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Abstract—Wireless sensor networks (WSNs) open a new research field for pervasive computing and context-aware monitoring of the
physical environments. Many WSN applications aim at long-term environmental monitoring. In these applications, energy consumption is a
principal concern because sensor nodes have to regularly report their sensing data to the remote sink(s) for a very long time. Since data
transmission is one primary factor of the energy consumption of sensor nodes, many research efforts focus on reducing the amount of data
transmissions through data compression techniques. In this chapter, we discuss the data compression techniques in WSNs, which can be
classified into five categories: 1) The string-based compression techniques treat sensing data as a sequence of characters and then adopt
the text data compression schemes to compress them. 2) The image-based compression techniques hierarchically organize WSNs and
then borrow the idea from the image compression solutions to handle sensing data. 3) The distributed source coding techniques extend the
Slepian-Wolf theorem to encode multiple correlated data streams independently at sensor nodes and then jointly decode them at the sink. 4)
The compressed sensing techniques adopt a small number of nonadaptive and randomized linear projection samples to compress sensing
data. 5) The data aggregation techniques select a subset of sensor nodes in the network to be responsible for fusing the sensing data from
other sensor nodes to reduce the amount of data transmissions. A comparison of these data compression techniques is also given in this
chapter.

Index Terms—compressed sensing, data compression, data aggregation, distributed source coding, Slepian-Wolf theorem, wavelet
transformation, wireless sensor networks.
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1 INTRODUCTION

A wireless sensor network (WSN) is composed of one or
several remote sinks and a sheer number of sensor nodes.
Each sensor node is a small, wireless device that can
continually collect its surrounding information and report
the sensing data to the sink(s) through a multi-hop ad
hoc routing scheme [1]. WSNs provide a new opportunity
for pervasive computing and context-aware monitoring of
the physical environments. They are usually deployed in
regions of interest to observe specific phenomena or track
objects. Practical applications of WSNs include, for exam-
ple, animal monitoring, agriculture transforming, health
care, indoor surveillance, and smart buildings [2]-[6].
Because sensor nodes are usually powered by batteries
and many WSN applications aim at long-term monitor-
ing of the environments, how to conserve the energy of
sensor nodes to extend their lifetimes is a critical issue.
There are two common solutions to conserve the energy of
sensor nodes. One solution is to take advantage of node
redundancy by selecting a subset of sensor nodes to be
active while putting others to sleep to conserve their energy
[7]1-[9]. The selected subset of active sensor nodes have
to cover the whole monitoring region and maintain the
network connectivity. In other words, these active sensor
nodes have to make sure that the network still functions
as well as the case when all sensor nodes are active. By
selecting different subsets of sensor nodes to be active by
turns, we can prevent some sensor nodes from consuming
too much energy and thus extend the network lifetime.
However, when node redundancy is not available (because
of network deployment [10], [11] or sensor breakage, for ex-
ample), such sleep-active mechanisms may not be applied.
Another solution is to reduce the amount of sensing data
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to be sent by sensor nodes, because transmission is one
of the most energy-consuming operations of sensor nodes.
Such a solution is especially useful when sensor nodes
have to regularly report their sensing data to the sink(s)
for a very long time. In order to reduce the amount of
sensing data, we need to compress them inside the network.
Depending on the recoverability of data, we can classify
the data compression schemes into three categories: loss-
less, loss, and unrecoverable. A lossless compression means
that after executing the decompression operation, we can
obtain exactly the same data as those before executing the
compression operation. Huffman coding [12] is one of the
representative examples. A loss compression means that
some detailed (and usually minor) features of data may be
lost due to the compression operation. Most of the image
and video compression schemes such as JPEG2000 [13]
belong to this category. Finally, an unrecoverable compres-
sion means that the compression operation is irreversible.
In other words, there is no decompression operation. For
example, one can compress a set of numbers by taking their
average value but each of the original numbers cannot be
derived from this average value.

This chapter discusses the data compression techniques
in WSNs, which can be classified into five categories:

1) The string-based compression techniques view sensing
data as a sequence of characters and then adopt the
data compression schemes used to handle text data to
compress these sensing data. Inherited from these text
data compression schemes, the string-based compres-
sion techniques can also provide lossless compression.

2) The image-based compression techniques organize a WSN
into a hierarchical architecture and then adopt some
image compression schemes such as wavelet transfor-
mation to provide multiple resolutions of sensing data
inside the network. Some minor features of sensing
data may be lost due to the compression operations



and thus the image-based compression technique sup-
port loss compression.

The distributed source coding techniques compress sens-
ing data inside the network according to the Slepian-
Wolf theorem, which proves that two or more corre-
lated data streams can be encoded independently and
then be decoded jointly at a receiver with a rate equal
to their joint entropy. Therefore, the distributed source
coding techniques can support lossless compression.
The compressed sensing techniques indicate that any suf-
ficiently compressible data can be accurately recovered
from a small number of nonadaptive, randomized
linear projection samples. Thus, they can exploit com-
pressibility without relying on any prior knowledge or
assumption on sensing data. With the above observa-
tion, the compressed sensing techniques can provide
lossless compression.

The data aggregation techniques select a subset of sensor
nodes to collect and fuse the sensing data sent from
their neighboring nodes and then transmit the small-
sized aggregated data to the sink. Because the original
sensing data cannot be derived from these aggregated
data, the compression of the data aggregation tech-
niques is thus unrecoverable.

3)

4)

5)

In this chapter, we give a comprehensive survey of recent
research on each category of data compression techniques
and then conclude the chapter by comparing these data
compression techniques.

2 STRING-BASED COMPRESSION TECHNIQUES

In text data, there have been many compression algorithms
proposed to support lossless compression. The Lempel-Ziv-
Welch (LZW) algorithm [14] is one popular example, which
dynamically constructs a dictionary to encode new strings
based on previously encountered strings. Fig. 1(a) gives
the flowchart of the LZW algorithm, where a dictionary
is initiated to include the single-character strings corre-
sponding to all possible input characters. For example, by
using the American standard code for information interchange
(ASCII), the dictionary will contain 256 initial entries. Then,
the LZW algorithm scans each character of the input data
stream until it can find a substring that is not in the
dictionary. When such a string is found, the index of the
longest matched substring in the dictionary is sent to the
output data stream, while this new string is added into
the dictionary with the next available code. Then, the
LZW algorithm continues scanning the input data stream,
starting from the last character of the previous string.
Table 1 shows an example.

The LZW algorithm is computationally simple and has
no transmission overhead. Specifically, because both the
sender and the receiver have the same initial dictionary
entries and all new dictionary entries can be derived from
existing dictionary entries and the input data stream, the
receiver can thus construct the complete dictionary on
the fly when receiving the compressed data. With the
above observation, the work in [15] develops an S-LZW
algorithm (the abbreviation ‘S” means “sensor”) to support
data compression in WSNs. S-LZW points out that in
the LZW algorithm, the decoder must have received all
previous entries in the block to decode a dictionary entry.
However, since packet loss is usually common in a WSN,
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Fig. 1: The flowchart of the LZW algorithm, where a dictionary is initiated
to include the single-character strings corresponding to all possible input
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Fig. 2: The compression operation of S-LZW. The sensing data of each
sensor node is first divided into blocks and each block of data will be
compressed by the LZW algorithm separately. Each packet in a dashed
block cannot be decompressed without proceeding the packets prior to it
in the same group. However, the packets in different dashed blocks are
independent with each other and thus can be decompressed separately.

S-LZW thus proposes dividing the data stream into small
and independent blocks, as shown in Fig. 2. In this way,
if a packet is lost due to collision or interference, S-LZW
can guarantee that this packet only affects the following
packets in its own block. According to the experiment
results in [15], S-LZW suggests adopting a dictionary with
size of 512 entries to fit the small memory of sensor nodes.
Besides, S-LZW also suggests compressing sensing data
into blocks of 528 bytes (that is, two flash pages) to achieve
a better performance. In Fig. 2, the sensing data of each
sensor node will be compressed and divided into multiple
independent groups of packets. A packet in each group
cannot be decompressed before proceeding the packets
prior to it in the same group. On the other hand, any two
groups of packets will not affect with each other and thus
they can be independently decompressed. Therefore, the
loss of a packet will affect at most one group of packets
(that is, one block of data). To reduce such an effect, S-LZW
suggests that each group contains at most 10 dependent
packets.

Observing that sensing data may be repetitive over short
intervals, the work of [15] also proposes a variation of S-
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encoded substring |

output data stream

new dictionary entry

X 120 256: xx
XX 120 256 257: xxx
X 120 256 120 258: xy

y 120 256 120 121 259: yx

XXX 120 256 120 121 257 260: xxxy
y 120 256 120 121 257 121 261: yz
z 120 256 120 121 257 121 122 262: zz
z 120 256 120 121 257 121 122 122 | none

TABLE 1: An example of executing the LZW algorithm, where the input data stream is “xxxxyxxxyzz” and the ASCII coding scheme is adopted to

initiate the dictionary.

LZW, called S-LZW-MC (the abbreviation “MC” represents
“mini-cache”), by adding a mini-cache into the dictionary.
In particular, the mini-cache is a hash-indexed dictionary
of size 2%, k € N, that maintains recently created and
used dictionary entries. In S-LZW-MC, the last four bits
of each dictionary entry are used as the hash index. Fig. 3
illustrates the flowchart of S-LZW-MC, which follows the
LZW algorithm but adds some modifications (marked by
dashed diagrams). When a dictionary entry is identified,
S-LZW-MC will search the mini-cache for the entry. If this
dictionary entry is in the mini-cache, S-LZW-MC encodes
it with the mini-cache entry number and appends a ‘1’ bit
to the end. In this way, the entry has a length of (k+1) bits.
Otherwise, S-LZW-MC encodes the entry with the standard
dictionary entry number and appends a ‘0’ bit to the end,
and then adds this entry into the mini-cache. Therefore,
a high mini-cache hit rate can allow S-LZW-MC to make
up for the one-bit penalty on searching the entries not
in the mini-cache. Table 2 gives an example of executing
the S-LZW-MC algorithm. By exploiting the mini-cache, S-
LZW-MC could further reduce the computation time and
improve the compression ratio, as compared with the S-
LZW algorithm.

3 IMAGE-BASED COMPRESSION TECHNIQUES

An image is usually composed of many small pixels and
this image can be modeled by a matrix whose elements
are the values of these pixels. By conducting some wavelet
transformation on the matrix, we can extract the important
features from the image in the frequency domain [16].
Then, the image size can be significantly reduced by storing
only these important features of the image.

The image-based compression techniques adopt the sim-
ilar idea. They organize a WSN into a hierarchial architec-
ture and consider the sensing data sent from all sensor
nodes as an image containing multiple pixels. Then, a
wavelet transformation is performed to extract the spa-
tial and temporal summarization from these sensing data.
Explicitly, when sensing data possess a higher degree of
spatial or temporal correlation, the image-based compres-
sion techniques can further reduce the amount of sens-
ing data. In this section, we introduce two representative
frameworks of the image-based compression techniques:
DIMENSIONS framework [17] and multi-resolution compres-
sion and query (MRCQ) framework [18].

3.1 DIMENSIONS Framework

The DIMENSIONS framework exploits the wavelet trans-
formation and quantization to reduce the amount of data
transmissions of sensor nodes and support different res-
olutions of sensing data for users to query. The system

architecture of DIMENSIONS is shown in Fig. 4(a), where
the network is organized into multiple levels. A block in
each level k contains four blocks in a lower level (k£ — 1).
In each block of level k, one cluster head is selected to
collect the sensing data sent from the corresponding four
blocks in level (k — 1). Then, the cluster head will conduct
the compression operation on these sensing data to extract
their spatial summarization. Since each level k will pass
only the spatial summarization of the sensing data to the
higher level (k + 1), the data stored in each level will
exhibit different resolutions. In particular, the data stored
in a lower level possess a finer resolution while the data
stored in a higher level possess a coarser resolution. In
this way, the amount of sensing data transmitted by sensor
nodes can be reduced while users can query more detailed
information from the cluster heads in a lower level.

In DIMENSIONS, each sensor node will try to reduce
the amount of its own sensing data by taking advantage of
temporal correlation in the signal and a priori knowledge
related to signal characteristics. In particular, each sensor
node can adopt some real-time filtering schemes such
as a simple amplitude threshold to extract the temporal
summarization from its sensing data in the time domain.
Only when the sensing reading exceeds a predefined signal-
to-noise ratio (SNR) threshold will the sensor node transmit
the sensing data to its cluster head.

On the other hand, for each cluster head of level £, it
will collect the compressed data sent from the correspond-
ing four cluster heads in level (k — 1), dequantize these
data, and then compress the data again and send them
to the cluster head in level (k + 1). Fig. 4(b) shows the
compression operation conducted in each cluster head of
level k. In particular, after obtaining the compressed data
sent from the lower-level cluster heads, DIMENSIONS will
adopt a Huffman decoder and a dequantization module
to handle these data. Then, these data will be kept in
a local storage and passed to a three-dimensional discrete
wavelet transform (3D-DWT) module [19] to generate the
spatiotemporal summarization of sensing data. Then, by
using a quantization module and a Huffman encoder, this
summarization can be further compressed. The compressed
data will then be sent to the cluster head in level (k + 1).
The above operations will be repeated until the data can
be transmitted to the sink. Since the data passed through
each level will be handled by 3D-DWT, the amount of data
sent to higher levels may be reduced but their resolutions
would be also degraded.

Explicitly, DWT is the core of the compression scheme in
DIMENSIONS. The concept of DWT is shown in Fig. 4(c),
where the original signal z[n|, n € N, will be handled
by a sequence of low-pass and high-pass filters. Such a
sequence of filtering is usually called a Mallat-tree decompo-
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Fig. 3: The flowchart of the S-LZW-MC algorithm, where the dashed diagrams indicate the different designs with the LZW algorithm.

encoded substring | new output | new dictionary entry | mini-cache changes data length (bits)
LZW  mini-cache
X 120, 0 256: xx 0: 256, 1: 120 9 10
XX 0,1 257: xxx 1: 257 18 15
X 120, 0 258: xy 1: 120, 2: 258 27 25
y 121, 0 259: yx 2:121, 3: 259 36 35
XXX 257, 0 260: xxxy 1: 257, 4: 260 45 45
y 2,1 261: yz 5: 261 54 50
z 122, 0 262: zz 3: 122, 6: 262 63 60
z 3,1 none none 72 65

TABLE 2: An example of executing the S-LZW-MC algorithm, where the same input data stream “xxxxyxxxyzz” in Table 1 is adopted.

sition. Fig. 4(c) shows a three-stage wavelet decomposition
tree. The high-pass filter is denoted by H, while the low-
pass filter is denoted by L,. At each stage ¢, the high-
pass filter will generate detailed coefficients d;[n] while
the low-pass filter associated with a scaling function will
generate approximative coefficients a;[n]. Each half-band
filter (marked by “|2”) will generate signals spanning
only half of the frequency band. According to the Nyquist
sampling theorem [20], if the original signal has the highest
frequency of w radians, this signal requires a sampling
frequency of 2w radians. By lowering down the highest
frequency to % radians, this signal can be sampled at a
frequency of w radians. Therefore, the half of the samples
can be discarded to reduce the data size. By the DWT
operation, the time resolution becomes arbitrarily good at
high frequencies while the frequency resolution becomes
arbitrarily good at low frequencies. Then, the DWT result
of the original signal z[n] can be obtained by concatenating
all of the coefficients (that is, a;[n] and d;[n]), starting from
the last stage of decomposition.

The DIMENSIONS framework can help reduce the
amount of sensing data that sensor nodes have to regularly
report to the sink. However, because each cluster head
needs to execute the Huffman coding scheme, 3D-DWT,
and the quantization operation, DIMENSIONS may incur
a higher computation cost.

3.2 MRCQ Framework

In the MRCQ framework, sensor nodes are organized hier-
archically and the objective is to establish multi-resolution
summaries of sensing data inside the network through
spatial and temporal compressions. In particular, the sink
receives only the lower-resolution summaries while other
higher-resolution summaries are kept in the network,

which can be obtained through queries. To satisfy the above
requirements, a hierarchical WSN architecture is proposed,
as shown in Fig. 5(a). Specifically, the WSN is recursively
partitioned into K blocks and is organized into d layers,
where K > 1 and d > 1. Each block in layer (i + 1)
contains K blocks in layer i. In each layer, one sensor node
is selected in each block as the processing node (PN) to collect
and compress the sensing data sent from the lower-layer
blocks. In the lowest layer 1, the PN will compress the
sensing data sent from the leaf sensor nodes (LNs). The area
handled by each layer-1 PN is partitioned into k x k pixels,
where k > 1 is a small integer. Each pixel ideally contains
one LN and the value of the pixel is the sensing data of
that LN. However, when a pixel contains more than one
LN, its value is the average of the sensing data of these
LNs. On the other hand, when a pixel contains no sensor
node, its value can be estimated by interpolating the values
of its neighboring pixels.

Sensing data are transmitted from LNs to the sink layer
by layer. Data passing through each layer are compressed
by its PNs using a spatial compression algorithm, which
contains three components:

o Layer-1 compression: Each layer-1 PN collects the
sensing data from its LNs and model these data by
a matrix M = (s;;)kxk, Where s;; is the value of
a pixel (,7). Then, the PN applies a two-dimensional
discrete cosine transform (Z/I\D-DCT) scheme [21] on M to
construct a new matrix M = (¢; j)xxk, where

k—1k—-1

QC(i)C( 7) 7(2x + 1)
tj =———— Sy - COS
B2 ().
Jr(2y +1)

2k @)

e (E8
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Fig. 4: The DIMENSIONS framework: (a) the hierarchical architecture to
extract the spatial and temporal summarization from sensing data, (b)
the compression operation conducted in each cluster head of level k,
where the data will be handled by the Huffman coding, the quantization,
and the 3D-DWT schemes, and (c) a three-stage wavelet decomposition
tree to extract the detailed coefficients di[n], d2[n], and dz[n] and the
approximative coefficients az[n] from the original data z[n].

where C(i) = % if i =0 and C(¢) = 0 otherwise. The
2D-DCT scheme can extract the features from a matrix
M, where those significant features will appear in the
upper left part of the transformed matrix M, while
those insignificant features will appear in the opposite
part. Therefore, we can preserve the most important
features of M and truncate the lower right part of M
to achieve data compression. In particular, we can re-
trieve elements of M from the upper left corner toward
the lower right corner along the diagonal direction, as
shown in Fig. 5(b), until [r-k?] elements are scanned,
where 0 < r < 1 is the compression ratio. Then, these
scanned elements of M will be sent to the layer-2 PN.
o Layer-i compression: A layer-i PN, ¢ > 2, will collect
the reduced matrices M from its corresponding K
layer-(i — 1) PNs, where each matrix M contains only
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Fig. 5: The MRCQ framework: (a) the hierarchical WSN architecture
to support multiple resolutions of sensing data, where each LN and
layer-1 PN will compress its own data by the temporal compression
algorithm, while each layer-i PN will compress the data sent from its
K corresponding layer-(i — 1) PNs by the spatial compression algorithm,
and (b) the spatial compression algorithm conducted in each layer-1 and
layer-i PNs, where each layer-1 PN will conduct 2D-DCT on its k& x k
matrix and transmit only |r - k%] pixels to its layer-2 PN, while each
layer-i PN will transmit only [r? - k2] - K*~1 pixels to its layer-(i+ 1) PN.

[ri=1. k%] pixels. For each reduced matrix M, the
layer-i PN transmits the first most significant [r* - k*]
pixels to the layer-(i+1) PN and discards the remaining
|7t - k2 — ¢ . k2| pixels. In this way, the layer-i



compression can incur only a small computation cost.
Fig. 5(b) gives an example.

« Sink decompression: After collecting K%' reduced
matrices from the highest layer-d, the sink first ex-
pands each reduced matrix to a k x k£ matrix M’ =
(ti,j)kxk by appending sufficient zeros at the end.
Then, the sink adopts the inverse 2D-DCT scheme to
transform M’ to a matrix M’ = (sgﬂ.)mk, where

k—1k—1 .
2 xm(2t+ 1
=2 3D CO0) iy cos (O,
=0 y=0
os (VT2 D
2k

Note that since the sink appends zeros in the matrix
M, the recovered matrix M’ will be an approximation
of the original matrix M. Then, the sink can combine
all of these K9~ ! recovered matrices to obtain a coarser
resolution of sensing data from the environment.

On the other hand, LNs and layer-1 PNs will compress
their data by a temporal compression algorithm. In partic-
ular, the time axis is divided into complete reporting intervals
of the same length A, as shown in Fig. 5(a). Each complete
reporting interval is further divided into smaller partial
reporting intervals of length A,, where A. is a multiple of
A,. In the beginning of each complete reporting interval,
LNs and layer-1 PNs will report and compress data as we
discussed earlier. During each complete reporting interval,
differential compression will be conducted in the beginning
of each partial reporting interval. Specifically, given an
updating threshold 47, an LN will decide not to report
if its current sensing data vy, differs from its previously
reported data voq by an amount no more than 4, that
is, |Vnew — Vola| < dr. In this case, its layer-1 PN will
use volq as the current sensing data of that LN. Similarly,
given another updating threshold ép, a layer-1 PN will
decide not to report if the difference between its current
matrix Myew = (ti j)kxr and its previously reported matrix
Moia = (si,5)kxrk satisfies the following inequality

Lk
ﬁzzﬁw —t;j] < dp.

i=1 j=1

In this case, its layer-2 PN will use Mgq as the current
sensing matrix of that layer-1 PN.

Compared to DIMENSIONS, MRCQ incurs less com-
putation cost since the complicated 2D-DCT operation is
conducted only at layer 1. Because k is a small constant, a
small table can be maintained in each layer-1 PN to record
the results of cosine operations for each (¢,z) and (j,y)
pair in Eq. (1) to reduce its computation cost. In addition,
the proposed temporal compression algorithm is based
on a simple differential idea. Therefore, MRCQ could be
implemented on simple sensor platforms.

4 DISTRIBUTED SOURCE CODING TECHNIQUES

One foundation of the distributed source coding techniques
is the Slepian-Wolf theorem [22]. Given two or more corre-
lated data streams, each being encoded independently, and
then decoded jointly at one receiver, the Slepian-Wolf the-
orem shows that it is feasible to achieve lossless encoding
of these two data streams at a rate (that is, the number
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Fig. 6: The Slepian-Wolf theorem: (a) independent encoding and joint
decoding of two correlated data streams X and Y, where encoder 1 will
encode each character of X by a number of Rx bits while encoder 2 will
encode each character of Y by a number of Ry bits, and (b) the admissible
rate region for the rate pair (Rx, Ry ), which should satisfy the inequal-
ities of Rx > H(X|Y), Ry > H(Y|X), and Rx + Ry > H(X,Y).

of bits used to encode each character) equal to their joint
entropy. Fig. 6(a) gives an example, where there are two
correlated data streams X and Y generated by making n
independent drawings from a joint probability distribution
P(X = z,Y = y). Encoder 1 receives data stream X and
then transmits a coded message to the decoder, where each
character of X is encoded by a number of Ry bits. Simi-
larly, encoder 2 receives data stream Y and then transmits
a coded message to the decoder, where each character of Y
is encoded by a number of Ry bits. On receiving these two
coded messages, the decoder will generate two n-vectors
X* and Y*, which are the estimations of the original data
streams X and Y, respectively.

When n is sufficiently large, the probability that X* # X
or Y* # Y can approximate to zero. That is, we can
achieve lossless data compression of X and Y. In this
case, the system is called an admissible system. The pair
of rates (Rx,Ry) for an admissible system is called an
admissible rate pair. The closure of the set of all possible
admissible rate pairs is called the admissible rate region.
The admissible rate region can be calculated by measuring
the entropies of random variables X and Y with joint
probability distribution P(X = z,Y = y):

HX,Y)==-> > P(X=2Y =y) lgP(X =2,Y =y),
H(X)=-> P(X =uz)-1gP(X =),
HY)==) P(Y =y)-lgP(Y =y),

HY[X)=-> P(X=1)) PY =y|X =a)

lg P(Y = y| X = ),
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HX|Y)==) P(Y=y)) PX=zY =y)

lgP(X =z|Y =y).

By the Slepian-Wolf theorem, the admissible rate region for
the pair of rates (Rx,Ry) is the set of points that satisfy
the following three inequalities:

Rx + Ry > H(X,Y)

Fig. 6(b) shows the admissible rate region. The advantage
of the Slepian-Wolf theorem can be observed by compar-
ing it with the entropy bound for compression of single
sources. In particular, separate encoders that ignore the
source correlation can achieve rates of only Rx + Ry >
H(X) + H(Y). However, by adopting the Slepian-Wolf
coding, the separate encoders can exploit their knowledge
of the correlation to achieve the same rates as an optimal
joint encoder, that is, Rx + Ry > H(X,Y).

The Slepian-Wolf theorem provides a theoretical tool
to characterize the amount of communications required
for the distributed source coding in a network where
correlated data streams are physically separated or each
encoder has limited computation capability. The studies of
[23], [24] give an example of applying the Slepian-Wolf
theorem to compress sensing data in WSNs. Specifically,
suppose that X and Y are the sensing readings of two
sensor nodes, where X and Y are equiprobable binary
triplets with X,Y € {0,1}® and the Hamming distance
between X and Y is no more than one. In this case, we have
H(X) = H(Y) = 3 bits. Since X and Y differ at most in
one position, for any given Y, there are four equiprobable
choices of X. For example, suppose that Y is 111, then X
belongs to the set {111,011,101,110}. Thus, we can obtain
that H(X|Y) = 2 bits. In other words, to jointly encode X
and Y, it takes three bits to represent Y and two additional
bits to index these four possible choices of X associated
with Y. Therefore, at least H(X,Y)=H(Y )+ H(X|Y)=5
bits are required. In fact, the information Y is perfectly
known at the decoder (for example, the sink) but not at
the encoder (that is, the sensor that generates X). However,
according to the Slepian-Wolf theorem, it is still possible to
send only H(X|Y) = 2 bits rather than H(X) = 3 bits
to decode X without any loss at the joint decoder. One
solution is to first divide the set of all possible outcomes
of X into four subsets X = {000,111}, X¢; = {001,110},
X0 = {010,101}, and X;; = {011,100} and then send two
bits for the index i of the subset X; that X belongs to. When
generating the subsets X;’s, we should guarantee that
each of these subsets has two elements with a Hamming
distance of 3. Then, to jointly decode with ¢ (and thus X;)
and information Y, we choose the X with dy(X,Y) <1
in subset X;, where dy(X,Y) is the Hamming distance
between X and Y. In this case, we can make sure of unique
decoding because the two elements in each subset X; have
a Hamming distance of 3. Therefore, we can achieve the
Slepian-Wolf limit of H(X,Y) = H(Y)+ H(X|Y)=3+2=
5 bits in the above example with lossless decoding.

5 COMPRESSED SENSING TECHNIQUES

The distributed source coding techniques allow sensor
nodes to compress their sensing data without collaboration
and negotiation but require prior knowledge of the precise
correlation in the data. However, in many WSN applica-
tions, such prior knowledge is usually unavailable. There-
fore, the compressed sensing (sometimes called compressive
sensing) techniques are proposed by exploiting compress-
ibility without relying on any specific prior knowledge or
assumption on data [25]. The compressed sensing theory
points out that any sufficiently compressible data can be
accurately recovered from a small number of nonadaptive,
randomized linear projection samples. In particular, given
m-sparse data x = (x;;)nx1 (that is, x has no more
than m nonzero entries) where m is much smaller than
the data length n, we can calculate a random projection
matrix A = (A; ;)kxn With far fewer rows than columns
(that is, k < n) to obtain a small compressed data set
Y = (¥ij)kx1 = Ax + ¢, where € is the error caused by
noise or other perturbations.

The concept of the above random projection is illustrated
in Fig. 7, where a network consisting of n = 16 sensor
nodes is considered [26]. Suppose that only one sensor
node has a positive sensing reading while the remaining
15 sensor nodes have zero sensing readings. The objective
is to use the minimum number of observations to identify
which sensor node has the nonzero sensing reading. In
other words, we have 1-sparse data x = (z;;)i6x1 and
want to find out which entry is nonzero. By adopting the
compressed sensing technique, we can compress data x
by a random projection matrix A = (A1, Az, A3, AT,
where each row A; = (Aij)ixie, | = 1.4, is called a
random vector. In Fig. 7, the nodes in each A; colored by
grey will multiply their data values by ‘—1" while the
nodes in each A; colored by white will multiply their data
values by ‘+1’. Each node in a random vector is colored
by grey with a probability of 0.5. Then, we can calculate
the compressed data y = (y1,v2,v3,94)7 = Ax (for ease
of presentation, here we ignore the noise ¢) and obtain
the hypotheses of data Hy, Hs, Hs, and H4 according to
each y; value. For example, if y; < 0, the hypothesis data
will be the same as those in the random vector. Otherwise,
the hypothesis data will be the inverse of those in the
random vector. By comparing these hypothesis data, we
can find out which sensor node has the nonzero sensing
data, as shown in Fig. 7. Here, about 7 hypothesis of
sensing data are consistent with each random projection
observation. However, the number of hypotheses which are
simultaneously consistent with all observations decreases
exponentially with the number of observations. Therefore,
only lgn = 4 observations are required to determine which
sensor node possesses the nonzero sensing reading.

The work of [26] adopts the compressed sensing tech-
nique to support lossless data compression in a WSN.
Suppose that there are n sensor nodes in the network. Each
sensor node will use its network address as the seed to feed
into a pseudo-random number generator to locally draw a
vector {A4; ;}¥_,, where k < n. In this way, the sink can also
calculate the corresponding vector for each sensor node by
feeding its network address as the seed to the same pseudo-
random number generator. Then, for each sensor node at
location j, j = 1..n, it will multiply its sensing reading x;
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Fig. 7: An example of the random projection in the compressed sensing techniques, where a network with 16 sensor nodes is considered and only

one sensor node (colored by black) possesses the positive sensing data.

by vector {A; ;}¥_; to calculate a k-tuple projection

T

Py = (Avj-wj, Agj-wjy oo Apj-aj)"

All sensor nodes will coherently transmit their respective
projections P;’s in an analog fashion over the network-to-
sink air interface using k transmissions. Due to the additive
nature of radio waves, the corresponding received signal
at the sink in the end of the kth transmission can be given

by

n
y:ZPj+e:Ax+e,
j=1
where € is the noise that may be caused by the receiving
circuitry of the sink. Then, the sink can decode the received
projection y to calculate the original sensing data x.

6 DATA AGGREGATION TECHNIQUES

Unlike other data compression techniques that exploit dif-
ferent compression theorems to provide either lossless or
loss compression of sensing data, the data aggregation tech-
niques consider reducing the amount of data transmissions
in a WSN by fusing (or aggregating) these sensing data. In
particular, the data aggregation techniques usually select a
subset of sensor nodes (called aggregation nodes) to collect
the sensing data sent from their neighboring sensor nodes
and then adopt some aggregating schemes to fuse these
sensing data such as taking their maximum, minimum,
or average values. In this case, the amount of sensing
data transmitted to the sink can be significantly reduced
but such aggregating schemes are explicitly unrecoverable.
Since these aggregating schemes are usually simple, the
research on the data aggregation techniques usually aims
at how to efficiently select these aggregation nodes to help

reduce the overall data transmissions in a WSN [27]. In
this section, we introduce the data aggregation techniques
in WSNs. According to their network structures, these data
aggregation schemes can be classified into four categories:
1) the tree-based data aggregation schemes organize the net-
work into a tree structure for data collection and aggre-
gation purpose, 2) the cluster-based data aggregation schemes
group sensor nodes into clusters and then each cluster head
will aggregate the sensing data within its cluster, 3) the
chain-based data aggregation schemes make each sensor node
transmit the sensing data to its nearest neighbor and thus
the network will form a chain structure to aggregate the
sensing data in the network, and 4) the sector-based data
aggregation schemes adopt a ring-sector division concept to
cluster sensor nodes such that the sensor nodes in the same
sector will be assembled into one cluster.

6.1

The objective of the tree-based data aggregation schemes
is to maximize the network lifetime by jointly optimizing
data aggregation and routing tree formation [28]. These
schemes organize the sensor nodes into a tree structure,
where the data aggregation operation is conducted at the
intermediate nodes along the tree and the aggregated data
of the whole network will be eventually sent to the root
node (that is, the sink). Fig. 8 gives an example of the tree-
based data aggregation schemes, where each sensor node i
will generate its sensing data s; and each aggregation node
j will fuse the data sent from the child nodes with its own
sensing data s; by an aggregation function f(,-, ).

The work of [29] proposes an energy-aware distributed
heuristic (EADAT) to maintain a data aggregation tree in
a WSN. To construct such a tree, the sink (that is, the tree

Tree-Based Data Aggregation Schemes
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a7 = f(s1, s2, 87)

sensor
node S3

Fig. 8: The concept of the tree-based data aggregation schemes, where s;
is the original (uncompressed) sensing data, a; is the aggregated data,
and f(-,-,-) is the aggregation function. Each sensor node 7 will generate
sensing data s;. The sensor nodes colored by grey are aggregation nodes.
Only intermediate nodes along the tree can become the aggregation nodes.

root) first broadcasts a control message (ID, parent, power,
status, hopcnt) indicating the identification of the sensor
node, the parent node along the tree, the residual power of
the sensor node, the status of the sensor node (including
leaf, non-leaf, and undefined states), and the hop counts from
the sink. On receiving this control message for the first
time, each sensor node sets up a timer that counts down
every time when the channel becomes idle. Then, the sen-
sor node selects the neighboring node with more residual
power and a shorter path to the sink as its parent node
along the tree. When the timer expires, the sensor node
updates the control message and broadcasts the message to
its neighboring nodes. The above process is repeated until
all sensor nodes are added into the tree. After constructing
the data aggregation tree, a residual power threshold Py, is
used to maintain the tree. In particular, when the residual
power of a sensor node becomes less than the threshold
P,p,, this sensor node will broadcast a help message to its
child nodes. Then, one of its child nodes will replace this
sensor node to maintain the tree structure.

The work of [30] develops a power-efficient data gathering
and aggregation protocol (PEDAP) to maximize the network
lifetime in terms of the number of rounds, where each round
corresponds to the aggregation of sensing data transmitted
from different sensor nodes. To achieve this objective,
PEDAP tries to minimize the total energy consumption
of sensor nodes in each round by calculating a minimum
spanning tree over the network with link costs given by

Ci,j(k) = €circuit * 2k + €amp * k- (d(Z,]))2,

where ¢; ;(k) is the energy cost to transmit k bits from node
i to node j, ecircuir is the amount of energy consumed
by the transmitter/receiver circuitry per bit, e, is the
amount of energy consumed by the transmitting amplifier
per bit, and d(i,j) is the distance between nodes ¢ and
j. The Prim’s algorithm [31] is adopted to calculate the
minimum spanning tree and then the data packets are
transmitted to the sink through the tree edges of the mini-
mum spanning tree. An energy-aware version of PEDAP is
also proposed by considering the residual energy of sensor
nodes. In particular, this energy-aware version modifies the
link costs by C;—fk), where ¢; is the normalized residual
energy of sensor node i and such a normalization is with
respect to the initial energy of that sensor node. In this way,
a sensor node remaining less energy will incur a larger link

~_— -

cluster

o cluster head (aggregation node)

O cluster member (sensor node)

— transmission of sensing data

—> transmission of aggregated data
Fig. 9: The concept of the cluster-based data aggregation schemes. Each
cluster head is responsible for collecting and aggregating the sensing data
sent from other sensor nodes in the cluster. Then, these cluster heads

can transmit the aggregated data to the sink directly using a large-range
transmission power or indirectly using a multi-hop routing protocol.

cost and thus the corresponding link may not be included
in the minimum spanning tree. Therefore, the load among
sensor nodes could be balanced.

6.2 Cluster-Based Data Aggregation Schemes

The cluster-based data aggregation schemes first group
sensor nodes into clusters and then select one cluster head
in each cluster to aggregate the sensing data sent from
other sensor nodes in that cluster. Then, these cluster
heads can transmit the aggregated data to the sink directly
through long-range transmissions or indirectly via multi-
hop communications through other cluster heads. Fig. 9
illustrates an example of the cluster-based data aggregation
schemes.

The work of [32] proposes a distributed cluster-based
data aggregation scheme, called low-energy adaptive clus-
tering hierarchy (LEACH), which consists of a setup phase
to organize the network into clusters and select the corre-
sponding cluster heads and a steady-state phase to conduct
data aggregation at these cluster heads. In the setup phase,
a fraction a of sensor nodes will elect themselves as the
cluster heads, where 0 < «a < 1. In particular, each sensor
node first generates a random number r; between 0 and 1.
If number r; exceeds a threshold ¢, this sensor node can
become a cluster head, where the threshold § is calculated
by

o
~1—a-(r; mod (1))

1
a

)

bl

where the mod operation will return the remainder after
division. Then, each elected cluster head will broadcast
a message to announce that they are cluster heads. All
other sensor nodes that are not cluster heads will join the
clusters according to the received signal strengths from
these received messages. Then, in the steady-state phase,
each cluster member will send its sensing data to the cluster
head. By aggregating these sensing data, each cluster head
will transmit the aggregated data to the sink. Note that
in LEACH, sensor nodes are assumed to have sufficiently
large transmission powers so that the cluster heads can
directly transmit their data to the sink.
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az = f(S1, 32)

Fig. 10: The concept of the chain-based data aggregation schemes. Each
sensor node i will generate its sensing data s;. Except for the node(s) in
the end of the chain (for example, node 1), all other nodes will serve as
the aggregation nodes to fuse the data sent from their upstream nodes by
the aggregation function f(-,-).

The work of [33] proposes a hybrid energy-efficient dis-
tributed clustering (HEED) scheme, whose objective is to
construct efficient clusters so that the network lifetime can
be maximized. HEED assumes that sensor nodes can adjust
their transmission powers and the selection of cluster heads
is according to the combination of residual energy of sensor
nodes and their link degrees. Specifically, HEED is executed
iteration by iteration. In each iteration, a sensor node that
does not join any cluster will calculate a probability

€residual
pi=a ———,
emam

to elect itself as a tentative cluster head, where «a is the
initial fraction of sensor nodes to serve as the cluster
heads (which can be specified by applications), éresidual
is the current residual energy of the sensor node, and
€maz 1S the maximum energy of a sensor node when fully
charged. Each tentative cluster head will then broadcast
a message to announce its existence. Other sensor nodes
receive such messages will select the cluster head with the
smallest cost, which is defined by the average minimum
reachability power (AMRP) of that cluster head, to serve
as their cluster heads. AMRP is the average value of the
minimum levels of transmission powers required by all
sensor nodes within the cluster to communicate with the
cluster head, which provides an estimation of the energy
consumption for communications. Every sensor node then
increases its probability to p; = min(2 x p;,1) in the next
iteration. The above process is repeated until each sensor
node can join a cluster.

6.3 Chain-Based Data Aggregation Schemes

Unlike the cluster-based data aggregation schemes where
sensing data are collected and aggregated by cluster heads,
the chain-based data aggregation schemes make each sen-
sor node transmit its sensing data to the nearest neighbor. In
this way, the network will form a long chain that connects
all sensor nodes, as shown in Fig. 10. Except for the node(s)
in the end of the chain, all sensor nodes along the chain
will become the aggregation nodes.

The work of [34] develops a power-efficient data-gathering
protocol for sensor information systems (PEGASIS), where
sensor nodes are organized into a linear chain for data
aggregation. Such a chain can be formed by adopting a
greedy algorithm, where all sensor nodes are assumed to
have the global knowledge of the network. In particular,
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the farthest sensor node from the sink will initiate the chain
formation operation. Then, in each iteration, the nearest
neighbor (closer to the sink) of each sensor node is selected
as its successor along the chain. After forming the chain,
each sensor node will receive the sensing data sent from
its neighbor (farther from the sink), aggregate the data with
its own sensing data, and then transmit the aggregated data
to its successor along the chain. The above process will be
repeated until the sink receives the aggregated data of the
whole network.

PEGASIS greedily constructs the chain for data collection
and aggregation, but may not guarantee to minimize the
total energy consumption of sensor nodes. Therefore, the
work of [35] proposes a chain-construction scheme that
minimizes the total energy consumption by reducing the
value of Y D?, where D is the distance between any
two adjacent sensor nodes along the chain. Similarly to
PEGASIS, this scheme also starts the chain-construction
operation at the sensor node farthest from the sink. Then, in
each iteration, a new sensor node is inserted into the chain
such that adding this new sensor node can increase the
minimum value of Y D? of the current chain. The above
process is repeated until all sensor nodes are inserted into
the chain. In this way, this scheme incurs a time complexity
of O(n?), where n is the number of sensor nodes.

6.4 Sector-Based Data Aggregation Schemes

The work of [36] proposes a sector-based data aggrega-
tion scheme, called the semantic/spatial correlation-aware tree
(SCT) scheme. SCT considers a circular WSN centered at
the sink and with radius of R, as shown in Fig. 11. To
efficiently collect and aggregate sensing data, the network
is divided into m concentric rings, where each ring has
the same width of £. Each ring is further divided into
sectors of the same size such that each sector contains
approximately the same number of sensor nodes (assuming
that all sensor nodes are uniformly distributed in the
network). For each sector, an aggregation node is selected
to collect and aggregate the sensing data sent from other
sensor nodes in the sector. Then, an aggregation tree is
constructed by connecting each aggregation node in the
ith ring to its upstream aggregation node in the (i — 1)th
ring through the shortest path. After constructing the tree,
each aggregation node can transmit the aggregated data to
the sink.

In SCT, all sensor nodes are assumed to know their
geographic positions. Then, the sink broadcasts a message
containing its position, the total number of sensor nodes
in the network, the radius of the network (that is, R),
the number of rings (that is, m), and the desired number
of sensor nodes in each sector, to the network to form
the ring structure. Once receiving such a message, each
sensor node can determine the ring and the sector that
it should belong to. Besides, the sensor node can also
determine the sector boundary. In particular, by adopting
a polar coordinate system, the coordinate of each point can
be denoted by (r,6), where r is the distance between the
point and the polar (for example, the position of the sink)
and @ is the included angle with the polar axis. Then, the
coordinates of the boundary of a sector in the ith ring can
be represented by ((i —1)- £,a) and ((i —1)- £, 3), where

m’

a and § are the bounding angles of that sector. In SCT,
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sector

ring

O sensor node

O ideal position of aggregation node
Fig. 11: The ring structure of SCT. The network is divided into multiple
concentric rings and each ring is further divided into same-sized sectors.
In each sector, an aggregation node is selected to collect and aggregate
the sensing data sent from all other sensor nodes in that sector. The ideal

position of the aggregation node in a sector should be located at the
geometric center of the lower arc bounding that sector.

the ideal position of the aggregation node in a sector in
the ith ring should be located at the geometric center of
the lower arc bounding that sector, that is, the coordinate
of (1 —-1)- %, ‘XTW) However, if there is no sensor node
located at this ideal position, the sensor node closest to that
position will become the aggregation node in the sector.
Then, all other sensor nodes can transmit their sensing
data to the aggregation node by a location-based routing

protocol.

7 CONCLUSION

Sensor nodes are usually battery-powered and thus how
to conserve their energy is a primary concern in WSNs. In-
network data compression can help reduce the amount of
sensing data that sensor nodes have to regularly report to
the sink(s) and therefore significantly reduce their energy
consumption. This chapter provides a comprehensive sur-
vey of recent research on the data compression techniques
in WSNSs. Five categories of techniques, including string-
based compression, image-based compression, distributed
source coding, compressed sensing, and data aggregation,
have been discussed. Table 3 gives a comparison of these
data compression techniques. For data recoverability, the
string-based compression, distributed source coding, and
compressed sensing techniques provide lossless data com-
pression. Some minor features of sensing data may be lost
in the image-based compression techniques. On the other
hand, the sensing data compressed by the data aggrega-
tion techniques are usually unrecoverable. For network
structure, both DIMENSIONS and MRCQ will organize
the network into a hierarchical architecture. EADAT and
PEDAP need to maintain the data aggregation tree. LEACH
and HEED will group sensor nodes into multiple clusters.
PEGASIS and the work in [35] will form a long chain to
collect the sensing data sent from all sensor nodes. SCT
divides the network into a ring/sector structure. For com-
pression theory, DIMENSIONS and MRCQ are based on
the wavelet transformation. The studies of [23], [24] extend
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the Slepian-Wolf theorem while the work of [26] adopts
the compressed sensing theorem to compress sensing data.
Finally, for assumption, DIMENSIONS, MRCQ, and the
studies of [23], [24] are based on the assumption that sens-
ing data exhibit highly spatial and temporal correlation.
In LEACH, the long-range communication capability of
cluster heads is required to transmit their aggregated data
directly to the sink. On the other hand, SCT considers a
circular WSN where the sink is located at the center of the
network.
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