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Intentional Mobility in Wireless Sensor Networks
You-Chiun Wang and Yu-Chee Tseng

Abstract—The emerging wireless sensor networks (WSNs) offer a convenient way to monitor physical environments. In the past, WSNs
are deployed with static nodes to continuously collect information from the environment. Today, by introducing the concept of controllable
mobility to WSNs, we can further improve the network capability on many aspects, for example, automatic WSN deployment, flexible topology
adjustment, and rapid reaction to events. In this chapter, we provide a comprehensive survey of recent researches on intentional mobility
of WSNs. The discussion contains four parts. First, we survey some papers related to mobility-assisted network deployment. Second, we
introduce functional enhancement schemes by mobile sensors. Third, we discuss the dispatch issue of mobile sensors in a hybrid WSN.
Finally, we present the design of mobile platforms to support mobility for sensors and give several applications of mobile WSNs.

Index Terms—coverage, deployment, dispatch, mobile sensors, sensor applications, wireless sensor networks.
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1 INTRODUCTION

THE rapid growth of micro-sensing MEMS and wire-
less communication technologies has promoted the

development of wireless sensor networks (WSNs). Such a
network is composed of one or multiple remote sinks and
many tiny, low-power sensor nodes, each equipped with
some actuators, sensing devices, and a wireless transceiver
[1]. These nodes are massively deployed in a region of
interest to collect information from their surroundings,
and continuously report back to the remote sinks. Thus,
WSNs can provide a convenient way to monitor physical
environments. In recent years, a large amount of WSN
applications such as object tracking, health monitoring,
security surveillance, and intelligent transportation have
been proposed.

A WSN is usually deployed with static nodes to perform
monitoring missions in the region of interest. However, due
to the dynamic changes of events and hostile environment,
a purely static WSN could face the following problems:
• The initial deployment of a WSN may not guarantee

complete coverage of the sensing field and connec-
tivity of the whole network. Usually, sensor nodes
may be scattered in a hostile region from the aircraft
or by robots [2]. However, these randomly deployed
sensors could not guarantee to cover the whole area
and may be partitioned into several non-connected
subnetworks, even though we scatter a large amount
of nodes. Moreover, the dynamic change of environ-
ment and the existence of obstacles could complicate
the problem.

• Sensor nodes are usually battery-powered and prone
to errors. As some nodes die due to the exhaustion
of their energy, there could be holes in the WSN’s
coverage. In addition, these death nodes may break
the network connectivity. However, in many scenarios,
it is quite difficult to recharge sensor nodes or deploy
new nodes.

• The WSN may be required to support multiple mis-
sions under various conditions [3]. For example, in
an object tracking application, sufficient sensor nodes
should be deployed along the target’s track, while in
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a boundary detection mission, there should be enough
nodes along the pre-described perimeter. These differ-
ent requirements cannot be easily satisfied by deploy-
ing a large amount of sensor nodes, since provisioning
for all possible combinations of missions’ requirements
could not be economically feasible.

• Some applications may need sophisticated (and thus
expensive) sensors to involve in. For example, in a mil-
itary application, pressure sensors may be deployed
along the boundary to detect whether any enemy
intrudes in. However, these sensors can only report
something passing but cannot describe what passes
through them. In this case, more sophisticated sensing
devices such as cameras should be used to obtain more
information. Nevertheless, it is infeasible to equip
camera on each node because of their large number.

By introducing mobility to a WSN, we can enhance its
capability and flexibility to support multiple missions and
to handle the aforementioned problems. Although a WSN
is usually considered as an ad hoc network in which nodes
are extended with sensing capability, a mobile WSN and
a mobile ad hoc network (MANET) are essentially different.
Mobility in a MANET is often arbitrary, whereas mobility
in a mobile WSN should be intentional. In other words,
we can control the movement of mobile sensors to conduct
different missions.

In this chapter, we give a comprehensive survey of recent
researches on intentional mobility in WSNs. The discussion
includes four parts:

• Mobility-assisted network deployment: We will in-
troduce several deployment schemes that investigate
how to reorganize a randomly deployed WSN into a
more regular topology, so that the WSN can cover the
most area of the sensing filed.

• Functional enhancement by mobile sensors: We will
present some relocation methods of mobile sensors to
improve the functionalities of a WSN, including area
coverage, network connectivity, and detection ability.

• Dispatch of mobile sensors in a hybrid WSN: We
will discuss the dispatch issue of mobile sensors in a
hybrid WSN that consists of both static and mobile
nodes.

• Design of mobile platforms and applications: We will
survey several designs of mobile platforms to support
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mobility for sensor nodes, and give some interesting
applications of mobile WSNs.

2 MOBILITY-ASSISTED NETWORK
DEPLOYMENT

Sensor deployment is one important issue of WSNs be-
cause it directly affects the detection capability of the net-
work. Several researches have proposed different mobility-
assisted deployment schemes to help organize a WSN.
They consider that there are a large amount of mobile sen-
sors randomly dropped in a sensing field. Then, different
moving strategies are conducted to make these sensors to
automatically organize a connected network that covers
the maximal target area. In this section, three categories of
mobility-assisted deployment schemes are introduced. The
force-directed deployment schemes image that there are attrac-
tive and repulsive forces between sensors and these forces
will drive sensors to move. The Voronoi-based deployment
schemes use a graph-based method to estimate potential
coverage holes and move sensors to cover these holes.
Finally, the predetermined deployment schemes first calculate
the locations to place sensors and then dispatch sensors to
these locations in an energy-efficient manner.

2.1 Force-Directed Deployment Schemes
In [4], the concept of virtual force is introduced to move
sensors. Each sensor si is assumed to be exerted by three
types of forces: the attractive (positive) force

−−→
FiA by the

target area, the repulsive (negative) force
−−→
FiR by all obsta-

cles, and the force
−→
Fij between sensors si and sj . Therefore,

the total force
−→
Fi on sensor si can be expressed as

−→
Fi =−−→

FiA +
−−→
FiR +

∑n
j=1,j 6=i

−→
Fij , where n is the number of sensors.

The force
−→
Fij is expressed by a polar coordinate notation

(r, θ), where r is the magnitude and θ is the orientation
(angle) of the vector

−→
Fij . Thus,

−→
Fij can be derived as

−→
Fij =





(wA · (dij − dth), θij) if dij > dth

(wR · 1
dij

, π + θij) if dij < dth

0 otherwise,

(1)

where dij is the Euclidean distance between sensors si and
sj , dth is a threshold distance, θij is the orientation of a line
segment from si to sj , and wA and wR are measures of the
attractive and repulsive forces, respectively. Note that the
threshold dth controls how close sensors get to each other.
Fig. 1(a) shows an example, where there are four sensors
and dth = d12. By Eq. (1), s2 exerts no force on s1, s3 exerts
an attractive force

−→
F13 on s1, and s4 exerts a repulsive force−→

F14 on s1 because d12 = dth, d13 > dth, and d14 < dth,
respectively. Sensor s1 is thus moved by the compound
force

−→
F1.

The work [5] considers only repulsive forces, where
each sensor is treated as an electron and will be repulsed
by other sensors. The force corresponding to a higher
local density is greater than the force corresponding to a
lower local density, and the force from a closer node is
greater than the force from a farther node. In particular,
[5] suggests that a force function f(·) should be defined to
satisfy the following rules:

1. f(dij) ≥ f(dik) if dij ≤ dik. This implies that forces
will be inversely proportional to sensors’ distances.
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Fig. 1: An example of the virtual forces on sensor s1 by three other sensors:
(a) attractive and repulsive forces in [4] and (b) only repulsive forces in
[5].

2. f(0+) = fmax, where fmax is the maximum force. This
puts an upper bound on forces.

3. f(dij) = 0 if dij is larger than the communication
distance of a sensor. This means that only neighboring
sensors are considered to generate the force.

Sensors will be moved step by step. In each step k, the
force on sensor si by another sensor sj in its commu-
nication range is calculated to be a repulsive force as
f i,j

k = Di
k

µ2 (rc|pi
k − pj

k|)
pj

k−pi
k

|pj
k−pi

k|
, where Di

k is the local density
of sensor si at step k, µ is the expected density (after the
final deployment), rc is the communication distance of a
sensor, and pi

k is the location of sensor si at step k. Fig. 1(b)
gives an example, where sensors s2, s3, and s4 are inside
s1’s communication range. Sensor s1 will be moved by the
compound force f1

k . Note that when a sensor moves less
than a threshold distance after a predefined period, it is
considered to reach the stable status and thus the sensor
stops moving.

2.2 Voronoi-Based Deployment Schemes
Reference [6] uses a Voronoi diagram to find out potential
coverage holes and then moves sensors to cover these holes.
Given a set of nodes on a 2D plane, the Voronoi diagram [7]
is formed from perpendicular bisectors of lines that connect
two neighboring nodes, as shown in Fig. 2(a). The Voronoi
diagram can represent the proximity information about a
set of geometric nodes. Every point inside a Voronoi polygon
is closer to the node in this polygon than to any other
node. With this property, if the sensing range of a sensor
cannot completely cover its Voronoi polygon, there could
be coverage hole inside that polygon.

In [6], after the initial deployment, each sensor exchanges
its location information with its neighbors to construct its
Voronoi polygon locally. Then, three strategies are pro-
posed to move sensors:

Vector-based (VEC) strategy: The VEC strategy adopts
the idea of virtual force. Two sensors si and sj will be
pushed to move a distance of 1

2 (davg − dij) away from
each other, where davg is the average distance between
two sensors when all sensors are evenly distributed in the
sensing field. However, if one sensor can completely cover
its Voronoi polygon, it should not be moved. In this case,
the other sensor will be pushed away with a distance of
davg − dij .

Voronoi-based (VOR) strategy: When a sensor detects
the existence of a coverage hole, it will move toward its
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Fig. 2: The deployment method proposed in [6]: (a) a Voronoi diagram,
(b) the VOR strategy, and (c) the minimax strategy.

farthest Voronoi vertex. Fig. 2(b) gives an example, where
point u is the farthest Voronoi vertex. Sensor si will move
along siu and stop at point v1, where |uv1| is equal to the
sensing distance rs. Note that when a sensor cannot obtain
location information from all its Voronoi neighbors, it will
lead the sensor to calculate an incorrect Voronoi polygon.
In this case, we should limit the maximum moving distance
to rc

2 to prevent the sensor from moving more than needed.
Minimax strategy: Like VOR, the sensor also moves

toward its farthest Voronoi vertex, but stops at a minimax
point v2 whose distance to all Voronoi vertices is minimized,
as shown in Fig. 2(c). To calculate the minimax point, we
should check all circles that pass through any two and any
three Voronoi vertices. Among these circles, the one with
the minimum radius that covers all Voronoi vertices will be
the minimax circle, whose center is thus the minimax point.

2.3 Predetermined Deployment Schemes
In [8], Wang et al. target at planned deployment in known
fields. They address two deployment-related problems:
sensor placement and sensor dispatch. The placement problem
determines how to place the least number of sensors in a
sensing field to guarantee complete coverage and network
connectivity. The dispatch problem asks how to delegate
mobile sensors to the target locations calculated by the
placement result such that their moving energy consump-
tion can be minimized or their remaining energy can be
maximized.

For sensor placement, [8] allows an arbitrary relationship
between a sensor’s communication distance rc and its
sensing distance rs. Given an arbitrary-shaped sensing field
with possibly arbitrary-shaped obstacles, [8] first partitions
the field into single-row and multi-row regions. A single-
row region is a belt-like area with a width not larger than√

3rmin, where rmin = min{rc, rs}, so one row of sensors
are enough to cover the whole region while maintaining
network connectivity. A multi-row region requires several
rows of sensors to cover it. To partition a sensing field
A, we should first identify all single-row regions. Other
regions are thus multi-row regions. This can be done by
expanding A’s boundaries inward and obstacles’ perime-
ters outward by a distance of

√
3rmin, as shown in Fig. 3(a).
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Fig. 3: The sensor placement method proposed in [8]: (a) partition a
sensing field, (b) place sensors in a single-row region, and (c) place sensors
in a multi-row region.

say O, we can take a project from O to obtain a single-
row region. Fig. 3(a) shows an example, where four single-
row regions (marked with alphabets) and four multi-row
regions (marked with numbers) are found. Then, we can
place sensors inside these regions by the following rules:

Single-row region: We find the region’s bisector and
place a sequence of sensors, each separated by a distance
of rmin, along the bisector, as shown in Fig. 3(b). This can
guarantee both coverage and connectivity. A bisector can
be found by doing a triangulation on that region, and
connecting the midpoints of all dotted lines. Note that we
should add one sensor at the end of bisector to connect
with neighboring regions.

Multi-row region: Two cases are considered, as shown
in Fig. 3(c). In the case of rc <

√
3rs, sensors on each row

are separated by a distance of rc, so the connectivity of
each row is guaranteed. Adjacent row are separated by a
distance of rs +

√
r2
s − 1

4r2
c and shifted by a distance of

1
2rc. With such an arrangement, the coverage of the whole
area is guaranteed. In this case, we have to add a column
of sensors between two adjacent rows, each separated by
a distance not larger than rc, to connect them. On the
other hand, in the case of rc ≥ √

3rs, adjacent sensors
are regularly separated by a distance of

√
3rs, so both

coverage and connectivity are guaranteed. Note that we
have to sequentially place sensors along the boundaries
of multi-row region and the perimeters of obstacles to fill
the uncovered space and to maintain connectivity with
neighboring regions. These sensors should be separated by
a distance of rc and

√
3rs when rc <

√
3rs and rc ≥

√
3rs,

respectively.
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For sensor dispatch, [8] proposes a centralized scheme
by converting the dispatch problem to a maximum-weight
maximum-matching problem:

1. Given a set of mobile sensors S and a set of locations
L = {(x1, y1), (x2, y2), · · · , (xm, ym)} computed by the
placement scheme, where |S| ≥ |L|, we construct a
weighted complete bipartite graph G = (S ∪L,S ×L).
The weight of each edge (si, (xj , yj)), si ∈ S , (xj , yj) ∈
L, can be defined either as w(si, (xj , yj)) = −(∆m ×
d(si, (xj , yj)) if we want to minimize the total energy
consumption to move sensors, or as w(si, (xj , yj)) =
ei − (∆m × d(si, (xj , yj)) if we want to maximize the
average remaining energy of sensors after they move
to target locations, where ei is the energy of a sensor
si, ∆m is the unit energy cost to move a sensor in one
step, and d(si, (xj , yj)) is the shortest distance from si

to location (xj , yj).
2. Find a maximum matching with the maximum weight

on graph G. In particular, we construct a new graph
G′ = (S ∪ L ∪ L′,S × {L ∪ L′}) from G, where L′ is a
set of |S| − |L| elements, each called a virtual location.
The weight of each edge in G′ that also appears in
G remains the same as that in G, and the weight of
each edge from si ∈ S to (xj , yj) ∈ L′ is set to wmin,
where wmin = minsi∈S, (xj ,yj)∈L{w(si, (xj , yj))} − 1.
Intuitively, a virtual location is a dummy one. Its
purpose is to make the sizes of sets S and {L ∪ L′}
become equal. This allows us to transform the problem
to the maximum-weight perfect-matching problem on G′,
whose purpose is to find a perfect matching M on G′
with the maximum edge weights. Then, we can adopt
the Hungarian method [9] to find M.

3. For each edge (si, (xj , yj)) in M such that (xj , yj) ∈
L, we move sensor si to location (xj , yj) through
the shortest path. However, if there is any edge
(si, (xj , yj)) ∈ M such that (xj , yj) ∈ L and ei −
c(si, (xj , yj)) ≤ 0, it means that we do not have
sufficient energy to move sensors to all locations in
L, so the algorithm terminates.

The remaining problem is how to find the shortest path
from a sensor si to a location (xj , yj), without colliding
with any obstacle. In [8], the authors propose a solution as
shown in Fig. 4. Considering its physical size, si is modeled
as a circle with a radius r. Intuitively, si has a collision-
free motion if its center always keeps at least a distance
of r away from obstacles and A’s boundaries. This can be
done by expanding the obstacles’ perimeters outward and
A’s boundaries inward by a distance of r and preventing si

from moving into these expanded areas. Then, the problem
can be translated to one of finding the shortest path from
si to (xj , yj) in a weighted graph H = (si ∪ (xj , yj)∪V, E),
where V contains all vertices v of the polygons representing
the expanded areas of obstacles and A’s boundaries such
that v is not inside other expanded areas, and E contains
all edges (u, v) such that u, v ∈ {si ∪ (xj , yj) ∪ V} and
uv does not pass any expanded area of obstacles or A’s
boundaries. The weight of each edge (u, v) ∈ E is the
length of uv. Fig. 4 gives an example. Nodes e and f are
not vertices of H because they are inside obstacles 2’s and
3’s expanded areas, respectively. Edges (a, b), (a, g), (h, b),
and (h, g) ∈ E , but (h, c) and (h, d) /∈ E because they pass
the expanded area of obstacle 2. After constructing such
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Fig. 4: Find a collision-free path from si to (xj , yj).

a graph H, we can use the Dijkstra’s algorithm [10] to
calculate the shortest path from si to (xj , yj).

3 FUNCTIONAL ENHANCEMENTS BY MOBILE
SENSORS

Mobile sensors can be used to enhance the functionalities
of a WSN. We can relocate some mobile sensors to the
weakest points of a WSN to strengthen it. In this section,
we present three types of such enhancement methods. The
coverage enhancement methods attempt to relocate sensors
from high-density regions to low-density regions to im-
prove the overall coverage of the network. The connectivity
enhancement methods first find out potential weak points
on network connectivity and then relocate some sensors
to strengthen these points. Finally, the event-based motion
methods relocate more sensors close to event locations to
get a better detection of events.

3.1 Coverage Enhancement Methods
The work [11] uses a grid structure to perform sensor
relocation. It partitions the sensing field into N grids and
then moves sensors from high-density grids to low-density
grids. This can help redistribute a more even network,
especially when some nodes fail. In [11], the grid-quorum
and cascaded movement schemes are proposed to quickly
find out the redundant sensors and to relocate these sensors
to the target grids, respectively. In the grid-quorum scheme,
each grid will elect a grid head to maintain the grid’s infor-
mation. The grid head of a high-density grid gi will send
an advertisement (ADV) message in its row to announce
that it has redundant sensors. On the other hand, the grid
head of a low-density grid gj will send a request (REQ)
message to its column to query redundant sensors. Because
of the grid structure, there must be a grid gk that receives
both the advertisement and request messages. Thus, grid
gk can reply to grid gj that there are redundant sensors
in grid gi. Fig. 5(a) gives an example, where grid (1, 2)
has redundant sensors and grid (3, 0) needs them. Grid
(3, 2) will receive both advertisement and request messages
from these two grids. Compared to the traditional flooding
scheme, grid-quorum can reduce message overhead from
O(N) to O(

√
N).

After identifying redundant sensors and target grids,
sensors are moved using the cascaded movement rather
than the direct movement to prevent these sensors from
wasting too much energy, as shown in Fig. 5(b) and (c).
In the cascaded movement, each sensor si is associated
with a tolerable delay Ti, during which its successor must
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move to its original location. Thus, a sensor sj can become
a successor of si if dij

v −(ti−tj) ≤ Ti, where dij is the distance
between si and sj , v is the moving speed of a sensor, and
ti is the departure time of si. For example, in Fig. 5(c),
sk can first move to the target location, and then si can
move to sk’s original location. Finally, sj can move to si’s
original location. Such a sequence sj → si → sk is called
a cascading schedule. Clearly, the cascading schedule is not
unique and should minimize the total energy consumption
and maximize the minimum remaining energy so that no
individual sensor will waste too much energy. In [11], the
schedule with the minimum difference between the total
energy consumption and the minimum remaining energy is
selected. In particular, suppose that there are two cascading
schedules with E1 and E2 as their total energy consump-
tion, and Emin

1 and Emin
2 as their minimum remaining

energy. Schedule 1 will be selected if E1−Emin
1 ≤ E2−Emin

2 .

3.2 Connectivity Enhancement Methods

Reference [12] discusses how to move nodes to reorganize
a stronger network. The objective is to form a biconnected
network such that the total moving distance of nodes can
be minimized. A network is called biconnected if it is not
partitioned after removing any of its nodes. Each such node
is referred as a cutvertex. Fig. 6 shows an example, where
node d is a cutvertex and a biconnected network can be
formed by moving node f close to node a. Based on this
observation, [12] proposes a block movement algorithm to
achieve a biconnected network by removing all cutvertices
from the original network. In particular, given a graph
G that describes the network topology, the biconnected
components (also called blocks) of G are first identified
along with its cutvertices, and then the graph G can be
translated to a block tree [13]. Note that a block can have
between 0 and n nodes, where n is the total number
of nodes in the network. If two cutvertices are directly
connected with an edge, the corresponding block contains
no node. In the block tree, we can select the block with the
maximum number of nodes as the root. Fig. 7(a) and (b)
give an example, where five blocks (including the empty
block B3) and two cutvertices C1 and C2 are identified.
Block B1 is selected as the root and three blocks B2, B4,
and B5 are leaves. The block movement algorithm then
executes the following iterations until the graph becomes
biconnected:

• Move each leaf block to the nearest node in its parent
block, by the distance that one edge appears.

• If the parent block contains no node, we move the leaf
block to the upstream cutvertex of its parent block.

Fig. 7(c) illustrates an example, where block B2 will move
toward the node v in block B1 and the blocks B4 and B5

will move toward the cutvertex C2 because their parent
block B3 is empty. The final network topology is shown in
Fig. 7(d).
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Fig. 6: Achieve a biconnected network by moving node f toward node a:
(a) 1-connected network and (b) biconnected network.
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3.3 Event-Based Motion Methods

The work in [14] considers how to move more sensors
close to event locations, while still maintaining complete
coverage of the sensing field. Given a set of event locations,
sensors should move in a way such that their final positions
can eventually approximate the event distribution. In [14],
two moving strategies are proposed to achieve this goal. In
the history-free strategy, each sensor will react to an event by
moving according to a function pk+1

i = pk
i + f(lk+1, pk

i , p0
i ),

where lk+1 is the location of event k + 1 and pk
i refers to

the position of sensor i after event k. The function f can be
introduced with a dependency on the distance d between
the sensor and the event, and should satisfy the following
three criteria:
• 0 ≤ f(d) ≤ d, ∀d. This means that after an event occurs,

the sensor should never move past that event.
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• f(∞) = 0. This indicates that the sensor’s motion
should tend to zero as the event gets father away.

• f(d1) − f(d2) < d1 − d2, ∀d1 > d2. This implies that
no sensor should move past another along the same
vector in response to the same event.

In [14], two possible functions are suggested to satisfy
the above criteria. The first one is f(d) = de−d, where
e ≈ 2.718. The other one is f(d) = αdβe−γd, where
αe−γd(βdβ−1 − γdβ) > 1, ∀d. (For example, we can set
α = 0.06, β = 3, and γ = 1.) On the other hand, the history-
based strategy requires sensors to maintain event history to
get a better approximation of event distribution. The idea
is to use the events’ cumulative distribution function (CDF) to
calculate the final positions of sensors. Specifically, given
the x-axis location lkx of an event k, each sensor will conduct
the following steps:

1. Increase CDF bins representing positions ≥ lkx.
2. Scale CDF by k

k+1 .
3. Find bins bi and bi+1 with values bi ≤ x0 ≤ bi+1, where

x0 is the initial x-axis position of the sensor.
4. Compute the final x-axis position of the sensor by

interpolating the values of bi and bi+1.
Since events occurs in a 2D plane, we should also calculate
the final y-axis positions of sensors by the above steps.

By the above moving strategies, sensors will move close
to event locations. However, to maintain complete coverage
of the sensing field, [14] propose using a Voronoi diagram
to determine whether the movement of a sensor will cause
a coverage hole. Specifically, if a sensor finds that its
sensing range can completely cover its Voronoi polygon,
it should stop moving.

4 DISPATCH OF MOBILE SENSORS IN A HYBRID
WSN

Some works consider a hybrid WSN consisting of both
static and mobile sensors. Static sensors will detect events
occurred in the sensing field, while mobile sensors will
be dispatched to certain locations to adjust the network
topology or to conduct advanced analysis of events. In this
section, we present three such works. First is topology ad-
justment by mobile sensors, where static sensors may form
several isolated groups and mobile sensors are dispatched
to connect these groups. Second is sensor navigation, where
static sensors that detect events will invite and navigate
nearby mobile sensors to their locations to conduct more
in-depth analysis of events. Finally, given the locations of
events and mobile sensors, the load-balanced dispatch scheme
considers how to efficiently dispatch mobile sensors to visit
events so that the system lifetime can be extended.

4.1 Topology Adjustment
The work in [15] considers that static sensors may form
several isolated groups, each called an island. These islands
cannot communicate with each other so that we have
to dispatch mobile sensors to connect them, as shown
in Fig. 8. Thus, a three-step algorithm is proposed in
[15] to dispatch mobile sensors to repair the partitioned
network. The first step is to search isolated islands by
grouping static sensors. This can be done by checking
the neighboring relationships of static sensors. All directly
and indirectly connected static sensors belong to the same

group. The second step is to calculate the least number
of mobile sensors MA,B =

⌈
dA,B

rc
− 1

⌉
needed to connect

two islands A and B, where dA,B = min
s∈A,t∈B

{distance(s, t)}
is the shortest distance between two islands A and B.
The last step adopts a dynamic programming to find
the optimal set of islands to be connected. Specifically,
let CG be the coverage of an island G and W (G,m) be
the optimal island set that starts from island G, using m
mobile sensors to connect with. Then, we can obtain that
W (G,m) = max{CG∪H + W (G ∪H, m−MG,H)}, where H
is an island to be connected with G. The above equation
can be divided down and thus solved by the dynamic
programming. Note that for each island G, if the remaining
x mobile sensors cannot allow to connect with any other
island, we set W (G, x) = 0. After identifying the optimal
island set, mobile sensors can be placed along the lines
that connect these islands and the concept of virtual force is
adopted to make these mobile sensors to achieve maximum
coverage. Fig. 8 gives an example.

mobile sensors

island A

island B

island C
dA,B

Fig. 8: The isolated islands are connected by mobile sensors.

4.2 Sensor Navigation

Reference [16] considers that a hybrid WSN is deployed in
a region with obstacles. Static sensors are used to monitor
the environment. When detecting an event, static sensors
will search nearby mobile sensors to move to their locations
to conduct more in-depth analysis of events. Since static
sensors have no idea of where mobile sensor locate, they
will broadcast to search mobile sensors. In particular, static
sensors detecting the same event will elect a leader to
broadcast a weight request (WREQ) packet to find mobile
sensors. On receiving such a WREQ packet, a mobile sensor
mj will reply its weight wj to the querying static sensor si.
The weight is calculated as wj =

Amj
×d(si,mj)

Emj
, where Amj

is the size of coverage hole when mj leaves its current
location, d(si,mj) is the shortest distance between si and
mj , and Emj is the remaining energy of mj . The size Amj

can be measured by the area of Voronoi polygon of mj .
The distance d(si,mj) is represented by the minimum hop
count between si and mj . After collecting weight replies,
the leader static sensor will choose the mobile sensor with
the smallest weight. In the case that two or more mobile
sensors have the same weight, the mobile sensor that is
closest to the event region is selected.

Suppose that the leader static sensor si chooses the
mobile sensor mj . It will broadcast an advertisement (ADV)
packet to build up a navigation field to guide mj , as shown
in Fig. 9(a). In particular, si sets the highest credit value
C1 for itself and inserts C1 into the ADV packet. Other
static sensors receiving such an ADV packet will set their
credit values as C2, where C2 < C1. Then, only those static
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sensors that have ever relayed the weight reply message
from mj will rebroadcast the ADV packet containing C2.
Other static sensors receiving such an ADV packet will set
their credit values as C3, where C3 < C2, and rebroadcast
ADV packets if necessary. This procedure is repeated until
the ADV packet reaches mj . Then, the mobile sensor mj

will move toward the static sensor with higher credit
values, until it arrives to the event region. Fig. 9(b) shows
an example.

mobile sensor mj

leader si

event region

C1

C2
C2

C2

C3

C3

C3

C4

C4

A
D

V

A
D

V

A
D

V

Csmall

Clarge Cmedium

moving

direction

(a) (b)

navigation field

Clarge

Cmedium

Fig. 9: Navigate a mobile sensor: (a) build up the navigation field and (b)
calculate the moving direction of the mobile sensor.

4.3 Load-Balanced Dispatch
Given different sets of event locations round by round,
[17] discusses how to efficiently dispatch mobile sensors
to visit event locations such that the number of rounds
can be maximized. On intuitive solution is to minimize
the total moving energy of mobile sensors in each round.
However, it fails to achieve the goal because mobile sensors
are assigned with unfair loads. Some mobile sensors may
quickly die and other remaining ones will be burdened
with heavy loads. Therefore, [17] proposes a dispatch
solution by balancing the loads of mobile sensors.

Given a set of event locations L = {l1, l2, · · · , lm} in each
round and a set of mobile sensors S = {s1, s2, · · · , sn},
where |L| ≤ |S|, we can transform the dispatch problem to
the problem of finding a maximum matching. Specifically,
we construct a weighted bipartite graph G = (S∪L,S×L),
where the weight w(si, lj) of each edge (si, lj) ∈ S×L is the
energy cost for a mobile sensor si ∈ S to move to an event
location lj ∈ L. The goal is to find a maximum matching M
on G such that the total edge weight in M is minimized and
the standard deviation of edge weights in M is minimized.
Clearly, the first objective means that the total moving
energy of mobile sensors should be minimized, while the
second objective wants to balance the loads of mobile
sensors. Finding such a maximum matching M involves
the following steps:

1. For each si ∈ S , we associate it with a preference
list Plist(si), which ranks each lj ∈ L by its weight
w(si, lj) in an increasing order. Similarly, for each
lj ∈ L, we associate it with a preference list Plist(lj),
which ranks each si ∈ S by its weight w(si, lj) in an
increasing order.

2. To satisfy the second objective, we use a bound Blj

for each lj ∈ L to restrict the candidate mobile sensors

that lj can match with. That is, lj can choose a mobile
sensor si only if w(si, lj) ≤ Blj . The initial value of
each Blj is set as 1

m

∑m
j=1 min

∀i,(si,lj)∈S×L
{w(si, lj)}.

3. For each unmatched location lj ∈ L, we find a mobile
sensor si in Plist(lj) such that w(si, lj) is minimized
and w(si, lj) ≤ Blj to match with. If si is also un-
matched, we add the pair (si, lj) in M. Otherwise, si

must have been matched with another location, say lo.
In this case, lj will compete with lo for si. In particular,
lj can win if one of the following cases is satisfied:
a) Blj > Blo . Since enlarging the bound will increase

the risk of including an edge with an extreme
weight into M, we prefer matching si with lj to
avoid expanding the larger bound Blj .

b) Blj = Blo and lj is prior to lo in Plist(si). As si

prefers lj , we match si with lj to reduce the total
edge weight of M.

c) Blj = Blo and si is the last candidate in Plist(lj)
but not in Plist(lo). Since lj cannot have an-
other candidate to pick in Plist(lj), si should be
matched with lj .

Once si is matched with lj , the pair (si, lo) should be
replaced by the new pair (si, lj) in M, and lo becomes
unmatched. If lj fails to find a match, it examines the
remaining candidates in Plist(lj) by the above rule,
until there is no candidate.

4. If lj cannot match with any mobile sensor in step 3,
we increase the bound Blj by an amount of ∆B and
go back to step 3, until a match can be found for lj .

5. Repeat steps 3 and 4, until every lj ∈ L can find a
mobile sensor to match with.

Fig. 10 gives an example, where δ = 2 and ∆B = 70. The
initial bound is 1

3 × (99 + 78 + 93) = 90. We start with
l1. Since there is no candidate in Plist(l1) with the initial
bound Bl1 , we expand Bl1 = 90 + 70 = 160. Thus, we
have three candidates s1, s2, and s3. Since s1 is the first
candidate in Plist(l1) and s1 is unmatched, we add (s1, l1)
to the matching M. Following the same operation, pair
(s3, l2) is added in M, as shown in Fig. 10(b). However,
after expanding Bl3 , l3 finds that the first candidate s1 has
been matched with l1, so it competes with l1 for s1. Since
Bl3 = Bl1 and l3 is prior to l1 in Plist(s1), (s1, l1) is replaced
by (s1, l3) in Fig. 10(c). Similarly, l1 obtains s3 from l2 and
thus l2 has to find an unmatched mobile sensor s4 to match
with. Fig. 10(e) shows the final result.

When |S| < |L|, we can group event locations into
n clusters Ĉ = {ĉ1, ĉ2, · · · ĉn} and then apply the afore-
mentioned matching solution. In particular, we construct
a weighted bipartite graph G′ = (S ∪ Ĉ,S × Ĉ), where
the weight of each edge (si, ĉj) ∈ S × Ĉ is formulated as
w(si, ĉj) = ∆move × (d(si, lk) + φ(ĉj)), si ∈ S, ĉj ∈ Ĉ, where
∆move is the energy cost for a mobile sensor to move in one-
unit distance, lk ∈ ĉj is the closest location to si, and φ(ĉj)
is the total moving distance to travel all locations inside
ĉj (this can be also treated as the cost of ĉj). To reduce
the computation complexity, φ(ĉj) is approximated by the
total edge weights of the minimum spanning tree in ĉj .
By applying the previous matching solution, each mobile
sensor si can be assigned with a cluster ĉj of event loca-
tions. Then, si will first move to the closest location in ĉj

and adopt the traveling salesman approximation algorithm
[18] to visit other locations in ĉj . The remaining problem is
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Plist(l1) = {s1, s3, s2, s4}

Plist(l2) = {s3, s4, s1, s2}

Plist(l3) = {s1, s2, s4, s3}

(a)

cost

l1

l2

l3

s1

99

147

93

s2

153

240

177

s3

133

78

235

s4

215

105

181

Plist(s1) = {l3, l1, l2}

Plist(s2) = {l1, l3, l2}

Plist(s3) = {l2, l1, l3}

Plist(s4) = {l2, l3, l1}

l1
s2

s4

l2

l3

s3

s1

l1
s2

s4

l2

l3

s3

s1

l1
s2

s4

l2

l3

s3

s1

(b) (c)

(d) (e)

l1
s2

s4

l3

s3

s1 l2

Bl2

Bl1

Bl1

Bl2

Bl3

(160)

(90)
(160)

(160)

(160)

Fig. 10: An example to show how to find the maximum matching M:
(a) energy costs and preference lists, (b) M = {(s1, l1), (s3, l2)}, (c)
M = {(s3, l2), (s1, l3)}, (d) M = {(s3, l1), (s1, l3)}, and (e) M =
{(s3, l1), (s4, l2), (s1, l3)}.

how to group event locations into clusters. To achieve this,
[17] proposes a clustering scheme, as shown in Fig. 11. The
goal is to minimize the total cost of clusters. Specifically,
we first adopt K-means [19] to group event locations into
n clusters. Then, we find the maximum edge weight wintra

max

among edges in all clusters and the minimum inter-cluster
distance winter

min , where the distance between two clusters ĉa

and ĉb is the distance of the two closest locations li ∈ ĉa

and lj ∈ ĉb. If wintra
max > winter

min , we can split the cluster with
the edge whose weight is wintra

max (by removing that edge)
and then merge two clusters whose distance is winter

min (by
connecting them with the shortest edge). We can repeat
the above procedure until wintra

max ≤ winter
min . Fig. 11 gives an

example. In Fig. 11(b), wintra
max is 60 (in cluster A) and winter

min

is 16 (between clusters C and D). We thus split cluster A
into two clusters A1 and A2, and then merge clusters C
and D into the same one, as shown in Fig. 11(c). Similarly,
we can further split cluster D and then merge clusters A2

and B to reduce the total cost of clusters. The final result
is shown in Fig. 11(d).

5 DESIGN OF MOBILE PLATFORMS AND
APPLICATIONS

Several studies have implemented mobile platforms to
support mobility for sensors. In this section, we intro-
duce four such implementations and corresponding ap-
plications. First is the pursuer-evader game, where a mobile
sensor will capture a moving object by the assistance of a
static WSN. Second, we introduce Mobile Emulab, a robotic
wireless and sensor network testbed. Third, we present
the design of a signal-based mobile sensor, where the mobile
sensor can move to the target locations according to the
received signal strengths from static sensors. Finally, we
introduce the iMouse system, which combines video-based
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Fig. 11: An example to group event locations into four clusters: (a) initial
topology, (b) total cost: 162, (c) total cost: 118, and (d) total cost: 98.

surveillance systems and mobile WSNs to provide security
surveillance in a home/office environment.

5.1 Pursuer-Evader Game

In [20], Sharp et al. implement the pursuer-evader game
[21] by a hybrid WSN. In such a game, there are two
mobile sensors, called pursuer and evader, in the sensing
field. The evader will arbitrarily roam inside the sensing
field, and the pursuer attempts to intercept the evader
according to the information reported by static sensors. The
critical issue is how to quickly tell the pursuer where the
evader locates. To achieve this, static sensors that detect
the evader will form a group and elect a leader to report
the current location of evader. Such a report is sent to the
moving pursuer via a multi-hop tree routing. After data
filtering and interception planning, the pursuer can chase
the evader.

In [20], the pursuer and evader are implemented by
ground robots, which are essentially mobile off-road lap-
tops equipped with GPS (global position system) de-
vices. Each robot executes a Linux operating system on
a 266 MHz Pentium2 CPU with 128 MB of RAM, and is
equipped with an IEEE 802.11 wireless radio, all-terrain
off-road tires, a motor-controller subsystem, and a high-
precision differential GPS device. The GPS device reports
the current position of the robot every 0.1 seconds, with
an accuracy of approximate 0.02 meters. The maximum
speed of the robot is approximate 0.5 meters per second.
In addition, a static WSN is deployed to detect where the
evader is. Each static sensor is a MICA2 mote [22] and run
on the TinyOS operating system [23]. More implementation
details can be found in [20].

5.2 Mobile Emulab

Mobile Emulab [24], a robotic testbed for wireless and sensor
networks, is proposed for researchers to evaluate their
proposed mobility-related network protocols, applications,
and systems. In this testbed, robots carry single-board
computers and sensors (so that they can be treated as
mobile sensors) through a fixed indoor field, all running
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the user’s selected software. In real-time, interactively or
driven by a script, remote users can position and con-
trol these robots. Mobile Emulab is composed of three
components, including video cameras, robots (or mobile
sensors), and static sensors. The cameras are mounted
on the ceiling to overlook the sensing field and to track
robots. The mobile sensors, which use Acroname Garcia
robots [25] as their mobile platforms, carry an XScale-based
Stargate [26] small computer running the Linux operating
system, a MICA2 mote, and an IEEE 802.11b WLAN card
for computing, communicating, and controlling purposes.
Finally, the static sensors are used to detect events in the
sensing field.

The software architecture of Mobile Emulab is illustrated
in Fig. 12. It consists of three subsystems: robot backend,
robotd, and visiond. Users can control the robots by sending
motion requests or query sensing data from them by sending
event requests through the robot backend subsystem. When
a motion request is received, the robotd subsystem will
translate it into low-level motion commands to control the
robots. However, it requires the position data of robots to
conduct such translation. Thus, the visiond subsystem will
periodically track robots’ positions through the cameras
and feedback this information to the robotd subsystem.
More implementation details can refer to [24].

Emulab-based System

motion requests

event requests
position data

event replies

position data

visiond

users

video cameras

motion requests

position data position requests

event replies

robots (mobile sensors)

Internet

robot backend

robotd

Fig. 12: The software architecture of Mobile Emulab.

5.3 Signal-Based Mobile Sensors

The above systems require GPS devices or ceiling-mounted
cameras to obtain positions of mobile sensors. Refer-
ence [27] releases such limitations and uses received sig-
nal strength (RSS) from static sensors to navigate mobile
sensors. In particular, given a static WSN, the sink first
constructs a routing path to each static sensor by flooding
a message to the WSN. These routing paths are used as
navigation paths of mobile sensors. Specifically, when a
mobile sensor is dispatched to visit a static sensor, the static
sensor will send a packet containing its ID to the sink. Static
sensors on the routing path will also add their IDs to the
packet. In this way, the inverse sequence of sensors’ IDs
will be the navigation path.

After receiving the packet replied from the static sensor,
the sink will dispatch a mobile sensor to the target location.
The mobile sensor will move to the next static sensor by
continuously monitoring the signal strength of the beacons

sent from the static sensor at the next hop. To approach a
specified static sensor, the mobile sensor will go forward
and detect the change of RSS. If RSS increases, it means that
the mobile sensor is approaching a turning point, which
is defined as the midpoint of a line segment that the
mobile sensor can receive the strongest signal strength,
as shown in Fig. 13(a). Otherwise, the mobile sensor is
moving away from the target location and thus it will
immediately reverse its current moving direction. When
the mobile sensor arrives at the turning point, it knows
that the target location is either in the right or left side of
its moving direction. In this case, the mobile sensor will
first turn right to seek for the target. However, If the target
location is in the left side, the signal strength received by
the mobile sensor will become weaker as it moves away
from the target location. In this case, the mobile sensor
will reverse its moving direction. By repeating the above
procedure, the mobile sensor can eventually arrive to the
target location. Fig. 13(b) gives an example.
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Fig. 13: Navigate a mobile sensor by the received signal strength: (a) find
a turning point and (b) the moving steps of the mobile sensor.

5.4 iMouse System
Traditional video-based surveillance systems typically col-
lect a large volume of image data from wall-board cam-
eras, which require huge computation or even manpower
to analyze. Introducing the intelligence of mobile WSNs
can help reduce such overheads and provide more ad-
vanced, context-rich services. Motivated by this observa-
tion, iMouse [28] is proposed to integrate the sensing
capability of mobile WSNs into surveillance systems. The
iMouse system consists of many static sensors and a small
number of more powerful mobile sensors, as shown in
Fig. 14. The former is used to monitor the environment,
while the latter can move to the potential emergency sites
(reported by static sensors) and take snapshots at event
locations. In this way, the iMouse system can be event-
driven, in the sense that only when an event occurs should
a mobile sensor be dispatched to capture the images of
that event. Thus, iMouse can avoid recording unnecessary
images when nothing happens.

In iMouse, each mobile sensor has the following func-
tionalities: moving to event locations, exchanging messages
with other sensors, taking snapshots at event locations,
and transmitting images to the server. To achieve this,
each mobile sensor is equipped with a Stargate processing
board, which is connected to a LEGO car [29], a MICAz
Mote [22], a webcam, and an IEEE 802.11 WLAN card, as
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(1) send commands

     to WSN

(2) report events
(3) dispatch

(4) move to event locations 

and take snapshots

(5) report images   

through WLAN

mobile sensors

iMouse server

event

Fig. 14: System Architecture of iMouse.

shown in Fig. 15(a). The LEGO car supports mobility. The
Mote can communicate with static sensors. The webcam is
used to take snapshots. The WLAN card is to support high-
speed, long-distance communications, such as transmitting
images. The Stargate controls the actions of the LEGO car
and the webcam. The light detector below the LEGO car
is used to navigate the mobile sensor. This is realized by
different colors of tapes stuck on the ground, as shown
in Fig. 15(b). Specifically, black tapes represent roads and
golden tapes represent intersections. The mobile sensor will
move along the black tapes and can make a 90-degree turn
when it arrives at an intersection.

webcam

WLAN cardmote

Stargate

light detectorLego car

static sensor

mobile sensor

event

road
intersection

(a) (b)

Fig. 15: Implementation of the iMouse system: (a) mobile sensor and (b)
a grid-like sensing field.

6 CONCLUSIONS

Traditional static WSNs have limitations on supporting
multiple missions and handling different situations when
the network condition changes. Introducing mobility to
WSNs can significantly improve the network capability and
thus release the above limitations. This chapter provides a
comprehensive survey of current researches on intentional
mobility in WSNs. Various moving strategies of mobile
sensors for network deployment, functional enhancement,
and sensor dispatch have been discussed. Also, the design
of mobile platforms and potential applications of mobile
WSNs have been presented in this chapter.
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