
Firewalls

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

2

Firewalls

 Firewall

• hardware/software

• choke point between secured and unsecured network

• filter incoming and outgoing traffic

• prevent communications which are forbidden by the security policy

 What it can be used to do

• Incoming: protect and insulate the applications, services and machines

 Such as telnet, NetBIOS

• Outgoing: limit or disable access from the internal network

 Such as MSN, ssh, ftp, facebook, SC2, D3

• NAT (Network Address Translation)

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

3

Firewalls – Capabilities

 Network Layer Firewalls

• Operate at a low level of TCP/IP stack as IP-packet filters.

• Filter attributes

 Source/destination IP

 Source/destination port

 TTL

 Protocols

 …

 Application Layer Firewalls

• Work on the application level of the TCP/IP stack.

• Inspect all packets for improper content, a complex work!

 Application Firewalls

• The access control implemented by applications.

• TCP Wrapper (libwrap)

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

4

Firewalls – Rules

 Exclusive

• Only block the traffic matching the rulesets

 Inclusive

• Only allow the traffic matching the rulesets

• Offer much better control of the incoming/outgoing traffic

• Safer than exclusive one

 (Y) reduce the risk of allowing unwanted traffic to pass

 (N) increase the risk to block yourself with wrong configuration

 State

• Stateful

 Keep track of which connections are opened through the firewall

 Be vulnerable to Denial of Service (DoS) attacks

• Stateless

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

5

Firewalls – Packages

 FreeBSD

• IPFILTER (known as IPF)

• IPFIREWALL (known as IPFW) + Dummynet

• Packet Filter (known as PF)+ ALTQ

migrated from OpenBSD

 v4.5 (In FreeBSD 9.0)

 http://www.openbsd.org/faq/pf/ v5.0

 Linux

• ipchains

• iptables

http://www.openbsd.org/faq/pf/

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

6

Packet Filter (PF)

 Functionality

• Filtering packets

• NAT

• Load balance

• QoS: (ALTQ: Alternate Queuing)

• Failover (pfsync + carp)

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

7

PF in FreeBSD – Enable pf*

 In /etc/rc.conf (kernel modules loaded automatically)

pf_enable="YES"

pflog_enable="YES"

pfsync_enable="YES"

 Kernel configurations

device pf

device pflog

device pfsync

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

8

PF in FreeBSD – Commands

 /etc/rc.d/pf

• start / stop / restart / status / check / reload / resync

 pfctl

• -e / -d

• -F {nat | rules | state | info | Tables | all | …}

• -v -s {nat | rules | state | info | all | Anchors | Tables | …}

• -v -n -f /etc/pf.conf

• -t <table> -T {add | delete| test} {ip …}

• -t <table> -T {show | kill | flush | …}

• -k {host | network} [-k {host | network}]

• -a {anchor} …

Default anchor: -a '*'

 Ex. -a ‘ftp-proxy/*’

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

9

PF in FreeBSD – Config ordering

 Macros

• user-defined variables, so they can be referenced and changed easily.

 Tables “table”

• similar to macros, but efficient and more flexible for many addresses.

 Options “set”

• tune the behavior of pf, default values are given.

 Normalization “scrub”

• reassemble fragments and resolve or reduce traffic ambiguities.

 Queueing “altq”, “queue”

• rule-based bandwidth control.

 Translation (NAT) “rdr”, “nat”, “binat”

• specify how addresses are to be mapped or redirected to other addresses

• First match rules

 Filtering “antispoof”, “block”, “pass”

• rule-based blocking or passing packets

• Last match rules

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

10

PF in FreeBSD – Lists

 Lists

• Allow the specification of multiple similar criteria within a rule

multiple protocols, port numbers, addresses, etc.

• defined by specifying items within { } brackets.

• eg.

 pass out on rl0 proto { tcp, udp } from { 192.168.0.1, 10.5.32.6 } to any

 pass in on fxp0 proto tcp to port { 22 80 }

• Pitfall

 pass in on fxp0 from { 10.0.0.0/8, !10.1.2.3 }

You mean (It means)

1. pass in on fxp0 from 10.0.0.0/8

2. block in on fxp0 from 10.1.2.3

2. pass in on fxp0 from !10.1.2.3

Use table, instead.

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

11

PF in FreeBSD – Macros

Macros

• user-defined variables that can hold IP addresses, port numbers,

interface names, etc.

• reduce the complexity of a pf ruleset and also make maintaining a

ruleset much easier.

• Naming: start with [a-zA-Z] and may contain [a-zA-Z0-9_]

• eg.

 ext_if = "fxp0“

 block in on $ext_if from any to any

• Macro of macros

 host1 = "192.168.1.1“

 host2 = "192.168.1.2“

 all_hosts = "{" $host1 $host2 "}"

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

12

PF in FreeBSD – Tables (1)

 Tables

• used to hold a group of IPv4 and/or IPv6 addresses

 hostname, inteface name, and keyword self

• Lookups against a table are very fast and consume less memory and

processor time than lists

• Two attributes

 persist: keep the table in memory even when no rules refer to it

 const: cannot be changed once the table is created

• eg.

 table <private> const { 10/8, 172.16/12, 192.168/16 }

 table <badhosts> persist

 block on fxp0 from { <private>, <badhosts> } to any

 table <spam> persist file "/etc/spammers" file "/etc/openrelays"

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

13

PF in FreeBSD – Tables (2)

 Tables – Address Matching

• An address lookup against a table will return the most narrowly

matching entry

• eg.

 table <goodguys> { 172.16.0.0/16, !172.16.1.0/24, 172.16.1.100 }

 block in on dc0

 pass in on dc0 from <goodguys>

• Result

 172.16.50.5 passed

 172.16.1.25 blocked

 172.16.1.100 passed

 10.1.4.55 blocked

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

14

PF in FreeBSD – Options

 Format

• control pf's operation, and specified in pf.conf using “set”

 Format: set option [sub-ops] value

 Options

• loginterface – collect packets and gather byte count statistics

• ruleset-optimization – ruleset optimizer

 none, basic, profile

 basic: remove dups, remove subs, combine into a table, re-order rules

• block-policy – default behavior for blocked packets

 drop, return

• skip on {ifname} – interfaces for which packets should not be filtered.

 eg. set skip on lo0

• timeout, limit, optimization, state-policy, hostid, require-order,

fingerprints, debug

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

15

PF in FreeBSD – Normalization

 Traffic Normalization

• IP fragment reassembly

 scrub in all

• Default behavior

 Fragments are buffered until they form a complete packet, and only the

completed packet is passed on to the filter.

Advantage: filter rules have to deal only with complete packets, and

ignore fragments.

Disadvantage: caching fragments is the additional memory cost

 The full reassembly method is the only method that currently works

with NAT.

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

16

PF in FreeBSD – Translation (1)

 Translation

• Modify either the source or destination address of the packets

• The translation engine

1. modifies the specified address and/or port in the packet

2. passes it to the packet filter for evaluation

• Filter rules filter based on the translated address and port number

• Packets passed directly if the pass modifier is given in the rule

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

17

PF in FreeBSD – Translation (2)

 Various types of translation

• binat – bidirectional mapping between an external IP netblock and

an internal IP netblock

 binat on $ext_if from 10.1.2.150 to any -> 140.113.235.123

 binat on $ext_if from 192.168.1.0/28 to any -> 140.113.24.0/28

• nat – IP addresses are to be changes as the packet traverses the given

interface

 no nat on $ext_if from 192.168.123.234 to any

 nat pass on $ext_if from 192.168.123.0/24 to any -> 140.113.235.21

• rdr – redirect packets to another destination and possibly different

port

 no rdr on $int_if proto tcp from any to $server port 80

 rdr on $int_if proto tcp from any to any port 80 -> 127.0.0.1 port 80

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

18

PF in FreeBSD – Translation (3)

 Evaluation

• Evaluation order of translation rules depends on the type

 binat rules first, and then either rdr rules for inbound packets or nat

rules for outbound packets

• Rules of the same type are evaluated in the order of appearing in the

ruleset

• The first matching rule decides what action is taken

• If no rule matches the packet, it is passed to the filter unmodified

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

19

PF in FreeBSD – Packet Filtering (1)

 pf has the ability to block and pass packets based on

• layer 3(ip, ip6) and layer 4(icmp, icmp6, tcp, udp) headers

 Each packet processed by the filter

• The filter rules are evaluated in sequential order

• The last matching rule decides what action is taken

• If no rule matches the packet, the default action is to pass

 Format

• {pass | block [drop | return]} [in | out] [log] [quick]

[on ifname] … {hosts} …

• The simplest to block everything by default: specify the first filter rule

 block all

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

20

PF in FreeBSD – Packet Filtering (2)

 States

• If the packet is passed, state is created unless the no state is specified

 The first time a packet matches pass, a state entry is created

 For subsequent packets, the filter checks whether each matches any state

 For TCP, also check its sequence numbers

 pf knows how to match ICMP replies to states

– Port unreachable for UDP

– ICMP echo reply for echo request

– …

 Stores in BST for efficiency

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

21

PF in FreeBSD – Packet Filtering (3)

 Parameters

• in | out – apply to imcoming or outgoing packets

• log - generate log messages to pflog (pflog0, /var/log/pflog)

Default: the packet that establishes the state is logged

• quick – the rule is considered the last matching rule

• on ifname – apply only on the particular interface

• inet | inet6 – apply only on this address family

• proto {tcp | udp | icmp | icmp6} – apply only on this protocol

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

22

PF in FreeBSD – Packet Filtering (4)

 Parameters

• hosts : { from host [port [op] #] to host [port [op] #] | all }

• host:

 host can be specified in CIDR notation, hostnames, interface names,

table, or keywords any, self, …

Hostnames are translated to address(es) at ruleset load time.

When the address of an interface or hostname changes, the ruleset must

be reloaded

When interface name is surrounded by (), the rule is automatically

updated whenever the interface changes its address

• port:

 ops: unary(=, !=, <, <=, >, >=), and binary(:, ><, <>)

• eg.

 block in all

 pass in proto tcp from any port < 1024 to self port 33333:44444

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

23

PF in FreeBSD – Packet Filtering (5)

 Parameters

• flags {<a>/ | any} – only apply to TCP packets

 Flags: (F)IN, (S)YN, (R)ST, (P)USH, (A)CK, (U)RG, (E)CE, C(W)R

 Check flags listed in , and see if the flags (not) in <a> is (not) set

 eg.

– flags S/S : check SYN is set, ignore others.

– flags S/SA: check SYN is set and ACK is unset., ignore others

Default flags S/SA for TCP

• icmp-type type code code

• icmp6-type type code code

Apply to ICMP and ICMP6 packets

• label – for per-rule statistics

• {tag | tagged} string

 tag by nat, rdr, or binat, and identify by filter rules.

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

24

PF in FreeBSD – Load Balance

 Load balance

• For nat and rdr rules

• eg.

 rdr on $ext_if proto tcp from any to any port 80 \

-> {10.1.2.155, 10.1.2.160, 10.1.2.161} round-robin

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

25

PF in FreeBSD – Security

 For security consideration

• state modulation

 Create a high quality random sequence number

Applying modulate state parameter to a TCP connection

• syn proxy

 pf itself completes the handshake

Applying synproxy state parameter to a TCP connection

– Include modulate state

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

26

PF in FreeBSD – Stateful tracking

 Stateful tracking options

• keep state, modulate state, and synproxy state support these options

 keep state must be specidied explicitly to apply options to a rule

• eg.

 table <bad_hosts> persist

 block quick from <bad_hosts>

 pass in on $ext_if proto tcp to ($ext_if) port ssh keep state \

(max-src-conn-rate 5/30, overload <bad_hosts> flush global)

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

27

PF in FreeBSD – Blocking spoofed

 Blocking spoofed traffic

• antispoof for ifname

• antispoof for lo0

 block drop in on ! lo0 inet from 127.0.0.1/8 to any

 block drop in on ! lo0 inet6 from ::1 to any

• antispoof for wi0 inet (IP: 10.0.0.1, netmask 255.255.255.0)

 block drop in on ! wi0 inet from 10.0.0.0/24 to any

 block drop in inet from 10.0.0.1 to any

• Pitfall:

 Rules created by the antispoof interfere with packets sent over loopback

interfaces to local addresses. One should pass these explicitly.

 set skip on lo0

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

28

PF in FreeBSD – Anchors

 Besides the main ruleset, pf can load rulesets into anchor

attachment points

• An anchor is a container that can hold rules, address tables, and other

anchors

• The main ruleset is actually the default anchor

• An anchor can reference another anchor attachment point using

 nat-anchor

 rdr-anchor

 binat-anchor

 anchor

 load anchor <name> from <file>

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

29

PF in FreeBSD – Example

 Ex. # macro definitions

extdev='fxp0‘

server_ext=‘140.113.214.13’

options

set limit { states 10000, frags 5000 }

set loginterface $extdev

set block-policy drop

set skip on lo0

tables

table <badhosts> persist file “/etc/badhosts.list”

filtering rules

block in all

pass out all

antispoof for $extdev

block log in on $extdev proto tcp from any to any port {139, 445}

block log in on $extdev proto udp from any to any port {137, 138}

block on $extdev quick from <badhosts> to any

pass in on $extdev proto tcp from 140.113.0.0/16 to any port {139, 445}

pass in on $extdev proto udp from 140.113.0.0/16 to any port {137, 138}

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

30

PF in FreeBSD – Debug by pflog

 Enable pflog in /etc/rc.conf (pflog.ko loaded automatically)

• pflog_enable="YES"

 Log to pflog0 interface

 tcpdump -i pflog0

• pflog_logfile="/var/log/pflog"

 tcpdump -r /var/log/pflog

 Create firewall rules

• Default configuration rules

 pf_rules="/etc/pf.conf"

• Sample files

 /usr/share/examples/pf/*

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

31

NAT on FreeBSD (1)

 Setup

• Network topology

• configuration

• Advanced redirection

configuration

192.168.1.1

Web server

192.168.1.2

Ftp Server

192.168.1.101

PC1

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

32

NAT on FreeBSD (2)

 In /etc/rc.conf

ifconfig_fxp0="inet 140.113.235.4"

ifconfig_fxp1="inet 192.168.1.254/24"

defaultrouter="140.113.235.254"

gateway_enable="YES"

 In /etc/pf.conf

• nat

• rdr

• binat

macro definitions

extdev='fxp0‘

intranet='192.168.1.0/24‘

webserver=‘192.168.1.1’

ftpserver=‘192.168.1.2’

winxp=‘192.168.1.101’

server_int=‘192.168.1.88’

server_ext=‘140.113.235.13’

nat rules

nat on $extdev inet from $intranet to any -> $extdev

rdr on $extdev inet proto tcp to port 80 -> $webserver port 80

rdr on $extdev inet proto tcp to port 443 -> $webserver port 443

rdr on $extdev inet proto tcp to port 21 -> $ftpserver port 21

rdr on $extdev inet proto tcp to port 3389 -> $winxp port 3389

binat on $extdev inet from $server_int to any -> $server_ext

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

33

ALTQ: Alternate Queue – (1)

 Rebuild Kernel is needed

• http://www.freebsd.org/doc/handbook/firewalls-pf.html

• ALTQ related kernel options and supported devices

man 4 altq

http://www.freebsd.org/doc/handbook/firewalls-pf.html

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

34

ALTQ: Alternate Queue – (2)

 altq on dc0 cbq bandwidth 5Mb queue {std, http}

 queue std bandwidth 10% cbq(default)

 queue http bandwidth 60% priority 2 cbq(borrow) {employee,developer}

 queue developers bandwidth 75% cbq(borrow)

 queue employees bandwidth 15%

 block return out on dc0 inet all queue std

 pass out on dc0 inet proto tcp from $developerhosts to any port 80 queue

developers

 pass out on dc0 inet proto tcp from $employeehosts to any port 80 queue

employees

 pass out on dc0 inet proto tcp from any to any port 22

 pass out on dc0 inet proto tcp from any to any port 25

