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Abstract

Visual data upsampling has been an important research
topic for improving the perceptual quality and benefiting
various computer vision applications. In recent years, we
have witnessed remarkable progresses brought by the re-
naissance of deep learning techniques for video or image
super-resolution. However, most existing methods focus on
advancing super-resolution at either spatial or temporal di-
rection, i.e, to increase the spatial resolution or the video
frame rate. In this paper, we instead turn to discuss both
directions jointly and tackle the spatiotemporal upsampling
problem. Our method is based on an important observation
that: even the direct cascade of prior research in spatial
and temporal super-resolution can achieve the spatiotempo-
ral upsampling, changing orders for combining them would
lead to results with a complementary property. Thus, we
propose a dual-stream fusion network to adaptively fuse the
intermediate results produced by two spatiotemporal up-
sampling streams, where the first stream applies the spatial
super-resolution followed by the temporal super-resolution,
while the second one is with the reverse order of cascade.
Extensive experiments verify the efficacy of the proposed
method against several baselines. Moreover, we investigate
various spatial and temporal upsampling methods as the
basis in our two-stream model and demonstrate the flexibil-
ity with wide applicability of the proposed framework.

1. Introduction
Videos have been widely used to record memorable mo-

ments and entertainment in our daily life. Along with the
advance of optical sensors and camera technology, the sen-
sor resolution and video frame rate have become higher and
higher to provide a better visual quality. However, when
watching old film footage or videos made several years
ago, one may easily experience unpleasant artifacts, such
as blurry and low-resolution blocks, on contemporary dis-
plays. Hence, it is desired to increase the spatial resolution
and the frame rate to achieve better viewing experience.

There are dozens of studies aiming at improving the vi-

sual quality of a video through increasing the spatial or
temporal frequency. For example, video frame interpola-
tion methods increase the frame rate (i.e., temporal fre-
quency) of a video by synthesizing intermediate frames be-
tween two consecutive frames. On the other hand, image
super-resolution (SR) methods increase the spatial resolu-
tion (i.e. spatial frequency) of an image by reconstructing
a high-resolution (HR) version of its low-resolution (LR)
counterpart, such that the resultant image looks sharper and
more visually pleasing. Although image super-resolution
methods can be applied to a video sequence in a frame-by-
frame manner, the temporal coherence is left unexploited.
Therefore, video super-resolution approaches take multiple
LR frames into account to generate temporally consistent
HR video frames. Nevertheless, both video frame interpo-
lation and image/video super-resolution methods target to
increase the frequency of videos along one of the directions
(e.g., either temporal or spatial).

In this paper, we take one step further to address the
spatiotemporal upsampling problem, where the goal is to
simultaneously upsample a video in both the spatial and
temporal domains. For simplicity, we consider upscaling
both the spatial and temporal resolutions by 2×. Given a
video sequence with N LR frames, our goal is to generate
a 2× spatial resolution HR video with 2N − 1 frames. The
spatiotemporal upsampling can be achieved through a cas-
cade of spatial upsampling and temporal upsampling, and
vice versa. In this work, we analyze these two approaches
(i.e., spatial upsampling followed by temporal upsampling,
and temporal upsampling followed by spatial upsampling)
and discover their complementary property on complex mo-
tion area. We then propose a dual-stream fusion frame-
work to adaptively merge and refine the results from the two
spatiotemporal upsampling streams. Our method takes ad-
vantage from both streams to reconstruct intermediate HR
frames with better visual quality. In particular, the pro-
posed method can be easily integrated with any off-the-shelf
CNN-based spatial and temporal upsampling models. Fi-
nally, we demonstrate that the proposed method performs
favorably against the baselines and its variants.
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2. Related work

The spatial and temporal upsampling approaches have
been widely studied for several decades. Here we focus our
discussion on recent learning-based algorithms.

2.1. Spatial Upsampling

Several single-image super-resolution methods based on
deep CNNs [6] have been proposed in recent years. A large
amount of effort focuses on learning effective deep features
by exploring advanced network architectures, including the
residual learning [14, 22], recursive layers [15], progressive
upsampling [17, 18], dense connections [40], channel at-
tention [47, 5], and non-local module [23]. Recent methods
explore orthogonal directions on improving the perceptual
quality [20, 41], handling multiple degradation in a single
model [46], and unsupervised learning [3, 45, 48].

With moving further from image to video data, video
super-resolution aims to reconstruct a temporally consistent
HR video from an LR input video. Huang et al. learn a bidi-
rectional recurrent network [9] to directly predict the HR
video. Several recent approaches [13, 4, 38, 32] rely on op-
tical flow to compensate the motion in the input video. An-
other group of methods implicitly compensate motion with
the dynamic filter network [11], deformable alignment [39],
and 3D convolution [21].

2.2. Temporal Upsampling

Temporal upsampling, or video frame interpolation,
aims to synthesize intermediate frames for increasing the
temporal resolution of an input video while maintaining the
temporal smoothness simultaneously. With the advance-
ment of learning-based optical flow estimation methods [7,
10, 19, 30], recent approaches learn to estimate optical
flow tailored for video frame interpolation [25, 12, 44, 43].
Niklaus et al. [27] adopt bi-directional flows to warp both
images and contextual features for synthesizing the interme-
diate frame. While flow-based methods are able to handle
large motion, the predicted frames often contain severe vi-
sual artifacts when the estimated flows are not accurate. On
the other hand, the kernel-based method [28, 29] learns lo-
cal adaptive kernels to blend the neighboring pixels for pre-
diction. However, the memory footprint and computational
load of the kernel-based approaches are too heavy for high-
resolution input videos. Recently, Bao et al. [2] propose
an adaptive warping layer to integrate the optical flow with
local adaptive kernels. By using optical flow to warp in-
put frames and then synthesizing pixels with local adaptive
kernels, the model can handle large motion effectively and
use smaller kernel sizes to reduce the memory usage. This
approach is later extended to incorporate the depth predic-
tion to explicitly detect occlusion [1] when synthesizing the
intermediate frames.

2.3. Spatiotemporal Upsampling

Unlike spatial or temporal upsampling, spatiotemporal
upsampling is a more challenging task but attracts less at-
tention in the field. Early approaches [35, 26] use multiple
low-resolution and low frame-rate videos of the same scene
to reconstruct a high-resolution and high-frame-rate video.
Shahar et al. [33] exploit the recurrences of space-time
patches to propose an example-based method for spatiotem-
poral upsampling from a single input video. The CDCA
method [34] learns convolutional auto-encoders to map the
LR video to HR video. However, the mapping requires a
pre-defined tricubic interpolation, which may not be able to
reconstruct the missing high-frequency details in both spa-
tial and temporal domains. Recently, Kim et al. [16] pro-
pose the FISR model, which uses multi-scale and temporal
regularization to upscale the spatial and temporal resolu-
tions of videos from 2K 30fps to 4K 60fps. Instead of intro-
ducing a brand-new architecture for realizing the spatiotem-
poral upsampling, we well utilize the power of existing spa-
tial upsampling approaches and the temporal ones for build-
ing our spatiotemporal super-resolution framework, which
shows favorable performance against FISR.

3. Proposed Method

Our goal here is to simultaneously upsample the spatial
and temporal resolutions of a low-resolution low frame-rate
video. To this end, we first analyze two baseline architec-
tures by concatenating the spatial upsampling sub-network
with the temporal upsampling sub-network, and vice versa
(i.e., different orders of these two sub-networks for cas-
cade). We discover the complementary property of the two
baseline approaches, where one performs well on handling
large motion and the other reconstructs finer details. Then,
we propose a unified dual-stream fusion framework to adap-
tively merge their results for a better prediction. As shown
in Fig. 1, the proposed framework consists of the following
components: 1) a spatiotemporal upsampling module, 2) a
fusion module, and 3) a refinement module. In the follow-
ing, we introduce the function of each component as well as
the loss functions for training our model.

3.1. Spatiotemporal Upsampling Module

Given two LR video frames L(t−1) and L(t+1) at times-
tamp t−1 and t+1, the spatiotemporal upsampling module
generates three consecutive HR frames, Ĥ(t−1), Ĥ(t), and
Ĥ(t+1). We start with two basic upsampling components:
a spatial upsampling sub-network MS , and a temporal up-
sampling sub-network MT . The MS subnetwork takes a
single LR frame L as input and generates a HR frame:

Ĥ = MS(L). (1)
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Figure 1: Overview of the proposed dual-stream fusion framework. Our spatiotemporal upsampling framework consists
of three modules: (1) a spatiotemporal upsampling module, which generates two HR intermediate frames, Ĥ(t)

S→T and Ĥ
(t)
T→S ,

from the LR input frames, L(t−1) and L(t+1), (2) a fusion module where the fusion network F predicts two blending masks
to adaptively merge Ĥ

(t)
S→T and Ĥ

(t)
T→S into Ĥ

(t)
F , and (3) a refinement module R that refines Ĥ(t)

F with a residual learning
scheme and generates the final prediction Ĥ

(t)
R . In particular, the sptaiotemporal upsampling module is composed of two

basic upsampling streams, where the orders of cascading spatial upsampling sub-network MS and temporal upsampling
sub-network MT are opposite across streams.

On the other hand, the MT subnetwork generates an inter-
mediate frame from the two input frames, I(t−1) and I(t+1):

Î(t) = MT (I
(t−1), I(t+1)). (2)

where I(t−1) and I(t+1) are the input temporal adjacent
frames of arbitrary resolution, and Î(t) is the synthesized
intermediate frame. The output HR frames Ĥ(t−1) and
Ĥ(t+1) can be directly generated from the spatial upsam-
pling sub-network, where Ĥ(t−1) = MS(L

(t−1)) and
Ĥ(t+1) = MS(L

(t+1)). To generate the intermediate HR
frame Ĥ(t), we explore the following two strategies.

Spatial upsampling followed by temporal upsampling
MS→T. We first generate the HR frames Ĥ(t−1) and
Ĥ(t+1) with the spatial upsampling sub-network MS and
then synthesize the intermediate HR frame with the tempo-
ral upsampling sub-network MT :

Ĥ
(t)
S→T = MS→T (L

(t−1), L(t+1)), (3)

= MT (MS(L
(t−1)),MS(L

(t+1))), (4)

= MT (Ĥ
(t−1), Ĥ(t+1)). (5)

Temporal upsampling followed by spatial upsampling
MT→S. We first synthesize the intermediate LR frame L̂(t)

with the MT sub-network and then generate the intermedi-
ate HR frame with the MS sub-network:

Ĥ
(t)
T→S = MT→S(L

(t−1), L(t+1)), (6)

= MS(MT (L
(t−1), L(t+1))), (7)

= MS(L̂
(t)). (8)

The two spatiotemporal upsampling steams MS→T and
MT→S use the same spatial and temporal upsampling sub-
networks but apply them in a different order. In our ex-
periments, we discover that the two streams show comple-
mentary results for spatiotemporal upsampling, where the
stream MS→T generates finer details on areas with smaller
motion, while the stream MT→S provides better reconstruc-
tion on areas with larger motion. More analyses and discus-
sions are provided in Section 4.2.

3.2. Fusion Module

Due to the complementary property of the two spa-
tiotemporal upsampling strategies, we propose a unified
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framework to take advantages from both streams. To this
end, we train a fusion network F to blend the prediction re-
sults from MS→T and MT→S . The fusion network learns
to estimate two blending masks, M̂T→S and M̂S→T , and
fuse Ĥ

(t)
T→S and Ĥ

(t)
S→T by:

Ĥ
(t)
F = F(Ĥ(t)

S→T , Ĥ
(t)
T→S),

= M̂S→T � Ĥ
(t)
S→T + M̂T→S � Ĥ

(t)
T→S , (9)

where MS→T ∈ [0, 1], MT→S ∈ [0, 1], and � denotes the
element-wise multiplication. Note that here we can con-
strain the two masks to be complementary with each other,
where M̂S→T = 1 − M̂T→S . In this way, the prediction
Ĥ

(t)
F is a simple linear interpolation of Ĥ(t)

T→S and Ĥ
(t)
S→T .

On the other hand, without such constraint (i.e., M̂S→T and
M̂T→S are separate masks), each pixel is able to have one
extra degree of freedom, and the prediction Ĥ

(t)
F becomes

a linear combination of Ĥ(t)
T→S and Ĥ

(t)
S→T . We discuss the

performance of these two design choices in our fusion net-
work in Section 4.2.

3.3. Refinement Module

As the prediction Ĥ
(t)
F is a linear combination of two es-

timated frames (i.e., Ĥ(t)
T→S and Ĥ

(t)
S→T ), the output may

inevitably look blurry and overly smoothed. In order to
overcome this issue, we learn a small refinement network
R to further enhance the details in the predicted frame. As
shown in Fig. 1, the final output frame is generated via a
residual learning scheme:

Ĥ
(t)
R = R(Ĥ(t)

F ) + Ĥ
(t)
F . (10)

3.4. Objective Functions

We optimize the following losses to train the proposed
model.

Reconstruction losses. We adopt the L1 loss between the
ground-truth frame H(t) and the intermediate predictions
Ĥ

(t)
S→T , Ĥ(t)

T→S , merged frame Ĥ
(t)
F , and final prediction

Ĥ
(t)
R :

LMS→T
=

∥∥∥Ĥ(t)
S→T −H(t)

∥∥∥
1
, (11)

LMT→S
=

∥∥∥Ĥ(t)
T→S −H(t)

∥∥∥
1
, (12)

LF =
∥∥∥Ĥ(t)

F −H(t)
∥∥∥
1
, (13)

LR =
∥∥∥Ĥ(t)

R −H(t)
∥∥∥
1
, (14)

whereLMS→T
is applied to the output of the stream MS→T ,

LMT→S
is applied to the output of the stream MT→S , LF

is applied to the output of the fusion module F, and LR is
applied to the output of the refinement module R.

Auxiliary losses. To stabilize the network training, we also
enforce the following losses to the intermediate images that
are generated during the two spatiotemporal upsampling
streams:

LMS
=

∥∥∥Ĥ(t−1) −H(t−1)
∥∥∥
1
+

∥∥∥Ĥ(t+1) −H(t+1)
∥∥∥
1
,

(15)

LMT
=

∥∥∥L̂(t) − L(t)
∥∥∥
1
, (16)

where Ĥ(t−1) and Ĥ(t+1) are the upsampled frames from
the spatial upsampling sub-network in the stream MS→T ,
and L̂(t) is the intermediate LR frame from the temporal
upsampling sub-network in the stream MT→S .

Overall loss. The overall objective to optimize our pro-
posed spatiotemporal upsampling framework is a summa-
tion of the aforementioned losses:

Ltotal = LMS→T
+ LMT→S

+ LF + LR + LMS
+ LMT

.
(17)

We apply equal weights for all the loss functions to avoid
any extra hyper-parameter tuning.

3.5. Implementation Details

Network architecture. We adopt state-of-the-art image
super-resolution and video frame interpolation models as
our basic spatial and temporal upsampling sub-networks,
respectively (described in Section 4). Our fusion network
F uses a U-Net architecture [31], which contains five sym-
metric downsampling and upsampling convolution layers
with skip connections. The refinement network R has three
residual blocks without any downsampling and upsampling
layers. The details for all the network architecture are pro-
vided in the supplementary materials.

Training procedure. We adopt the following procedure for
training:

1. Pre-train the basic upsampling sub-networks MS and
MT independently.

2. Freeze the basic upsampling sub-network MS and
MT , and train the fusion network F and refinement
network R by optimizing the reconstruction losses LF

and LR.

3. Jointly fine-tune all the (sub-)networks in an end-to-
end manner by optimizing all the reconstruction losses
and auxiliary losses.

Such a training procedure makes the entire model converge
stably and achieve better results. The batch size is set to 24.
We use the RAdam [24] optimizer with initial learning rate
of 5e− 5 in all three training stages.
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4. Experimental Results
We first introduce the datasets and evaluation metrics

used in our experiments. We then provide quantitative and
qualitative comparisons, as well as the ablation study be-
tween the proposed model and its variants.

4.1. Datasets and Evaluation Metrics

Datasets. Three commonly used video datasets are consid-
ered for both training and evaluation.

• Vimeo-90K: The Vimeo-90K [44] dataset contains
51312 triplets for training and 3782 triplets for eval-
uation, where each triplet contains three continuous
frames of 448× 256 pixels.

• UCF101: The UCF101 dataset [37] contains videos
with a wide variety of human actions and camera mo-
tion. We randomly select 200 triplets from the full
training set for our training, and use the 379-triplet
test set, which is commonly adopted for evaluating the
frame interpolation methods [25, 2, 1]. Each video
frame is resized to 256× 256 pixels.

• FISR dataset: The FISR dataset [16] contains 10
test videos with diverse objects and camera mo-
tions. Each video has five temporally-subsampled
frames of 1920 × 1080 pixels as the input (i.e.,
{L(t)|t = 1, 3, 5, 7, 9}) and the corresponding seven
consecutive frames of 3840 × 2160 pixels as the
ground-truth for spatiotemporal upsampling (i.e.,
{H(t)|t = 2, 3, · · · , 8}). This dataset is more chal-
lenging due to the high spatial resolution and large mo-
tion displacement.

In all our experiments, we consider upsampling the spa-
tial resolution for 2× and increasing the temporal frame rate
for 2×. For each triplet in Vimeo-90K and UCF-101, we
downsample the spatial resolution of the first and the third
frames by 2× as the input. Then the the model performance
is evaluated on the second frame of each triplet.

Metrics. PSNR and SSIM [42] are adopted for quantitative
evaluation, which are widely used in low-level vision tasks.

4.2. Quantitative and Qualitative Evaluations

Complementary property of two spatiotemporal upsam-
pling streams. We first demonstrate the complementary
property of the two baseline spatiotemporal upsampling
streams: MS→T and MT→S . Here we use the ESPCN [36]
and SuperSloMo [12] as the spatial and temporal upsam-
pling sub-networks, respectively. In Fig. 2, we compare
the predicted intermediate frames, Ĥ(t)

S→T (generated from
MS→T ) and Ĥ

(t)
T→S (generated from MT→S), and show

Overlayed LR Inputs
Overlayed
LR Inputs Ĥ

(t)
S→T

Error map
of Ĥ(t)

S→T Ĥ
(t)
T→S

Error map
of Ĥ(t)

T→S

Ground-
truth HR

Figure 2: Complementary property of the spatiotempo-
ral upsampling methods. We visualize the predicted inter-
mediate frames Ĥ(t)

S→T and Ĥ
(t)
T→S , the ground-truth frame

H(t), and the error maps of the two predictions w.r.t the
ground-truth. The stream MS→T (i.e., spatial upsampling
followed by temporal upsampling) generates finer details
but shows larger errors when input frames have complex
motion. On the other hand, the stream MT→S (i.e., tempo-
ral upsampling followed by spatial upsampling) performs
well with large motion but cannot reconstruct fine details.

their error maps with respect to the ground-truth frame. We
observe that Ĥ(t)

S→T has finer details in areas with smaller
motion, while Ĥ

(t)
T→S provides better reconstruction in ar-

eas with larger motion. Such an observation guides us to
develop the proposed framework for utilizing the benefits
from both of the streams.

Analysis on the fusion module. As mentioned in Sec-
tion 3.2, our fusion module learns to predict two separate
masks or a single mask (i.e., having the complementary
constraint between two masks) for blending. Table 1 com-
pares the performance of these two design choices. First,
we observe that the predictions Ĥ(t)

F from the fusion mod-
ule are more accurate than both Ĥ

(t)
S→T and Ĥ

(t)
T→S as the

fusion module adaptively blends the pixels from which they
reconstruct well. Second, the two-mask fusion performs
much better than the one-mask fusion with only introduc-
ing 0.001% more parameters in the fusion network (i.e., the
only modification is the number of channels in the last layer
of the fusion network F). The two-mask fusion network
allows each pixel to have one extra degree-of-freedom for
blending, effectively increasing the solution space to find a
better reconstruction. Therefore, we choose the two-mask
fusion network in our framework. Fig. 3 shows the vi-
sual comparisons between the one-mask and two-mask de-
signs, while Fig. 4 visualizes the blending masks M̂S→T

and M̂T→S .

Analysis on the training procedure. In Table 2, we com-
pare the model performance in each stage of our training
procedure. While the stream MS→T (2nd row) typically
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Table 1: Quantitative comparisons on design choices for fusion network. Our fusion network learns to blend the inter-
mediate predictions, Ĥ(t)

S→T and Ĥ
(t)
T→S , leading to better reconstruction with respect to H(t) than both of the streams. The

two-mask fusion module further improves the accuracy by predicting the independent masks for the outputs of both streams.

Dataset Ĥ
(t)
S→T Ĥ

(t)
T→S One-mask Ĥ

(t)
F Two-mask Ĥ

(t)
F

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Vimeo-90K 31.17 0.9187 31.41 0.9179 32.03 0.9288 32.23 0.9313
UCF-101 30.87 0.9247 30.71 0.9251 31.23 0.9290 31.38 0.9308

Overlayed LR Inputs
Overlayed
LR Inputs Ĥ

(t)
S→T Ĥ

(t)
T→S

One-mask
Ĥ

(t)
F

Two-mask
Ĥ

(t)
F

Ground-
truth HR

29.02 dB 27.30 dB 29.19 dB 30.48 dB

22.24 dB 28.61 dB 28.74 dB 33.16 dB

Figure 3: Visual comparisons of the fusion network. The
fusion network F estimates blending masks to adaptively
fuse the predictions Ĥ

(t)
S→T and Ĥ

(t)
T→S . We show that the

two-mask design reconstructs more accurate details than the
one-mask variation.

Overlayed LR Inputs Ground-truth HR

[One-mask F] [Two-mask F]
Ĥ

(t)
S→T Ĥ

(t)
T→S Ĥ

(t)
S→T Ĥ

(t)
T→S

M̂S→T M̂T→S M̂S→T M̂T→S

Ĥ
(t)
F Ĥ

(t)
F

Figure 4: Visualization of the blending masks. The
one-mask fusion module predicts a single mask (i.e., un-
der the constraint M̂T→S + M̂S→T = 1), while the two-
mask fusion module only requires M̂T→S ∈ [0, 1] and
M̂S→T ∈ [0, 1], allowing each pixel to have one extra
degree-of-freedom for blending.

performs better than the stream MT→S (1st row), the fusion
module utilizes the prediction from both streams and leads
to better reconstruction with respect to the ground-truth (3rd

row). The refinement module further improves the accuracy
(4th row). Note that in the 3rd and 4th rows, the two streams
MS→T and MT→S are frozen with both fusion network F

Overlayed LR Inputs
Overlayed
LR Inputs

Setting
I

Setting
II

Setting
III

Setting
IV

Setting
V

Ground-
truth HR

22.88 dB 24.14 dB 24.43 dB 24.46 dB 26.86 dB

32.13 dB 31.27 dB 33.42 dB 33.63 dB 35.77 dB

26.97 dB 25.29 dB 27.13 dB 27.19 dB 29.69 dB

27.52 dB 26.03 dB 27.53 dB 27.53 dB 29.82 dB

Figure 5: Visual comparisons of results from different
training stages of the proposed framework. Please see
Table 2 for the specific setting of each model variant. PSNR
values are provided below the corresponding output frames.

and refinement network R being trained. The 3rd row is ac-
tually the intermediate result obtained from the output of
fusion network F. Finally, we jointly fine-tune the whole
pipeline to significantly boost the reconstruction accuracy
(5th rows). Fig. 5 compares the reconstructed frames at each
of the training stage. Our full pipeline with joint fine-tuning
obtains the sharper results with finer details.

Comparisons of different upsampling sub-networks. We
analyze the performance of the proposed framework by re-
placing the fundamental spatial and temporal upsampling
sub-networks with different backbones. For the spatial up-
sampling sub-network MS , we use the SAN [5], which is a
state-of-the-art single image super-resolution method, and
ESPCN [36], which is an efficient image super-resolution
model using the pixel shuffling. For the temporal upsam-
pling sub-network MT , we compare the state-of-the-art
video frame interpolation methods, DAIN [1] and Super-
SloMo [12]. For fair comparisons, we fix the spatial and
temporal upsampling sub-networks (i.e., use their off-the-
shelf pre-trained weights) and only update our fusion and
refinement networks. Table 4 shows the quantitative com-
parisons of different combinations on the Vimeo-90K and
UCF-101 test sets. In each row, we observe that our fusion
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Table 2: Quantitative comparisons on each training stage. Our framework starts with pre-training the baseline streams
MT→S and MS→T . Then, we freeze MT→S and MS→T to train the fusion network F and refinement network R. Finally,
we jointly fine-tune all the sub-networks end-to-end.

Setting Vimeo-90K UCF101
PSNR SSIM PSNR SSIM

I. MT→S (pre-trained) 31.41 0.9179 30.71 0.9251
II. MS→T (pre-trained) 31.17 0.9187 30.87 0.9247

III. MT→S (fixed) + MS→T (fixed) + F 32.23 0.9313 31.38 0.9308
IV. MT→S (fixed) + MS→T (fixed) + F + R 32.35 0.9326 31.45 0.9313
V. MT→S +MS→T + F+ R (jointly fine-tuned) 32.85 0.9401 31.54 0.9317

and refinement networks consistently improve the perfor-
mance, demonstrating the capability of our framework for
being integrated with existing spatial and temporal upsam-
pling methods. Several examples for the qualitative com-
parisons among different combinations of upsampling sub-
networks are provided in Fig. 6.

Table 3: Quantitative comparisons with the state-of-the-
art spatiotemporal upsampling method, FISR [16] and
STARnet [8]. The experiments are conducted on the test
sets of the FISR and Vimeo-90K datasets, and the perfor-
mance is evaluated on the spatiotemporal upsampling out-
put frames in RGB color space.

Spatiotemporal
Upsampling

FISR
dataset

Vimeo
-90K

PSNR SSIM PSNR SSIM

FISR 32.04 0.9241 25.09 0.7612
STARNet 31.84 0.9273 33.07 0.9418
Ours 33.27 0.9360 32.97 0.9423

Comparison to FISR and STARnet. We compare the pro-
posed method with the recently proposed state-of-the-art
spatiotemporal upsampling methods, FISR [16] and STAR-
net [8]. The pre-trained model provided by [16] is used
in our experiments. For our method, we utilize SAN [5]
and DAIN [1] as upsampling sub-networks MS and MT re-
spectively. And for STARnet, we retrain it on Vimeo-90K
following our settings. We use every two consecutive LR
frames (i.e., L(t−1) and L(t+1)) as the input to reconstruct
the spatiotemporal upsampling frame (i.e., Ĥ(t)). Table 3
shows the quantitative evaluation for spatiotemporal upsam-
pling on the FISR and Vimeo-90K test sets. On the FISR
test set, our method performs favorably against FISR and
STARnet. On the Vimeo-90K test set, the proposed method
has superior performance with respect to FISR and compa-
rable performance with respect to STARnet. It is worth not-
ing that our method is able to generalize well to the FISR
test set even the FISR training set is not included in our
training, while the FISR model does not produce satisfac-

tory results on Vimeo-90K. In the supplementary materi-
als, we provide more qualitative comparisons between our
method and FISR, in which our method can better handle
the large motion displacement and generate fewer artifacts
on challenging examples.

4.3. Limitations and Discussions

The proposed method leverages the complementary
property of two spatiotemporal upsampling streams. There
are two main limitations in our current framework. First, the
reconstruction is solely guided by the pixel-wise reconstruc-
tion losses of the intermediate and final output frames. The
temporal consistency between output frames Ĥ(t−1), Ĥ(t),
and Ĥ(t+1) is not explicitly enforced. A future direction
may consider enforcing the temporal warping losses in the
image and feature spaces, or exploring temporal recurrent
components such as long short-term memory (LSTM). Sec-
ond, although our framework utilizes existing image super-
resolution and video frame interpolation models, the model
size and computational load could inevitably increase with
the size of the backbone upsampling modules. One future
work is to develop an one-stage pipeline to directly perform
spatiotemporal upsampling to reduce the model complexity.

5. Conclusions
We propose a novel end-to-end spatiotemporal upsam-

pling framework which increases both the video frame-rate
and the spatial resolution of video frames simultaneously
for better visual experience. Based on two cascades of spa-
tial and temporal upsampling sub-networks with different
execution orders, we take advantage of the complementary
property between the cascades by proposing a fusion mod-
ule to effectively combine their outputs, and further utilize a
refinement module to enhance the fine details. We conduct
extensive experiments to demonstrate the efficacy of our
proposed framework against several baselines, in terms of
both visual quality and quantitative results. In addition, the
thorough ablation studies are performed to verify our design
choices. Moreover, in comparison to the other methods that
build the spatiotemporal upsampling model from scratch,
our framework is beneficial as it can be easily boosted, once
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Table 4: Quantitative comparisons among different combinations of upsampling sub-networks. Our proposed frame-
work can be integrated with any off-the-shelf CNN-based spatial/temporal upsampling sub-networks. We evaluate the combi-
nations in basis of two single-image super-resolution methods, ESPCN [36] and SAN [5], and two video-frame interpolation
approaches, SuperSloMo [12] and DAIN [1]. Our fusion and refinement modules consistently improve the performance on
both Vimeo-90K and UCF-101 datasets.

Vimeo-90K Ĥ
(t)
S→T Ĥ

(t)
T→S Ĥ

(t)
F Ĥ

(t)
R

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ESPCN + SuperSloMo 31.17 0.9187 31.41 0.9179 32.23 0.9313 32.35 0.9326
ESPCN + DAIN 32.32 0.9347 31.67 0.9248 32.72 0.9396 32.83 0.9407
SAN + SuperSloMo 31.35 0.9215 31.73 0.9225 32.41 0.9339 32.51 0.9350
SAN + DAIN 32.70 0.9394 31.93 0.9279 32.89 0.9414 32.97 0.9423

UCF-101 Ĥ
(t)
S→T Ĥ

(t)
T→S Ĥ

(t)
F Ĥ

(t)
R

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ESPCN + SuperSloMo 30.87 0.9247 30.71 0.9251 31.38 0.9308 31.45 0.9313
ESPCN + DAIN 31.12 0.9303 31.27 0.9284 31.54 0.9328 31.60 0.9331
SAN + SuperSloMo 31.12 0.9253 30.90 0.9261 31.37 0.9298 31.43 0.9306
SAN + DAIN 31.33 0.9310 31.48 0.9286 31.59 0.9317 31.64 0.9323

Overlayed LR Input
Overlayed
LR Inputs

ESPCN
+

SuperSloMo

ESPCN
+

DAIN

SAN
+

SuperSloMo

SAN
+

DAIN
Ground-
truth HR

+2.97 dB +1.74 dB +3.24 dB +1.56 dB

+2.63 dB +2.66 dB +1.23 dB +1.38 dB

+2.00 dB +1.29 dB +2.11 dB +0.85 dB

Figure 6: Visual comparison among different combinations of upsampling sub-networks. We show that the proposed
framework can be integrated with state-of-the-art image super-resolution and video frame interpolation methods to achieve
high-quality spatiotemporal upsampling results. Numbers below the reconstructed frames indicate the PSNR gains between
Ĥ

(t)
R and the maximum one among {Ĥ(t)

S→T , Ĥ
(t)
T→S} (i.e., the improvement made by our fusion and refinement modules).

either the spatial upsampling or temporal upsampling mod-
ule is improved, without requiring additional efforts in de-
signing new operations or network architectures.
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