amount of calories burned by the cyclist;
• inclinometer, which measures the angle of slope;
• lateral tilt, which has the similar purpose of inclinome-

ter;
• stress monitor, which detects the galvanic skin response;
• speedometer, which measures the moving speed;
• GPS receiver, which acquires the cyclist’s position;
• CO2 meter, which detects the potential air pollution.

These sensors and devices are wirelessly connected via ZigBee,
whose physical communication range is around 10 to 20 me-
ters. In addition, cyclists carry smart phones with cameras to
take snapshots from the surroundings and collect the readings
from the sensors. There are multiple Wi-Fi and GSM (global
system for mobile communications) base stations deployed
along some pre-planned paths where cyclists will follow to
ride. When a cyclist rides close to a base station, the smart
phone transmits sensor readings and snapshots to the back-
end servers for analysis. The analyzed data will be visually
displayed on web portal. BikeNet aims at improving cyclist
experience, but it also provides air quality monitoring. In
particular, a CO2 map of streets where a cyclist ever rode
through is also shown on the web portal. The CO2 map
identifies the regions with high CO2 concentration, which can
be used to warn cyclists not to ride in these regions for health
concern. A prototype of BikeNet was deployed in Handover,
New Hampshire, U.S. for demonstration.

Vagnoli et al. [34] also use bikes to develop a SensorWebBike
framework for air quality monitoring, which is composed of
three major components:

• Arduino-based sensor platforms, which are installed on
bikes to monitor urban air quality and weather param-
eters;

• GeoDatabase, which is a database to store and manage
the collected data;

• web application, which helps users view, query, and
analyze the information of air quality.

In particular, SensorWebBike adopts an Arduino board to inte-
grate multiple gas sensors to monitor different types of air pol-
lutants, including CO, CO2, O3, NO2, and CH4 (methane). In
addition, the Arduino board also contains noise, humidity, and
temperature sensors used to collect the weather information.
Participators can ride bikes equipped with the Arduino-based
sensor platforms to collect the data of air quality and weather
condition in a city, and report their monitoring data through
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Fig. 2: The car-based mobile solution proposed in [36] for CO2 monitoring.

GPRS (general packet radio service) communications. The col-
lected data are maintained by GeoDatabase, which follows the
data format defined by the open geospatial consortium (OGC)
for inter-operability, where OGC is an international organi-
zation committed to making quality open standards for the
global geospatial community [35]. Besides, the web application
is developed by using Java2EE to provide the visualization
of sensing data in GeoDatabase with multiple formats such
as tabular, chart, and geographic map. SensorWebBike was
adopted to monitor air quality in the city of Siracusa, Italy
as a case study.

3.3 Car-based Solutions

In general, cars move much faster and in longer distances than
pedestrians and bikes, and they can move in some regions
where pedestrians or cyclists are prohibited to enter, for exam-
ple, highways and freeways. So, it attracts attention to use cars
as mobile platforms to carry sensors to conduct monitor jobs in
urban areas [21]. Therefore, a number of studies also use cars
for the application of air quality monitoring.

Hu et al. [36] develop a mobile solution by cars to monitor
the concentration of CO2 gas in urban areas, as shown in
Fig. 2. Specifically, each car is equipped with four components:
CO2 sensor, GPS receiver, GSM module, and Jennic board. The
CO2 sensor is installed outside the car (e.g., the windscreen)
to collect the surrounding CO2 concentration. Both the GPS
receiver and the GSM module are placed inside the car. The
CO2 sensor and the GPS receiver each connects with a Jennic
board [37], which supports ZigBee communications. On the
other hand, the GPS receiver adopts an RS232 interface to com-
municate with the GSM module. By combining the positioning
information from the GPS receiver and the sensing data from
the CO2 sensor, the GSM module then periodically transmits
the monitoring data to a nearby GSM base station through
GSM short messages, which have the following data format
[38]:

(6-byte time, 6-byte CO2 reading, 11-byte latitude,

11-byte longitude).

For example, when the base station acquires a GSM short
message of “(151055, 000405, 2447.3630N, 12060.8732E)”, it
points out that a car detects the CO2 concentration of 405 ppm
on the geographic location of 2447.3630 degrees north latitude
and 12060.8732 degrees east longitude at time 15:10:55 (in
the format of hour:minute:second). A 16-node prototype was
implemented to monitor CO2 concentration in Hsinchu City,
Taiwan. The monitoring result was presented on the Google
Maps, on which each dot indicated the location where a car
collected sensing data, and its color showed the range of
detected CO2 concentration.

Sivaraman et al. [39] propose a HazeWatch project that
targets at fine-grained spatial measurement of air pollution by
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cars in Sydney, Australia. In HazeWatch, a driver can choose
to mount either a cheap but simple metal oxide sensor or
an expensive but sophisticated electrochemical sensor on the
car to collect the concentration of CO, NO2, and O3 pollu-
tants. Moreover, some commercial monitors which provide
more accurate detection of the pollutants are installed on the
roadside to calibrate the readings of sensors on cars. On the
other hand, HazeWatch relies on the GPS and 3G capability
of smart phones to report positions and sensing data to the
server, where the collected data from sensors are transmitted
to the smart phone via Bluetooth communications. The server
software is composed of three layers:

• Database layer: It stores sensing data and provides a
simple interface to extract and filter these data. The
database layer is implemented by MySQL.

• Model layer: This layer gives an abstraction of the
collected data, which can return the data of air quality
from any location in the monitoring region.

• Web-server layer: The layer presents the data (from the
model layer) to users, which is displayed in the form of
web pages and maps.

However, it is infeasible to collect air quality on every point
in the monitoring region, so two interpolation methods are
used by the model layer to estimate the value of air quality on
those points without actual sensing data. The inverse-distance
weighting method estimates the pollutant’s concentration on a
point by assigning weights to all neighboring points, where a
point farther away from the interpolation point has a smaller
weight. On the other hand, the kriging method is based on
the calculation of the empirical semi-variogram over the data,
where variogram is usually used to describe the degree of
spatial dependence of a spatial random field or stochastic pro-
cess. This method can be implemented by clustering pairs of
data points into bins that have similar distances, and plotting
the semi-variance of each bin as a function of distance which
corresponds to that bin. Then, the interpolation weights are
estimated by solving a system of linear equations derived
from these bins. The kriging method is more complicated, but
it provides more accurate data estimation than the inverse-
distance weighting method, especially when the points with
actual sensing data are sparsely distributed in the monitoring
region.

Devarakonda et al. [40] propose two mobile sensing models
to use cars for air quality monitoring in a city:

• Public transportation infrastructure: In this model,
buses are used as a mobile platform to collect air qual-
ity, where they will periodically move along the fixed
routes (usually along high volume roads). To do so,
each bus is installed with a mobile sensing box, which
contains an Arduino board to integrate with multiple
devices including a 3G communication module, a GPS
receiver, a CO sensor, and a dust sensor (to monitor the
PM pollutant).

• Social community-based sensing: Drivers can install
a personal sensing device on their cars and register
to participate in collecting air quality. The personal
sensing device has a CO sensor and it can communicate
with the driver’s smart phone through a Bluetooth link.

All collected data are geo-tagged (by the GPS receiver in a
mobile sensing box or a smart phone) and sent to a central
server through the cellular network. Afterwards, the server

translates these sensing data to AQI values and adopts two
user interfaces, maker map and heat map, to display the degree
of air pollution on a web page. The maker map is composed of
data makers, each corresponding to a location where the sens-
ing data are collected. When the user clicks on a data maker, it
will show the related information such as the monitoring time,
GPS coordinates, and pollutant concentration. On the other
hand, the heat map illustrates all available measurements with
gradient color display, where higher pollutant concentration
is represented by higher ranked color in the color spectrum.
The proposed system was demonstrated in two U.S. cities to
monitor the CO pollutant, including Turnpike, New Jersey, and
Staten island, New York.

3.4 Discussion

Table 2 compares the mobile solutions discussed in Section 3.
Because most smart phones have Bluetooth modules, many
solutions choose to use the Bluetooth protocol for sensors to
transmit their sensing data to nearby smart phones. However,
both [33], [36] adopt the ZigBee protocol for sensors and
devices to communicate with each other, while [34] integrates
all sensors into one single board. Unlike the bike-based or car-
based solutions, pedestrians usually carry small batteries as
the power supply for sensors and smart phones. Therefore,
energy is a critical concern in the pedestrian-based solutions.
To save energy of devices, [28] turns on the GPS receiver only
when necessary. The solution in [29] makes sensors sleep until
the smart phone wake them up. Besides, [30] allows sensors to
report data only when there are significant changes in sensor
readings.

For user interface, the solutions in [28]–[30], [39] develop
APPs for users to submit their collected air-quality data and
obtain the analyzed result through their smart phones. Most
solutions adopt the Google Maps to display the monitoring
result of air quality. However, [33] and [34] choose to use their
own maps to demonstrate the result. In addition, the solutions
in [28], [30], [40] adopt AQI discussed in Section 2.1 to display
their measurement of air quality. Finally, both [33], [36] aim at
collecting CO2 concentration in a city. Other solutions allow
users to monitor two or more types of air pollutants in their
surroundings.

4 ANALYZING RAW DATA COLLECTED BY SMART

PHONES

Due to the budget consideration, some people may use simple
gas sensors linked to their smart phones to measure air quality.
Moreover, they may prefer directly using in-built sensors of
smart phones (e.g., cameras) to monitor certain air pollutants.
Therefore, a few research efforts propose different approaches
to analyze raw data collected by smart phones to provide more
accurate monitoring result of air quality.

Hasenfratz et al. [41] connect a smart phone with an O3 sen-
sor through its USB (universal serial bus) interface to support
participatory air quality monitoring. To detect the ground-level
O3 concentration, they measure the resistance of the sensor’s
SnO2 (tin dioxide) layer. In particular, the smart phone polls
the O3 sensor to acquire its raw sensor readings every 100 ms,
which contain the SnO2 layer’s resistance R and the on-board
temperature T . Since the value of resistance highly depends
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TABLE 2: Comparison on the mobile solutions to air quality monitoring.
mobile collecting device city energy air pollutants

solution method link for demo saving APP map AQI CO CO2 NO2 O3 PM
[28] pedestrians Bluetooth San Diego X X Google X X X X

[29] pedestrians Bluetooth Prairie View X X Google X X X

[30] pedestrians Bluetooth Kolkata X X Google X X X X

[33] bikes ZigBee Handover other X

[34] bikes wired Siracusa other X X X X

[36] cars ZigBee Hsinchu Google X

[39] cars Bluetooth Sydney X Google X X X

[40] cars Bluetooth Turnpike Google X X X

on the temperature, we can estimate the value of temperature-
compensated resistance by

Rt = R× exp[K(T − T0)], (4)

where T0 is the reference temperature and K is a coefficient
used to adjust the difference of temperature. In general, T0 is
set to 25◦C and K is set to 0.025. Because the response curve of
the O3 sensor is quasi-linear with respect to the concentration
of O3 pollutant, the concentration can be approximated by a
first-order polynomial as follows:

f(Rt, α, β) = α+ βRt, (5)

where α and β are two parameters used to calibrate the sensor
readings. According to the observation from [42], the spatial
dispersion of O3 pollutant in a street canyon is usually kept
constant and its concentration would slowly change over time
(specifically, in the order of minutes). Based on this observa-
tion, the smart phone can stream data sets of sensor readings
through a data filter to construct tuples for data calibration.
Specifically, given a data set S with calibration tuples (Rt,M),
where M is the reference measurement, for example, the sens-
ing data acquired from the nearby monitoring station, we can
adopt the least-squares method to determine both parameters
α and β in Eq. (5) such that the sum of squared differences
between f(Rt, α, β) and M is minimized:

arg min
α,β

∑

∀(Rt,M)∈S

[f(Rt, α, β)−M ]2. (6)

Through the above scheme, we can calibrate the sensor’s read-
ings to improve the accurate of monitoring result. However,
Eq. (6) is specific to O3 pollutant. It may not be directly applied
to other air pollutants.

Liu et al. [43] use in-built cameras on smart phones to
estimate the concentration of PM 2.5 pollutant. Their proposed
method works based on the relationship between the haze
model and the photographic images [44]. Specifically, haze is
one atmospheric phenomenon caused by dust, smoke, and
PM 2.5 to obscure the clarification of sky, which makes the
image look brownish and blurry. In the haze model, given
a pixel x on the image, we can estimate its observed image
irradiance by

O(x) = I(x)× t(x) + L(1− t(x)), (7)

where I(x) denotes the scene irradiance and L is the global
atmospheric light. In Eq. (7), t(x) is a meteorological parameter
called transmission, which reveals the amount of light that can
pass through the atmosphere. Its value is calculated by

t(x) = exp[−εd(x)], (8)

where ε denotes the light extinction and d(x) is the scene depth
that displays the distance between the object in the image and

the participator who takes the photograph. It has been shown
in [45] that PM 2.5 particulates have significant effect on the
light extinction, so the value of ε can be approximate to pMf ,
where p is a constant (usually set to 3.75 in the urban area) and
Mf is the concentration of PM 2.5 pollutant. Therefore, we can
use Eq. (7) to measure PM 2.5 concentration from the image. In
addition, three image features are considered to improve the
accuracy of concentration estimation:

• Spatial contrast: We can use the decrease of spatial
contrast to observe the degradation of image caused by
haze, where distant objects in an image with haze will
lose its acuity.

• Dark channel: The value of dark channel of a given
pixel x is the minimum intensity of the three color
channels (i.e., red, green, and blue) of the image block
around x. The dark channel of an image without haze
should be zero in theory.

• HSI color difference: HSI is the acronym of three terms
used in chromatology: hue, saturation, and intensity.
The HSI color difference of the sky taken under differ-
ent weather conditions will change with the visibility
and hazy situation.

To construct the prediction model, we should not only take
a sequence of photographs Pts = {P 1

ts, P
2
ts, · · · , P

m
ts } at a

location L for m days, but also acquire the data of PM 2.5
concentration Cts = {C1

ts, C
2
ts, · · · , C

m
ts } from PM 2.5 moni-

toring stations. Then, given a new photograph P also taken
at location L, we can use Eq. (7) and the above three image
features to compare it with the photographs in Pts, and esti-
mate the concentration of PM 2.5 pollutant by consulting the
data in Cts accordingly. The scheme in [43] provides a cheap
way for people to monitor PM 2.5. However, it incurs a high
cost to build the prediction model, as a user needs to take
many photographs from the same locations in the monitoring
region.

5 REPORTING SENSING DATA COLLECTED BY CARS

The mobile solutions discussed in Section 3.3 provide large-
scale monitoring of air quality in a metropolitan area, since
cars can move very long distances. However, since drivers
have their own destinations, we may not control the moving
directions and paths of cars. Besides, it is not a good idea to
ask drivers to move to certain locations to collect air quality,
as cars also discharge exhaust fume. Otherwise, the distortion
of collected data and traffic jam will occur on these locations.
Therefore, the mobility of cars is not intentional [46] but could
follow some mobility models in VANET (vehicular ad hoc
network) [22]. To provide better monitoring of air quality by
cars under the above consideration of mobility, several studies
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propose adaptive algorithms to control the data reporting
procedure of cars.

Mitra et al. [47] adopt mobile agents installed on some cars
to conduct the mission of air quality monitoring. In particular,
mobile agents are migratory programs capable of moving from
one node to a neighboring node in the network and being
executed at the destination node. Each mobile agent is com-
posed of three components: 1) the program which implements
the mobile agent, 2) the current status of the program, and
3) user data. Mobile agents can decide when and where to
move on their own, so they are useful to collect sensing data
in a mobile WSN. In [47], the remote server creates a few
mobile agents in the beginning, each with the configuration
information including the target monitoring region, the time
period to collect sensing data, and the type of sensing data
to be collected. These mobile agents are arbitrarily launched
in some cars. During the movement of cars, mobile agents can
migrate from one car to another to reach the monitoring region
in time. Once the time period expires, mobile agents then
transmit their collected sensing data to the remote server (e.g.,
through a cellular network). The advantage of using mobile
agents is that they can move between different cars to collect
only the relevant data. In this way, we can reduce network
load because each car will discard unnecessary data after its
mobile agent leaves [48]. However, since the movement of
cars is uncontrollable, the route of a car that the mobile agent
currently lodges may not be desirable. For example, the car
may be driven away from the monitoring region, or it could
be stuck in a traffic jam. In this case, it would be better for
the mobile agent to immediately migrate to a neighboring
car, or the number of air-quality samplings collected by the
mobile agent may not be sufficient. To do so, each mobile agent
periodically checks whether its lodging car is still moving
towards the target region, or whether the car is stuck in the
traffic jam by the following two strategies:

• Distance strategy: The mobile agent calculates the
Euclidean distance between the lodging car and its
destination. If the distance does not decrease as time
goes by, there is a high possibility that the lodging car
is stuck in a traffic jam. Therefore, the mobile agent will
jump to another car within the communication range.

• Angle strategy: The mobile agent measures the angle
between the moving vector of the lodging car and
the straight line to the destination. When the angle
increases as time goes by, it means that the lodging car
may move away from the destination. Thus, the mobile
agent should conduct the operation of migration.

The above two strategies are easy to implement, because the
moving direction and geographic position of each car can
be acquired by its GPS receiver. Therefore, mobile agents
can determine whether to migrate to another car in a short
time, and collect as many air-quality samplings as possible.
However, when a mobile agent is lodged in a car that currently
moves towards the destination but will become isolated soon
(i.e., there are no neighboring cars), the mobile agent will have
no chance to migrate to other cars.

Hu et al. [49] divide the monitoring region into a 2D
array of homogeneous grids, as shown in Fig. 3, and then
dynamically adjust the data reporting rates of cars in each
grid based on its car density and the variation of pollutant
concentration. Consider that it incurs a cost for car drivers
to transmit sensing data to a remote server (e.g., via GSM
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Fig. 3: Homogeneous grid partition by [49] for air quality monitoring.

short messages). The objective is to reduce the overall cost
while ensuring the accuracy of monitoring result (in partic-
ular, obtaining sufficient air-quality samplings to calculate the
distribution of pollutant in the monitoring region). Generally
speaking, a higher reporting rate should be assigned to a grid
where the variation of pollutant concentration increases, and
vice versa. Fig. 3 presents some examples. Grids (4, 2), (5, 2),
(4, 3), and (5, 3) have high variations of pollutant concentra-
tion, so higher data reporting rates should be imposed on these
four grids to improve the monitoring accuracy. On the other
hand, the pollutant concentration is almost flat in grid (1, 1)
but there are many cars in that grid. Thus, a lower reporting
rate can be assigned to grid (1, 1) to reduce the amount of data
transmissions without significantly reducing the monitoring
accuracy. With these observations, two schemes are proposed
to dynamically adjust the reporting rate of cars in each grid.

• Variation-based scheme: Let us denote by σi the stan-
dard deviation of pollutant-concentration values col-
lected from grid Gi in the previous time frame. Then,
we can estimate the number of air-quality samplings
that should be received from grid Gi in the next time
frame to keep its monitoring accuracy by

Svar
i = αvar

i × σi + βvar
i , (9)

where αvar
i and βvar

i are two constants based on the past
experience, and larger values imply higher monitoring
quality but larger message overhead. In Eq. (9), βvar

i is
the minimum number of air-quality samplings that we
expect to receive from grid Gi. Then, the new reporting
rate for grid Gi will be set to Svar

i /ni, where ni is the
number of cars in grid Gi which submitted their reports
to the server in the previous time frame.

• Gradient-based scheme: Let V max
i and V min

i be the
sets of the highest γ ratio and the lowest γ ratio of
pollutant-concentration values collected from grid Gi

in the previous time frame, respectively. The gradient
of two air-quality samplings x ∈ V max

i and y ∈ V min
i is

defined by

ξ(x, y) =
x− y

D(x, y)
, (10)

where D(x, y) is the Euclidean distance between the
two positions where x and y are sampled. We can also
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Fig. 4: Heterogeneous grid partition by [50] for air quality monitoring,
where dotted-line grids do not appear in the current region quadtree.

measure the average gradient in grid Gi as follows:

ξavgi =

∑

x∈V max

i
, y∈V min

i

ξ(x, y)

|V max
i | × |V min

i |
, (11)

where |·| denotes the number of elements in a set. Then,
the necessary number of air-quality samplings expected
to be collected from grid Gi in the next time frame is
estimated by

Sgra
i = αgra

i × ξavgi + βgra
i , (12)

where both αgra
i and βgra

i are constants based on the
past experience, just like the variation-based scheme.
Also, the new reporting rate for grid Gi is set to Sgra

i /ni.

We remark that the gradient-based scheme can provide higher
monitoring accuracy than the variation-based scheme, since it
takes the positions of air-quality samplings into consideration.
In particular, consider two samplings with a fixed amount of
pollutant-concentration difference. When these samplings are
acquired from two very close positions, the drop of concen-
tration is regarded as more significant than the fluctuation
of concentration acquired from two farther away positions.
Consequently, the gradient-based scheme collects high-value
and low-value air-quality samplings and then measures the
gradients of all pairs of samplings between the two sets V max

i

and V min
i , as given in Eq. (11), to increase the monitoring

accuracy.
Nevertheless, the performance of variation-based and

gradient-based schemes highly depend on the size of grids.
In particular, the monitoring accuracy may decrease when the
grid size increases, since a large grid results in lower resolution
of air-quality samplings. On the other hand, reducing the grid
size would increase the overall message overhead, because the
cars in each small grid will report more data to the server.
To conquer this problem, Wang and Chen [50] propose a het-
erogeneous grid partition, as illustrated in Fig. 4. Specifically,
the monitoring region is recursively quartered and indexed
by a region quadtree. It is a data structure popularly used to
describe a partition of 2D space by iteratively decomposing
the space into four equal quadrants. Each tree node in the
region quadtree has either four children (i.e., an internal node)
or zero child (i.e., a leaf node). To maintain the heterogenous
grid partition, four operations are developed, where we call
the set of air-quality samplings collected in a grid Gi λ-similar
if these samplings belong to the same AQI class discussed
in Section 2.1 and the difference between the largest and the
smallest samplings does not exceed λ.

• No-change operation: When all air-quality samplings
in grid Gi are λ-similar, it implies that the pollutant

concentration keeps steady in grid Gi. Therefore, there
is no need to change the grid. Grid G1 in Fig. 4 gives an
example.

• Dividing operation: If some child grids of grid Gi

have air-quality samplings that are not λ-similar, it
means that the pollutant concentration may signifi-
cantly change in grid Gi. Consequently, it is better to
divide grid Gi to acquire a more fine-grained obser-
vation. Grid G2 in Fig. 4 shows this case. Because its
child grids G9 and G12 have non-λ-similar air-quality
samplings, grid G2 should be further divided into four
small grids.

• Merging operation: It is a special case of the no-change
operation. When grid Gi and its three sibling grids
possess only λ-similar air-quality samplings, we can
merge these four grids into the same one, as the current
grid partition is too narrow. An example is given in
Fig. 4, where grids G13, G14, G15, and G16 can be
merged into a large grid G3 on account of their similar
air-quality samplings.

• Marking operation: The operation is a special case
of the dividing operation. It is invoked when a grid
has non-λ-similar air-quality samplings, but each of its
child grids possesses only λ-similar air-quality sam-
plings. Grid G4 in Fig. 4 presents an example, where
it has two types of λ-similar air-quality samplings, but
its child grids G17, G18, G19, and G20 each has only
one type of air-quality samplings. For this situation, we
prefer not to divide the grid, because each child grid of
grid Gi in fact can share the same data reporting rate.

Once deciding the grid partition by the above four operations,
we can calculate the data reporting rate of each grid by

Ri = µ×
ω(Gi)

φ(Gi)× tavg(Gi)
, (13)

where µ controls the speed to sample air quality, ω(Gi) is a
baseline for the number of air-quality samplings expected to
be collected from grid Gi, φ(gi) is the traffic density in grid Gi,
and tavg(Gi) is the average time that cars stay in grid Gi. In
Eq. (13), ω(Gi) is a constant which depends on the application
requirement, and the coefficient µ can be set as follows:

µ =

{

0.5 if all air-quality samplings in grid Gi are λ-similar
2 otherwise.

(14)

Specifically, when the pollutant concentration keeps steady,
it is unnecessary to collect a large number of similar air-
quality samplings in that grid. Therefore, we halve the data
reporting rate by taking µ = 0.5. On the contrary, when
there is significant variation in the pollutant concentration,
we should double the data reporting rate by taking µ = 2
to capture such high variation. Fig. 4 illustrates an example.
We slow down the data reporting rates of grids G1, G3, G10,
and G11, since they cover the subareas where the pollutant
concentration remains stable. On the other hand, the data
reporting rates of grids G4, G9, and G12 should be speeded
up to react to the significant change in the pollutant concen-
tration. To verify the performance of this heterogenous grid
partition, [50] uses the simulation of urban mobility (SUMO)
[51] to imitate practical car traffic in a city and the ISC3
model discussed in Section 2.3 to simulate the dispersion of air
pollution. Experimental results demonstrate that the proposed
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scheme significantly reduces message overhead while keeps
the monitoring accuracy as compared with the variation-based
and gradient-based schemes, which shows the superiority of
heterogeneous grid partition.

6 RESEARCH DIRECTIONS AND CHALLENGES

In this section, we discuss some research directions and chal-
lenges for the mobile solutions to air quality monitoring:

• The mobile solutions can combine with incentive mech-
anisms [52] to encourage more people to voluntarily
participate in the monitoring missions. In this way, we
can significantly increase sampling data of air quality
and thus improve the accuracy of monitoring result.
Moreover, it is useful to dynamically adjust the fre-
quency to sample air-quality data in various situations,
for example, increasing the sampling frequency when
detecting abnormal air pollution, based on the designs
of these incentive mechanisms [50].

• Collecting air quality on every position in the mon-
itoring region is evidently infeasible. Therefore, it is
a challenge to provide accurate estimation of air pol-
lutant concentration for the positions with just little
information or even without any sensing data. Some
techniques like the dispersion models of air pollutants
discussed in Sections 2.2 and 2.3 and the data mining
approaches popularly used in big data analysis [53]
would be helpful in the estimation of air quality.

• In practical applications, people may use various types
of devices for communications (e.g., smart phones,
laptops, or tablet computers). Moreover, they could
carry different kinds of gas sensors to measure the
concentration of different air pollutants. Consequently,
it deserves further investigation on how to efficiently
collect sensing data from heterogeneous devices and
combine their data with different attributes. Interest-
ingly, this issue has some similarities with the problem
of dispatching multi-attribute mobile sensors discussed
in [54].

• Since the technology of unmanned aerial vehicles (UAVs)
[21] and autonomous cars [55] is evolving and getting
mature, it is attractive to use these mobile platforms to
carry gas sensors and communication devices to collect
air quality. In particular, UAVs are able to provide 3D
monitoring of air quality, while autonomous cars can
move to certain places where people are difficult to
enter, for example, the location of toxic gas leakage.
In this way, more comprehensive measurement of air
quality and detection of air pollution can be achieved.

7 CONCLUSION

Air pollution is a global problem, and it is beneficial for
the residents living in cities to keep monitoring air quality
and provide the detailed monitoring result to the public in
real time. However, the traditional approach of using static
monitoring stations to collect air quality may not meet the
requirement. Thanks to the development of WSN technology,
many researchers propose different mobile solutions to air
quality monitoring by allowing people to carry gas sensors
to detect air pollution on their own. This chapter discusses
existing mobile solutions to collect air quality by pedestrians,
cyclists, and drivers, which have different mobility models.

Two issues arisen from these mobile solutions are also ad-
dressed, including how to analyze raw data collected by
smart phones to estimate the concentration of the monitoring
pollutants, and how to make cars efficiently collect air quality
on desired locations and report their sensing data accordingly.
We also point out some research directions and challenges for
future mobile solutions to air quality monitoring in the chapter.
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