Operating Systems - Assienment 1
(Client-Server Model and Threads)

Motivation:
In class, we have taught the client-server model and threads. This assignment asks you to use

both techniques to develop an on-line chatting application (e.g., LINE).

Assignment Content:
In this assignment, you need to create a server and some clients. When a client wants to send
messages to another client, it has to log in to the server first. The server should maintain the
mapping between the username and its socket address. When a client logs in, all other active
clients will see that the client is on the line. They will also be informed whenever the client
logs out. In addition, two clients can send messages with each other. The server takes charge
of relaying messages between them. Here is an example. Suppose that there are two clients,
say, Alice and Bill. Alice has logged in to the server. Then, Bill tries to connect to the server
by typing the following command:
$ link socketAddr (192.168.1.1, 1234) user Bill
The server’s IP address is 192.168.1.1 and its port is 1234. Suppose that the IP address of this
client is 192.168.2.3 and its port is 5678. The server has to map 192.168.2.3 to user Bill. In
addition, Alice will see the following information:
<User Bill is now on-line, socket address: 192.168.2.3/5678.>
If Alice wants to talk to Bill, she can use the following command:
$ talk user Bill message “Hello, Bill.”
When Alice talks to a guy that does not exist in the system, the server has to notify her:
$ talk user Goblin message “Hello~"
<User Goblin does not exist.>
When Bill wants to leave the system, he can use the following command:
$ disconnect
In this case, all other on-line clients have to be notified:
<User Bill leaves.>
In this case, if Alice wants to talk to Bill, the following case will happen:
$ talk user Bill message “Lend me some money.”
<User Bill is off-line.>

Whenever a client connects to the server, the server creates a thread to serve that client.
The server maintains a “whiteboard” (i.e., a memory space) for communication. If a client A
wants to say something to another client B, A’s thread writes words on the whiteboard, the
server notifies B’s thread, and B’s thread reads these words and sends them to B. According

to the previous example, the whiteboard’s content may be as follows:



Communication Whiteboard
Alice: [2025 October 1, 15:10:35] Alice is using the whiteboard.
$ talk user Bill message | <To Bill> Hello, Bill.
“Hello, Bill.”

On the server side, your program needs to show the whiteboard’s content in real time. Just
like what OS should do, Since the whiteboard is shared by all threads, the server must handle
synchronization. If two clients are sending messages concurrently, the server has to ensure
that the whiteboard can be written by at most one thread at any time. You need to demonstrate

this behavior to TA and also show somethings on the whiteboard.

Requirements:

»  You need to use UNIX socket programming and Pthread in this assignment.

»  You must provide a makefile. TA will deduct your points if there is no makefile or the
makefile is erroneous.
»  You must submit a README file along with your program. The README file should

briefly describe how you write your codes (for example, the idea of your program).

»  You must demonstrate your program. TA will announce the demonstration time.

Grading Policy:

You need to submit your codes and demonstrate your program to TA. The due day of this
homework is 11/5. You will get no point if you do NOT demonstrate your program (even if
you submit codes). Discussion among your classmates is encouraged. However, plagiarists
will get ZERO point. Below are the points you can get in this homework:

»  Main program: 90%

»  Code comments & README: 10%



