A \\\ 5

Architecture °
Designs Meet

Machine Learmng

Tsung Tai Yeh

-~ Computer Science Department of
*ﬁ'NatlonaI Chiao Tung Unlver5|ty _

Acknowledgements and Disclaimer

* Slides was developed in the reference with
ECE 565, Computer Architecture, Purdue University, 2018
GPGPU-Sim Tutorial , MICRO, 2012

Overview

* Revisit GPGPU Programming & execution model
* GPU Micro-architecture
* GPU Tensor Core in ML applications

What is GPU?

* GPU = Graphics Processing Units
* Accelerate computer graphics rendering and rasterization
* Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)

* Why does GPU use GDDR memory?
* DDR RAM -> low latency access, GDDR RAM -> high bandwidth

System Graphics
Memory Memory CPU GPU
| (DDR RAM) (GDDR RAM)
Discrete Integrated
GPU CPU GPU GPU

bus Memory 4

Convolutional (CONV) Layers

High-Level
Feature

Low-Level

Training versus Inference

* Training: Determining the value of the weights in the network

* Minimizing loss (L)

 Loss (L): the gap between ideal correct probabilities and the

probabilities computed by the DNN model

* Inference: Apply trained weights to determine output
Include only forward

Machine
Learning

(Inference)

Class Probabilities

Dog (0.7)

Cat (0.1)

Bike (0.02)
Car (0.02)
Plane (0.02)
House (0.04) ,

CPU vs GPU Training Time Comparison

 Normalized Training time on CPU and GPU (CPU has 16 cores, 32 threads)
* Why the model training on GPUs is much faster than on the CPU?

Speed up

80

60

40

20

B CPU-Intel E5-2630 [GPU-GTX 1080 Ti, cuDNN 5.1

77.27947768 78.28143268
66.2984236 66.85602769
VGG-16 VGG-19 ResNet-34 ResNet-152
Network Models

https://github.com/jcjohnson/cnn-benchmarks

CPU vs GPU

Cores Clock Memory Speed
Speed

CPU (Intel 4 4.2 GHz DDR4 RAM S385 ~540 GFLOPs F32
Core i7/-
7700Kk)
GPU (Nvidia 10496 1.7GHz DDR624GB S$1499 36 TFLOPs F32
RTX 3090 Ti) 6.7X

CPU: A small number of complex cores, the clock speed of

each core is high, great for sequential tasks

GPU: A large number of simple cores, the clock speed of each
core is low, great for parallel tasks

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Why do we use GPU for computing 7

 What is difference between CPU and GPU?

* GPU uses a large portion of silicon on the computation against CPU
* GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak

performance
* Need to map applications on the GPU carefully (Programmers’ duties)

CPU GPU

L2 Cache
“ 9

A Generic Modern GPU Architecture

e GPU Single-Instruction, Multiple-Threads (SIMT) operations
* A Streaming Multi-processor(SM) can serve multiple concurrent threads
* A SIMT core has its private local cache (L1/shared memory)

GPU
SIMT Core Cluster (SM)|| SIMT Core Cluster (SM) SIMT Core Cluster (SM)
SIMT Core || SIMT Core SIMT Core || SIMT Core SIMT Core || SIMT Core
Local Cache Local Cache Local Cache

Interconnection Network
L2 Cache

Off-Chip DRAM

SIMT Core Micro-architecture

Streaming Multiprocessing (SM)

Instruction Cache

Warp Sc

heduler

y

SIMD Dispatch

Unit

FP64/32
SP/SFU Tensor
Core

Register
Files

L1 Data Cache/Shared memory

Warp Scheduler | | Warp Scheduler ‘ ‘ Warp Scheduler ‘

SIMD‘Dispatch
Unit

v

FP64/32
SP/SFU

Tensor
Core
Tensor
Core
Register
Files

SIMD Dispatch
Unit

v

SIMD Dispatch
“Unit

SP/SFU

FP64/32

v

Tensor
Core
Tensor
Core
Register
HES

SP/SFU

FP64/32

Tensor
Core

Tensor
Core

Register
Files

Texture memory

Zhu
et.al.,
MICRO
2019

11

GPGPU Programming Model

* CPU offloads “kernels” consisting of multiple threads to GPU

* CPU transfer data to GPU memory (discrete GPU)

* Need to transfer result data back to CPU main memory

* CPU and GPU shares the same memory space (integrated GPU)

Could GPU spawn kernels within
GPU? (Recursive calls)

Yes, CUDA dynamic parallelism

Could a GPU execute multiple
kernels?

Yes, GPU supports “concurrent
execution”

12

GPU Thread Hierarchy e

Blodk (0, 0) Block(1,0) Black(2 0)

Bloc (0, 1) | Block (1, 1) || Black (2.1) | |

* Kernel = multiple threads grouped by grid ,
thread block or cooperative thread
array (CTA) and warp (32 threads)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

* A CTA includes up to 1024 threads

* Each CTA is dispatched to a SIMT core as | SM

a unit of work 32 Threads

I 32 Threads

Warps

* All of warps in a CTA run in the core’s Thread Block
pipeline until they are all done (CTA)

13

SIMT Execution Model Revisited

* A thread within a warp is mapped to a ALU core in a SM
* A SM has multiple ALU core (64, 128 etc..)

* An on-chip warp buffer holds multiple warps
for a SM. (Why ?)

Warp Buffer

Interleave warp execution hides the memory latency

Common PC

Warp
Scalar Scalar
Thread O | | Thread 1

Scalar
Thread 31

Warp 7

o]

Warp 9

Warp O

}

SIMT Pipeline

SIMT Execution Model

* All threads in warps/wavefront execute the same instruction
* GPU runs warps/wavefront in lockstep on SIMT hardware

* Challenges: How to handle branch operations when different threads
in a warp go to different path through program ?

w(] =12, 4, 8, 10}; A
A: v = w[threadldx.x]; 5
B: if (v<5) L —
Serialize 3
C. v=1; . : C =
e operations In
€ different paths D
D: v=20;
E: w = bar[threadldx.x] + v E

15

CUDA Programming Syntax

* Declaration Specifiers

Execution on

Callable from:

__global___void vadd(...) Device Host
__device__ void bar(...) Device Device
__host__ void func(...) Host Host

 Syntax for kernel launch

* Foo<<<256, 128>>>(...); //256 thread blocks, 128 threads each

* Built in variables for thread identification
e dim3 threadldx.x, threadldx.y, threadldx.z;
* dim3 blockldx.x, blockldx.y, blockldx.z;
e dim3 blockDim.x, blockDim.y, blockDim.z;

16

Example: SAXPY C Code

void saxpy serial (int n, float a, float *x, float *y)

{

for (int 1 = 0;, 1 < n; ++1)
yl1] = a*x[1] + yI[1];
}
int main () {

// omitted: allocate and initialize memory

saxpy serial(n, 2.0, x, y); // Invoke serial SAXPY
kernel

// omitted: using result

SAXPY CUDA Code

__global void saxpy(int n, float a, float *x, float *y) {
1nt 1 = blockIdx.x * blockDim.x + threadIdx.x;

f(i<n) ylil=a*x[i]+yI[1i];

int main() {
// omitted: allocate and initialize memory
int n = 256
int nblocks = n / 256;
cudaMalloc ((void**) &d x, n);
cudaMalloc ((void**) &d y, n);
cudaMemcpy (d x,h x,n*sizeof (float), cudaMemcpyHostToDevice) ;
cudaMemcpy (d_y,h y,n*sizeof (float), cudaMemcpyHostToDevice) ;
saxpy<<<nblocks, 256>>>(n, 2.0, d x, d y);
cudaMemcpy (h y,d y,n*sizeof (float), cudaMemcpyDeviceToHost) ;
// omitted: using result

CUDA Programming Revisited
e threadldx.x [0 - 31], blockDim.x [32], blockldx.x [0-15]

__global void MatAdd(float A[N], float B[N], float C[N]) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;

1f (1< N) C[1]=A[1]+B[1];
}

int main() {

dim3 numblocks (16, 1); // # of CTAs in one grid
dim3 threads (32, 1); // # of threads in one CTA

MatAdd<<<numblocks, threads >>>(A, B, C);

19

CUDA Programming Revisited

* What is performance problem shown in this implementation?
* Each CTA has only “1” thread -> under-utilize SIMT lanes

__global void MatAdd(float A[N] [N], float B[N][N], float C[N][N]) {
int 1 = threadIdx.x;

int] = threadIdx.y;
1£(i< N && j < N) Cli][J]=A[1][J]1+B[1][]];
}

int main() {

dim3 numblocks (N, N); // total CTAs in one kernel
dim3 threadsPerBlock(l, 1); // N x N threads in one CTA

MatAdd<<<numblocks, threadsPerBlock>>> (A, B, C);

20

Schedule

Register

Sl MT PI pe | | n e + Fetch Decode Read Execute | | Memory | Writeback
5 stage In-Order SIMT pipeline
* Register values of all threads stays in core
Done (Warp ID)
'
SIMT Reg
FrontEnd —> File —» SIMD Datapath
Fetch
Decode I 1
e Memory Subsystem lent.
Branch SMem||L1 DS || Tex S ||ConstS Network

GPGPU-Sim, MICRO

21

Inside a SIMT Core
* Fetch, Warp Issue, and Operand Schedulers

e Scoreboard ->data hazard and SIMT stack->control flow

* Large register file

* Multiple SIMD functional units
SIMT Front End

Branch Target PC SIMT-Stack
W I-Buffer /ﬁ/lcgglf
4

I-Cache»| Decode ¢
b Score
—>» Board
Done (WID)

Operand
Collector

ALU ﬂL

MEM —

GPGPU-Sim, MICRO

22

Fetch + Decode

e |-Cache

* Fetch instructions of warps in a round

robin manner

* Read-only, set associative
* FIFO or LRU replacement

e |-Buffer

e Store instructions fetched from I-cache
* Each warp has two I-buffer entries
* Valid bit indicates non-issued decode instructions¢ A

* Ready bit indicates instructions are ready to
be issued to the execution pipeline

To I-Cache

v: valid bit
r: ready bit
Ao Decode SBogre(;,
A P2 vjinst. Wi |r
o pes st wa |
= st w3 [
Selection I‘—‘I
v A
Valid[1:N] Issue ‘AR |
Fetch _ . .
Vahd[l:N]/v I-Buffer
I-Cache P»| Decode

GPGPU-Sim, MICRO 3

Scoreboard

* Scoreboard keeps track of dependencies between
instructions that have already issued

e Out-of-order execution divides ID stage
* Issue: decode instructions, check for structural hazards
* Read operands: wait until no data hazard, then read operands

* Instructions execute whenever no dependent on previous
instructions and no hazards

* In order issue, out-of-order execution, commit (completion)
* No register renaming

24

SIMT Stack One stack per warp

: SIMT Stack
* Handle Branch Divergence e T rec A tve Mk
» Top-of-stack entry is popped when a : 111
warp reaches to reconvergence point
* Active mask indicates the diverging D E 0001
path of threads C E 1110
w(] ={2, 4, 8, 10}; A
A: v = w[threadldx.x]; 5
.| _|
B: if (v<9) Serialize 3
C. v=1; : . C
| ’ operations in @
€€ different paths { D
D: v=20;
E: w = bar[threadldx.x] + v E

Register File

» 256 KB register files on a SIMT core

* How many registers can be used by one thread ?
* Maximum number of warps per SIMT core is 64

* 32 threads per warp
« 256 KB /64 /32 / 32-bit = 32

* Need “4 ports” (e.g. FMA) -> increase area greatly

* What is the solution ?
* Banked single ported register file

26

Bank0 | Bank1l | Bank2 | Bank3
Register Bank Conflict
W1:rd W1:r5 W1:r6 W1:r7
i i i i W1:rO W1l:rl W1:r2 W1:r3
* On cycle 4, issue instruction i2
WO0:r4 WO:r5 WO:r6 WO:r7
after a delay due to bank
. WO:rO WO0:rl RO:r2 WO0:r3
conflict
i . f . b " Cycle Warp | Instruction
[J
Low utilization of register banks [1. mad 215 14 16
e Solutions ? 1 i2: add r5,r5,rl
CycIe 4 W1 12: add r5,r5,r1
1 2 3 4 5 6
0 W3:il:r4
j‘CU 1 W3:il:r5 WO0:i2:r1 WO0:i2:r5 W1:i2:rl WO0:i2:r5 W1:i2:r5
anl 2 W3:i1:r6 W3:il:r2
3 27

Bank O Bank 1 Bank 2 Bank 3
Register Bank Conflict
W1:r7 W1:r4 W1:r5 W1:r6
.) W1:r3 W1:r0 W1:rl W1:r2
* Swizzle banked register layout
WO:r0 bank 0 W1:r0 bank 1 WO0:r4 WO:r5 WO:r6 WO:r7
. :rO -> ban :rO -> ban
’ ’ WO:r0 WO0:rl RO:r2 WO0:r3
W2:r0 -> bank 2, W3:rO -> bank 3 ' ' ' '
: . Cycl W Instructi
e Save 1 cycle against the naive bank che Wzrp :S e 'Zn P
layout. Could we do better ? o Me? AT T
1 WO i2: add r5,r5,r1
4 w1 12: add r5,r5,rl
1 2 3 4 5 6
0
1 W3:il:r5 WO0:i2:r1 WO:i2:r5 W3:il:r2
2 W3:il:r6 W1:i2:r1 W1:i2:r5
3 W3:il:r4 -

Operand Collector

* A valid bit, a register identifier, a ready bit, and operand data
* Arbiter selects operand that don’t conflict on a given cycle
* Writeback ? (read + write port)

(from instruction decode stage)
‘ |—> issue
* W) mad 1 s 1
- > Bank 0 W g £ = | D |
- - r.’l —— 1
1ol ; §
wZ T add | B |
— | -+ Bank1 - |l 1> — e e O § 5
,] = T e e 5
Arbitrator | - D -
Wl add > |
: 5 2 210, 0, ..., OfF—~ [™
Bank 2 ™ 71 111 Py I | = |
T w2 add |
_—— .e an . - r21]1, 2, .., 66— f
Bl 1£51?,0,___,a_—-/ 5 El
* =0 S T L o]
GPGPU-Sim, MICRO Single-Forled Crossbar Collector Units SIMD 29

Register File Banks Execution Unit

ALU Pipelines

* SIMD execution unit
* SP units executes ALU instructions except some special ones
* SFU units executes special functional instructions (sine, log ...)

* Different types of instructions takes varying execution cycles
* A SIMT core has one SP and SFU unit

* Writeback
* Each pipeline has a result bus for writeback
* Except SP and SFU shares a result bus
* Time slots on the shared bus is pre-allocated

30

Thread Block (CTA) Scheduling

* CTA scheduler dispatches CTAs
across each SM

* Scans through SMs to issue a CTA to
a SM with available resources at
the round-robin manner

* Multiple concurrent kernels

e Different kernels can be executed
across SMs

Host CPU

CUDA API
Stream O

Sync

CUDA
Memcpy

Kernel
Launch

Threadblock Scheduler

SM1 SM2 N\E

Warp Scheduling s
}
* Warp scheduler selects an instruction I-Buffer
of a warp that is ready to execute |
* Instruction-level parallelism (ILP) o Warp©
- :) Warp 1
* Pick instructions of the same warp Q :
* Thread-level parallelism (TLP) § Warp 63
* Choose instructions across different warps i
Warp Scheduler

* Multiple Warp schedulers on a SIMT Core

* Impact on the SIMT Core utilization —

32

Greedy-Then-Oldest Scheduling

e Select instructions of a single warp until it stalls
* Then pick the oldest warp to the next
* Improve the cache locality of the greedy warp

Warps

RJIn (&) &) [l M [m)[=
ﬁ

Execution Units

33

Memory Spaces

* Global memory
* Device DRAM, shared across blocks

* Local memory
* Reside in global memory
* Each thread has private local mem space
 Store variable data consuming too many registers

e Shared memory
* On-chip memory

* Constant/Texture memory
* Read-only memory

* Register
* SRAM, each thread has its private register space

Block (1,0)

Block (0,0)

Shared memory

Registers ﬂ Registers

}

AdA

Local Mem N Local Mem

\ 4

Global Mem

Constant Mem

Texture Mem

34

Global Memory

* Global memory resides in off-chip DRAM

* Global memory is accessed via 32, 64, 128 byte memory transaction

* Misalignhed/uncoalescing memory increases # of memory transaction

i void kernel_copy(float *out, float *in,
| int offset)

int i = blockldx.x * blockDim.x +
threadldx.x + offset;
out[i] = in[i];

What’s wrong when offset >0 ?

Coalesced/aligned memory access

Addresses: 96 128 160 192 224 256 288

HHH

Threads: 0

i

Memory Divergent access

Addresses: 96 128 160 192 224

288

Threads: ©

I

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Coalescing

* Combining memory access of threads in a warp into fewer
transactions
* E.g. Each thread in a warp accesses consecutive 4-byte memory

* Coalesced: all threads in a warp access locations that fall in a
single L1 data cache block (128 bytes)

* Uncoalesced: threads within a warp access different cache blocks
then multiple memory accesses need to be generated

* Coalescing reduces the number of transactions between
SIMT cores and DRAM

* Less work for interconnect, memory partition, and DRAM

36

Quiz |

e Supposed that a 3 x 4 matrix is shown :

* Which one is coalescing access pattern ?
* Patten B is coalescing access pattern

Pattern A

o U =

Pattern B

v OON

Thread O:
Thread 1:
Thread 2:
Thread 3:

Thread O:
Thread 1:
Thread 2:
Thread 3:

A WN PR
0 N O U

O T o O

-

Time

O N W

O 0 b

Local Memory

* Off-chip memory
* High latency and low bandwidth as the global memory
* When will use the local memory ?

* Large structure or array that use too much register space
* A kernel use too many register than available (register spilling)

38

Which one is bank conflict ?E

Shared Memory (V7ieh one Is bank conrict : ;

32 banks organized as 32-bit successive words i . §
. . 3 3 3]}

* Data shared to threads within the same CTA ; \ =2
3 6 —_e))

* Programmable on-chip cache . A=
 Bank conflict] N %g
* Two or more threads access words within the - w7 g:«:
same bank 2] ,ﬁ;

* Serialized memory access (low memory bandwidth) =) =

20 20 20,

 Which one is bank conflict ? — i
* floati_data = shared[base + S * tid]; S =3 — < =

» floati_data = shared[base +S * tid]; S =2 — s §
— —=

3 : 3 1))

39

Time

How to Resolve Bank Conflict ? j

e Shared memory size is 16 x 16

* Each thread takes charge of each row operation

* Threads in one block access the same location I I
(each column) -> 16-way bank conflict []
e Solution ? Memory padding (blue column)

* memory padding

* Add one float at the end of each row

* Changing access pattern

 shared__ sData[TILE_SIZE][TILE_SIZE + 1]

EI!I.I.I.I.I.I [EERN I 15

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html 40

TR N AW N -
B0 N A WN-=0O

Constant Memory

 What is the constant memory ?
* Optimized when warp of threads read the same location
* 4 bytes per cycle through broadcasting to threads in a warp
* Serialized when warp of threads read in different locations
* Very slow when constant cache miss (read data from global mem.)

* Where is the constant memory (64KB) ?
* Data is stored in the device global memory
* Read data through SM constant cache (8KB)

* Declaration of constant memory
e constant__ float c_mem|[size];
» cudaMemcpyToSymbol() // copy host data to constant memory

41

Texture Memory

 What is the texture memory ?
* Optimized for spatial locality shown among threads in blocks
* Spatial locality implies threads of the same warp that read
memory address that are close together
* Where is the texture memory ?
« 28 — 128 KB texture cache per SM (Nvidia GPU arch. 8.6)

* Declaration of texture memory

* text1D(texObj, x) // fetch from region of memory with texture object and
coordinate x

 text2D(texObj, x, y) // 2 D texture object with coordinate x and y

42

L1 Data Cache

* The first level cache per SM
* Non-coherent

* Single ported (128-Byte wide)
* Take multiple cycles to service non-coalesced accesses

43

GPU Data Cache Problem

* GPU is cache inefficiency
* Why L1 cache miss rate on GPU is high ?
* Massive number of parallel threads increase the cache contention

* Large cache can reduce the cache contention and improve the
GPU performance (done ?)

100

XXXX
80
60
40

20
0

Percentage (%)

BFS KMN PVC SSC PVR IIX WC SM SPMV FFT CFD NW SD1 BP STL WP FWT

L1 Cache Reuse Count Distribution for a GPU with 32KB L.1 caches

Nearly 80% inserted cache lines are never reused before eviction Chen et al., MICRO 2014

44

Miss Status Holding Registers (MSHR)

* Tracking the status of misses in progress

* A fully-associative array

* Service a fixed number of miss requests for a single cache
line
* MSHRs are limited (configurable)
 Memory unit stalls if cache runs out of MSHRs

45

L2 Cache Bank

* A unified last level cache shared by all SM
* L1 cache request cannot span across two L2 cache lines

Local Memory

Global Memory

Write Hit

Write-back

Write-back

Write Miss

Write-no-allocate

Write-no-allocate

* What are advantages of write-back policy ?
 Fast data write speed

 Write-no-allocate

* The cache doesn’t allocate a cache line on a write miss

46

GPU Micro-architecture Summary

Socore-
Decode Board : Bank Shared| MSHR
II,:Ef__WErE Reconv. Stacks |_. Conflict P Mem | .
. IPC [RPCActiveMask[1:W]| _ R SEIE
£ IPClRPC[ActiveMask[1W]|lf [A»Coalese.[*|Cache [z
: . G o
3 IPCIRPC pctiveMask(1:WIlL p[Comst][>
= * I Cache E
i I5Im axture %
: - ™ Cache -
- —{ SIMT-Stack e 3
v N __fyBuffer fclive Wgred. ™ ALU 4
= . ~> Operand (&Y
-Cache |-> Decode ¢ Issue g
— -y Collector
EWFE MEM |
—™ r
o8 Done (WID)

http://gpgpu-sim.org/manual/index.php/Main_Page 47

What is Tensor Core ?

* Execute 4 x 4 x 4 matrix multiplication and addition in one

cycle(D=AxB + ()

Streaming Multiprocessing (SM)

Instruction Cache

Warp Scheduler

y

SIMD Dispatch
Unit

\

FP64/32
SP/SFU

Tensor
Core

Register
Files

Warp Scheduler | | Warp Scheduler ‘ ‘ Warp Scheduler ‘

SIMD‘Dispatch

SIMD Dispatch

l

SP/SFU

Tensor
Core
Register
Files

L1 Data Cache/Shared memory

Unit Unit
‘ Tensor *
FP64/32 Core FP64/32

SP/SFU

Tensor
Core

SIMD Dispatch

“Unit

v

Tensor
Core

FP64/32

SP/SFU

Tensor
Core

Tensor
Core

Register
Files

Register
Files

Texture memory

Zhu
et.al.,
MICRO
2019

48

Why do we need Tensor Core on GPUs ?

* Higher throughput for GEMM ?

* A CUDA (SIMT) core offers 1 single precision multiply-and-
accumulate operation per GPU cycle

* Tensor core can multiply two 4 x 4 F16 matrices and add the
multiplication product fp32 matrix per GPU cycle

* Tensor core can achieve 125 Tflops/s vs 15.7 Tflops/s for the single
precision operation

* Domain-specific Accelerator within the GPU

49

PTX ISAs for Tensor Core

* Two execution modes
* FP 16 mode: All matrices are FP 16
* Mixed precision mode: FP32 accumulator to write results back to FP32

e Warp Matrix Multiply Accumulate (wmma) instruction
« wmma.load // Collectively load a matrix from memory
 wmma.store // Collectively store a matrix from memory

« wmma.mma // Perform a single matrix multiply-and-accumulate
operation across a warp

* Load_matrix_sync, store_matrix_sync and mma_sync // warp-wide
barrier sync.

e Can access wwma ISAs through cuBLAS, cuDNN and CUTLASS

50

WMMA Operations on Tensor Core

* Given A, B, C, and D are 16 x 16 matrices

* A warp computes a matrix multiply and accumulate
D=AxB+C

e 32 threads in a warp are divided into “8” threadgroups
* Worktuple: 2 threadgroups

51

Threadgroup

A ration]

WMMA QOpe atosestl' .]
* One WMMA breaks into

4 set of HMMA (SASS)
* Each set of HMMA Set 2 l 1 . -

instruction computes

a product 4 x 4 tile of

A and 4 x 8 tile of B Sot 3 l . - -
* Two threadgroups of

worktuple share 4 x 8

tile of B ot 2 - -
* 4 x 4 tile of A is private Bl

to each theadgroup < B + C = D

Zhu et.al., MICRO 2019 52

Tensor Core Details

* Each Octet has 8 dot product (DP) units
* A DP unit can compute 4-dim vector DP per cycle
* Operand Buffer A can hold a 4 x 4 tile, buffer B holds a 4 x 8 tile

* 4 DP units compute four 4-dim DP/cycle, 8 cycles for 4 x 8 x 4 matrix mul.

Register
Operand Bus1

Operand Bus 2

\/Tensor Core L 'y I -M:B:
Octet 3 | | Octet 2 Octet 1| |3 s] a
i Threadgroup 0 Threadgroup 4
Tensor Core Octet 0

Writebac Zhu et.al., MICRO 2019 53

Sparse Tensor Core

* Improve tensor core utilization in sparse MMA
e Sparse MMA is used in the compressed model

» Data encoding + tensor core mapping

NZ,| 0 0 0 0

NZ,

0 0 0 0

0 0 0

NZs

0 0 0 |NZg| 0

Original Weight

NZ, | Nz,

NZ; | NZg

2

2

/ Encoded offset

3

5

0

4

Zhu et.al., MICRO 2019

Compressed Weight

54

Conclusion

* Programmable GPU accelerates apps with massive parallelism

* GPU follows SIMT execution model
* GPU Tensor Core increases the throughput of ML apps

SIMT Front End

ranch Target PC

B SIMT-Stack
> I-Buffer A
I-Cache?{ Decode ¢ %
> Score
—>» Board

Done (WID)

Operand
Collector

ALU Jﬂ—»

MEM —»

GPGPU-Sim Tutorial , MICRO, 2012

55

