DHCP & NAT

DHCP – Dynamic Host Configuration Protocol

DHCP Motivation

BOOTP

- Support sending extra information beyond an IP address to a client to enable customized configuration
- Effectively solve one of the major problems that administrators have with manual configuration

□ Problems of BOOTP

• BOOTP normally uses a static method of determining what IP address to assign to a device

Dynamic Host Configuration Protocol (DHCP)

- DHCP is an extension of the BOOTP. The first word describe the most important new capability added to BOOTP
 - > Assign IP dynamically
 - > Move away from static, permanent IP address assignment
- Compatible with BOOTP

DHCP introduction

DHCP

- Dynamic address assignment
 - > A pool of IP address is used to dynamically allocate addresses
 - > Still support static mapping of addresses
- Enable a DHCP client to "lease" a variety of network parameters
 - ➢ IP, netmask
 - Default router, DNS servers
 - > A system can connect to a network and obtain the necessary information dynamically
- □ Client-Server architecture
 - DHCP client broadcasts request for configuration info.
 - > UDP port 68
 - DHCP server reply on UDP port 67, including
 - > IP, netmask, DNS, router, IP lease time, etc.
- □ RFC
 - RFC 2131 Dynamic Host Configuration Protocol
 - RFC 2132 DHCP Options
- **Two main function of DHCP**
 - Provide a mechanism for assigning addresses
 - A method by which clients can request addresses and other configurations

DHCP Address Assignment

Address allocation mechanisms

- Provide flexibility for configuring addresses on different types of clients
- Three different address allocation mechanisms
 - ➤ Manual allocation
 - IP address is pre-allocated to a single device
 - Automatic allocation
 - Assign an IP address permanently to a device
 - Dynamic allocation
 - Assign an IP address from a pool for a limited period of time

Manual allocation

- Equivalent to the method BOOTP used
- For servers and routers
- Administrative benefit

Dynamic allocation

□ Benefits for dynamic allocation

- Automation
 - ➢ No intervention for an administrator
- Centralized management
 - An administrator can easily look to see which devices are using which addresses
- Address reuse and sharing
- Portability and universality
 - > Do NOT require DHCP server know the identify of each client
 - Support mobile devices
- Conflict avoidance

DHCP Leases

Dynamic address allocation is by far the most popular

• Hosts are said to "lease" an address instead of "own" one

□ DHCP lease length policy

- A trade-off between stability and allocation efficiency
- The primary benefit of using long lease is that the addresses of hosts are relatively stable
 - > Servers
- The main drawback of using long leases is to increase the amount of time that an IP can be reused
- □ Assigning lease length by client type
 - Use long lease for desktop computers
 - Use short lease for mobile devices
- □ Factoring lease renewal into lease length selection

DHCP Lease "Life Cycle"

Life cycle

- Allocation
- Reallocation
- Normal operation
- Renewal
- Rebinding
- Release

DHCP Lease Address Pools

□ Each DHCP server maintains a set of IP addresses

- Use to allocate leases to clients
 - Most of clients are equals
 - A range of addresses is normally handled as a single group defined for a particular network

DHCP Protocol (1)

DHCP Discover

- Broadcasted by client to find available server
- Client can request its last-known IP, but the server can ignore it

DHCP Offer

- Server find IP for client based on clients hardware address (MAC)
- DHCP Request
 - Client request the IP it want to the server.
- DHCP Acknowledge
 - Server acknowledges the client, admit him to use the requested IP

※ Question

• Why not use the IP after DHCP offer?

DHCP Protocol (2)

DHCP Inform

- Request more information than the server sent
- Repeat data for a particular application

> ex. browsers request web proxy settings from server

• It does not refresh the IP expiry time in server's database

DHCP Release

- Client send this request to server to releases the IP, and the client will un-configure this IP
- Not mandatory

DHCP server on FreeBSD (1)

□ Kernel support

device bpf (FreeBSD $5.x\uparrow$)

pseudo-device bpf (FreeBSD $4.x\downarrow$)

□ Install DHCP server

- /usr/ports/net/isc-dhcp44-server/
- pkg install isc-dhcp44-server

□ Enable DHCP server in /etc/rc.conf

dhcpd_enable="YES"
dhcpd_flags="-q"
dhcpd_conf="/usr/local/etc/dhcpd.conf"
dhcpd_ifaces=""
dhcpd_withumask="022"

DHCP server on FreeBSD (2)

Option definitions

option domain-name "cs.nctu.edu.tw"; option domain-name-servers 140.113.235.107, 140.113.1.1;

default-lease-time 600; max-lease-time 7200; ddns-update-style none;

log-facility local7;

/etc/syslogd.conf /etc/newsyslog.conf

DHCP server on FreeBSD (3)

Subnet definition

subnet 192.168.1.0 netmask 255.255.255.0 { range 192.168.1.101 192.168.1.200; option domain-name "cs.nctu.edu.tw"; option routers 192.168.1.254; option broadcast-address 192.168.1.255; option domain-name-servers 140.113.17.5, 140.113.1.1; default-lease-time 3600; max-lease-time 21600;

☐ Host definition

```
host fantasia {
hardware ethernet 08:00:07:26:c0:a5;
fixed-address 192.168.1.30;
```

```
host denyClient {
hardware ethernet 00:07:95:fd:12:13;
deny booting;
```

DHCP server on FreeBSD (4)

□ Important files

- /usr/local/sbin/dhcpd
- /usr/local/etc/dhcpd.conf
- /var/db/dhcpd.leases (leases issued)
- /usr/local/etc/rc.d/isc-dhcpd

NAT – Network Address Translation

IP address crisis

□ IP address crisis

- Run out of class B address
 - > The most desirable ones for moderately large organizations
- IP address were being allocated on a FCFS
 - ➢ With no locality of reference

Solutions

- Short term
 - Subnetting and CIDR (classless inter-domain routing)
 - NAT (network address translation)
- Long term
 - ≻ IPv6

Network Address Translation (NAT)

Some important characteristics of how most organizations use the internet

- Most hosts are client
- Few hosts access the internet simultaneously
- Internet communications are routed

Network Address Translation

- RFC 1631, in May 1994
- A basic implementation of NAT involves
 - Using one of the private addresses for local networks
 - > Assigned one or more public IP addresses
- The word 'translator' refers to the device that implements NAT

Private Address Space

☐ Private addresses space defined by RFC1918

- 24-bit block (Class A)
 - > 10.0.0/8
- 20-bit block (16 contiguous Class B)
 ▶ 172.16.0.0/12 ~ 172.31.0.0/12
- 16-bit block (256 contiguous Class C)
 ▶ 192.168.0.0/16 ~ 192.168.255.0/16

Operation consideration

• Router should set up filters for both inbound and outbound private network traffic

Network Address Translation (NAT)

 $\Box \quad \text{What is NAT?}$

- Network Address Translation
- Re-write the source and/or destination addresses of IP packets when they pass through a router or firewall
- What can be re-written?
 - Source/destination IPs
 - Source/destination ports
- ☐ What can NAT do?
 - Solve the IPv4 address shortage. (the most common purpose)
 - Kind of firewall (security)
 - Load balancing
 - Fail over (for service requiring high availability)

NAT Terminology

NAT Address Mappings

D Each time a NAT router encounters an IP datagram

- It must translate addresses
- BUT, how does it know what to translate, and what to use for the translated addresses

Translation table

- Maps the inside local address to the inside global address
- Also contains mappings between outside global address and outside local address for inbound translations

□ Two address mappings

- Static mappings
 - > Allow the inside host with an inside local address to always use a inside global address
- Dynamic mappings
 - > Allow a pool of inside global addresses to be shared by a large number of inside hosts

NAT Unidirectional Operation

□ NAT Unidirectional Operation

- Traditional/Outbound operation
- The original variety of NAT in RFC 1631
 - The simplest NAT
 - The client/server request/response communication would sent from the inside to outside network

NAT Bidirectional Operation

□ NAT Bidirectional Operation

- Two-Way/Inbound operation
- A host on the outside network initiate a transaction with one on the inside

□ The problem with inbound NAT

- NAT is inherently asymmetric
 - The outside network does not know the private addresses of the inside network
 - > Hidden addresses are not routable
 - \succ The outbound hosts DO NOT know the identity of the NAT router
 - > NAT mapping table

NAT Bidirectional Operation

$\hfill\square$ Two methods to resolve the hidden address problem

- Static mapping
- DNS

> RFC 2694, DNS extensions to NAT

$\hfill\square$ The basic process is as follows

- The outside host sends a DNS request using the name of the private host
- The DNS server for the internal network resolves the name into an inside local address
- The inside local address is passed to NAT and used to create a dynamic mapping
- DNS server sends back the name resolution with the inside global address

NAT Bidirectional Operation

NAT Port-Based Operation

□ NAT Port-Based Operation

- Overloaded operation
- Network Address Port Translation (NAPT)/Port Address Translation (PAT)
- Both traditional NAT and bidirectional NAT work by swapping inside network and outside network addresses
 - One-to-one mapping between inside local address and inside global address
 - Use dynamic address assignment to allow a large number of private hosts to share a small number of registered public addresses
- Using ports to multiplex private addresses
 - Also translate port addresses
 - Allow 250 hosts on the private network to use only 20 IP address
 - Overloading of an inside global address

NAT Port-Based Operation

NAT Port-Based Operation

□ NAT example:

NAT mapping table

NAT Overlapping Operation

□ NAT Overlapping Operation

- Twice NAT Operation
- The previous three versions of NAT are normally used to connect a network using private, non-routable addresses to the public internet
 - > No overlap between the address spaces of the inside and outside network

□ Cases with overlapping private and public address blocks

- Private network to private network connections
- Invalid assignment of public address space to private network
- □ Dealing with overlapping blocks by using NAT twice
 - Translate both the source and destination address on each transition
 - Rely on use of the DNS
 - Let the inside network send requests to the overlapping network in a way that can be uniquely identified

NAT Overlapping Operation

- □ A client, 18.0.0.18, wants to send a request to the server <u>www.twicenat.mit.edu</u>, 18.1.2.3.
 - 18.0.0.18 sends a DNS request
 - NAT router intercepts this DNS request
 - > Consult its tables to find a special mapping for this outside host
 - NAT router returns 172.16.44.55 to the source client

NAT Compatibility Issues

- It is NOT possible for NAT to be completely transparent to the hosts that use it
 - ICMP Manipulations

- Applications that embed IP address
 FTP
- Additional issues with port translation
 - > The issues applying to addresses now apply to ports as well
- Problems with IPSec

SNAT

□ SNAT & DNAT

- S: Source D: Destination
- SNAT
 - > Rewrite the source IP and/or Port.
 - > The rewritten packet looks like one sent by the NAT server.

DNAT

- DNAT
 - > Rewrite the destination IP and/or Port.
 - The rewritten packet will be redirect to another IP address when it pass through NAT server.

• Both SNAT and DNAT are usually used together in coordination for two-way communication.

NAT on FreeBSD (1)

NAT on FreeBSD (2)

□ IP configuration (in /etc/rc.conf)

ifconfig_fxp0="inet 140.113.235.4 netmask 255.255.255.0 media autoselect" ifconfig_fxp1="inet 192.168.1.254 netmask 255.255.255.0 media autoselect" defaultrouter="140.113.235.254"

□ Enable NAT

- Here we use Packet Filter (PF) as our NAT server
- Configuration file: /etc/pf.conf

➢ nat	# macro definitions
➢ rdr	extdev='fxp0'
➢ binat	intranet='192.168.1.0/24'
	webserver='192.168.1.1'
	ftpserver='192.168.1.2'
	pc1='192.168.1.101'
	# nat rules
	nat on \$extdev inet from \$intranet to any -> \$extdev
	rdr on \$extdev inet proto tcp to port 80 -> \$webserver port 80
	rdr on \$extdev inet proto tcp to port 443 -> \$webserver port 443
	rdr on \$extdev inet proto tcp to port 21 -> \$ftpserver port 21

NAT on FreeBSD (3)

macro definitions
extdev='fxp0'
intranet='192.168.219.0/24'
winxp='192.168.219.1'
server_int='192.168.219.2'
server_ext='140.113.214.13'

nat rules
nat on \$extdev inet from \$intranet to any -> \$extdev
rdr on \$extdev inet proto tcp to port 3389 -> \$winxp port 3389
binat on \$extdev inet from \$server_int to any -> \$server_ext