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Overview

• Revisit GPGPU Programming & execution model
• GPU Micro-architecture
• GPU Tensor Core in ML applications
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What is GPU?
• GPU = Graphics Processing Units
• Accelerate computer graphics rendering and rasterization
• Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)
• Why does GPU use GDDR memory?

• DDR RAM -> low latency access, GDDR RAM -> high bandwidth 
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Convolutional (CONV) Layers
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1. Convolutions mainly perform vector-and-matrix multiplication.
2. Convolutions takes more than 90% of overall computation (critical path).
3. Optimization (software/hardware) for convolutions matters. 



Training versus Inference
• Training: Determining the value of the weights in the network

• Minimizing loss (L)
• Loss (L): the gap between ideal correct probabilities and the 

probabilities computed by the DNN model 
• Inference: Apply trained weights to determine output 

Include only forward pass
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CPU vs GPU Training Time Comparison
• Normalized Training time on CPU and GPU (CPU has 16 cores, 32 threads)
• Why the model training on GPUs is much faster than on the CPU?

7https://github.com/jcjohnson/cnn-benchmarks



CPU vs GPU

8

Cores Clock 
Speed

Memory Price Speed

CPU (Intel 
Core i7-
7700k)

4 4.2 GHz DDR4 RAM $385 ~540 GFLOPs F32

GPU (Nvidia 
RTX 3090 Ti)

10496 1.7 GHz DDR6 24 GB $1499 36 TFLOPs F32

CPU: A small number of complex cores, the clock speed of 
each core is high, great for sequential tasks
GPU: A large number of simple cores, the clock speed of each 
core is low, great for parallel tasks

6.7X



Why do we use GPU for computing ?
• What is difference between CPU and GPU?

• GPU uses a large portion of silicon on the computation against CPU
• GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak 

performance
• Need to map applications on the GPU carefully (Programmers’ duties)
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CPU GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html



A Generic Modern GPU Architecture

• GPU Single-Instruction, Multiple-Threads (SIMT) operations
• A Streaming Multi-processor(SM) can serve multiple concurrent threads
• A SIMT core has its private local cache (L1/shared memory)
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SIMT Core Micro-architecture
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GPGPU Programming Model
• CPU offloads “kernels” consisting of multiple threads to GPU
• CPU transfer data to GPU memory (discrete GPU)
• Need to transfer result data back to CPU main memory
• CPU and GPU shares the same memory space (integrated GPU)
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GPU Thread Hierarchy
• Kernel = multiple threads grouped by grid ,

thread block or cooperative thread 
array (CTA) and warp (32 threads)

• A CTA includes up to 1024 threads
• Each CTA is dispatched to a SIMT core as 

a unit of work
• All of warps in a CTA run in the core’s

pipeline until they are all done
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SIMT Execution Model Revisited
• A thread within a warp is mapped to a ALU core in a SM
• A SM has multiple ALU core (64, 128 etc..)
• An on-chip warp buffer holds multiple warps

for a SM. (Why ?) 
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SIMT Execution Model
• All threads in warps/wavefront execute the same instruction
• GPU runs warps/wavefront in lockstep on SIMT hardware
• Challenges: How to handle branch operations when different threads 

in a warp go to different path through program ?
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w[] = {2, 4, 8, 10};
A: v = w[threadIdx.x];
B: if (v < 5)
C:      v = 1;

else
D: v = 20;
E:  w = bar[threadIdx.x] + v

Tim
e

A T1 T2 T3 T4

B T1 T2 T3 T4

C T1 T2

D T3 T4

E T1 T2 T3 T4

Serialize 
operations in 
different paths



CUDA Programming Syntax
• Declaration Specifiers

• Syntax for kernel launch
• Foo<<<256, 128>>>(…); //256 thread blocks, 128 threads each

• Built in variables for thread identification
• dim3 threadIdx.x, threadIdx.y, threadIdx.z; 
• dim3 blockIdx.x, blockIdx.y, blockIdx.z; 
• dim3 blockDim.x, blockDim.y, blockDim.z;
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Execution on Callable from:
__global__ void vadd(…) Device Host
__device__ void bar(…) Device Device
__host__  void func(…) Host Host



Example: SAXPY C Code
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void saxpy_serial(int n, float a, float *x, float *y)  
{ 
for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i]; 
} 

int main() {
// omitted: allocate and initialize memory
saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY 
kernel
// omitted: using result

}



SAXPY CUDA Code
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__global__ void saxpy(int n, float a, float *x, float *y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i<n) y[i]=a*x[i]+y[i];

} 

int main() {
// omitted: allocate and initialize memory
int n = 256
int nblocks = n / 256;
cudaMalloc((void**) &d_x, n);
cudaMalloc((void**) &d_y, n);
cudaMemcpy(d_x,h_x,n*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(d_y,h_y,n*sizeof(float),cudaMemcpyHostToDevice);
saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);
cudaMemcpy(h_y,d_y,n*sizeof(float),cudaMemcpyDeviceToHost);
// omitted: using result

}



CUDA Programming Revisited
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__global__ void MatAdd(float A[N], float B[N], float C[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;

if(i< N) C[i]=A[i]+B[i];
} 

int main() {
…
dim3 numblocks(16, 1); // # of CTAs in one grid
dim3 threads(32, 1); // # of threads in one CTA

MatAdd<<<numblocks, threads >>>(A, B, C);
…

}

• threadIdx.x [0 - 31], blockDim.x [32], blockIdx.x [0-15]



CUDA Programming Revisited
• What is performance problem shown in this implementation?

• Each CTA has only “1” thread -> under-utilize SIMT lanes
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__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {
int i = threadIdx.x;
int j = threadIdx.y;
if(i< N && j < N) C[i][j]=A[i][j]+B[i][j];

} 

int main() {
…
dim3 numblocks(N, N); // total CTAs in one kernel
dim3 threadsPerBlock(1, 1); // N x N threads in one CTA

MatAdd<<<numblocks, threadsPerBlock>>>(A, B, C);
…

}



SIMT Pipeline

• 5 stage In-Order SIMT pipeline
• Register values of all threads stays in core
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Inside a SIMT Core
• Fetch, Warp Issue, and Operand Schedulers
• Scoreboard ->data hazard and SIMT stack->control flow
• Large register file
• Multiple SIMD functional units 
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Fetch + Decode
• I-Cache 

• Fetch instructions of warps in a round
robin manner

• Read-only, set associative
• FIFO or LRU replacement

• I-Buffer
• Store instructions fetched from I-cache
• Each warp has two I-buffer entries
• Valid bit indicates non-issued decode instructions
• Ready bit indicates instructions are ready to 

be issued to the execution pipeline
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Scoreboard

• Scoreboard keeps track of dependencies between 
instructions that have already issued

• Out-of-order execution divides ID stage
• Issue: decode instructions, check for structural hazards
• Read operands: wait until no data hazard, then read operands

• Instructions execute whenever no dependent on previous 
instructions and no hazards

• In order issue, out-of-order execution, commit (completion)
• No register renaming

24



SIMT Stack
• Handle Branch Divergence

• Top-of-stack entry is popped when a 
warp reaches to reconvergence point

• Active mask indicates the diverging 
path of threads
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w[] = {2, 4, 8, 10};
A: v = w[threadIdx.x];
B: if (v < 9)
C:      v = 1;

else
D: v = 20;
E:  w = bar[threadIdx.x] + v

Tim
e

A T1 T2 T3 T4

B T1 T2 T3 T4

C T1 T2

D

T3

T4

E T1 T2 T3 T4

Serialize 
operations in 
different paths

One stack per warp
SIMT Stack

PC RPC Active Mask
E - 1111
D E 0001
C E 1110



Register File

• 256 KB register files on a SIMT core
• How many registers can be used by one thread ?

• Maximum number of warps per SIMT core is 64
• 32 threads per warp
• 256 KB / 64 / 32 / 32-bit = 32

• Need “4 ports” (e.g. FMA) -> increase area greatly
• What is the solution ?

• Banked single ported register file

26



Register Bank Conflict

• On cycle 4, issue instruction i2
after a delay due to bank 
conflict

• Low utilization of register banks
• Solutions ?
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Bank 0 Bank 1 Bank 2 Bank 3
… … … …

W1:r4 W1:r5 W1:r6 W1:r7
W1:r0 W1:r1 W1:r2 W1:r3
W0:r4 W0:r5 W0:r6 W0:r7
W0:r0 W0:r1 R0:r2 W0:r3

Cycle Warp Instruction

0 W3 i1:     mad     r2, r5, r4, r6     

1 W0 i2:     add      r5, r5, r1

4 W1 I2:     add      r5, r5, r1

1 2 3 4 5 6

0 W3:i1:r4

1 W3:i1:r5 W0:i2:r1 W0:i2:r5 W1:i2:r1 W0:i2:r5 W1:i2:r5

2 W3:i1:r6 W3:i1:r2

3

Ba
nk

Cycle



Register Bank Conflict

• Swizzle banked register layout
• W0:r0 -> bank 0, W1:r0 -> bank 1,

W2:r0 -> bank 2, W3:r0 -> bank 3
• Save 1 cycle against the naïve bank

layout. Could we do better ?
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Bank 0 Bank 1 Bank 2 Bank 3
… … … …

W1:r7 W1:r4 W1:r5 W1:r6
W1:r3 W1:r0 W1:r1 W1:r2
W0:r4 W0:r5 W0:r6 W0:r7
W0:r0 W0:r1 R0:r2 W0:r3

Cycle Warp Instruction

0 W3 i1:     mad     r2, r5, r4, r6     

1 W0 i2:     add      r5, r5, r1

4 W1 I2:     add      r5, r5, r1

1 2 3 4 5 6

0

1 W3:i1:r5 W0:i2:r1 W0:i2:r5 W3:i1:r2

2 W3:i1:r6 W1:i2:r1 W1:i2:r5

3 W3:i1:r4



Operand Collector
• A valid bit, a register identifier, a ready bit, and operand data
• Arbiter selects operand that don’t conflict on a given cycle
• Writeback ? (read + write port)

29GPGPU-Sim, MICRO



ALU Pipelines
• SIMD execution unit

• SP units executes ALU instructions except some special ones
• SFU units executes special functional instructions (sine, log …)
• Different types of instructions takes varying execution cycles
• A SIMT core has one SP and SFU unit

• Writeback
• Each pipeline has a result bus for writeback
• Except SP and SFU shares a result bus
• Time slots on the shared bus is pre-allocated
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Thread Block (CTA) Scheduling

• CTA scheduler dispatches CTAs
across each SM

• Scans through SMs to issue a CTA to 
a SM with available resources at 
the round-robin manner

• Multiple concurrent kernels
• Different kernels can be executed 

across SMs
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Warp Scheduling

• Warp scheduler selects an instruction
of a warp that is ready to execute

• Instruction-level parallelism (ILP)
• Pick instructions of the same warp

• Thread-level parallelism (TLP)
• Choose instructions across different warps

• Multiple Warp schedulers on a SIMT Core
• Impact on the SIMT Core utilization
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Greedy-Then-Oldest Scheduling

• Select instructions of a single warp until it stalls
• Then pick the oldest warp to the next
• Improve the cache locality of the greedy warp
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Memory Spaces 
• Global memory

• Device DRAM, shared across blocks

• Local memory
• Reside in global memory
• Each thread has private local mem space
• Store variable data consuming too many registers

• Shared memory
• On-chip memory

• Constant/Texture memory
• Read-only memory

• Register
• SRAM, each thread has its private register space
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Global Memory 
• Global memory resides in off-chip DRAM
• Global memory is accessed via 32, 64, 128 byte memory transaction
• Misaligned/uncoalescing memory increases # of memory transaction 
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void kernel_copy(float *out, float *in, 
int offset) 
{

int i = blockIdx.x * blockDim.x + 
threadIdx.x + offset;

out[i] = in[i];
}

What’s wrong when offset > 0 ?

Coalesced/aligned memory access

Memory Divergent access

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Built-in align variable: 
__align__(int mem_byte)



Coalescing 

• Combining memory access of threads in a warp into fewer 
transactions
• E.g. Each thread in a warp accesses consecutive 4-byte memory
• Coalesced: all threads in a warp access locations that fall in a 

single L1 data cache block (128 bytes)
• Uncoalesced: threads within a warp access different cache blocks 

then multiple memory accesses need to be generated

• Coalescing reduces the number of transactions between 
SIMT cores and DRAM
• Less work for interconnect, memory partition, and DRAM
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Quiz I
• Supposed that a 3 x 4 matrix is shown :
• Which one is coalescing access pattern ?

• Patten B is coalescing access pattern
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1   2   3   4
5   6   7   8
9   a   b   c

Thread 0: 1, 2, 3
Thread 1: 4, 5, 6
Thread 2: 7, 8, 9
Thread 3: a, b, c

Thread 0: 1, 5, 9
Thread 1: 2, 6, a
Thread 2: 3, 7, b
Thread 3: 4, 8, c

Time Time

Pattern A Pattern B



Local Memory
• Off-chip memory
• High latency and low bandwidth as the global memory
• When will use the local memory ?

• Large structure or array that use too much register space
• A kernel use too many register than available (register spilling)
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Shared Memory
• 32 banks organized as 32-bit successive words
• Data shared to threads within the same CTA
• Programmable on-chip cache
• Bank conflict

• Two or more threads access words within the 
same bank

• Serialized memory access (low memory bandwidth)

• Which one is bank conflict ?
• float i_data = shared[base + S * tid]; S = 3
• float i_data = shared[base + S * tid]; S = 2

39

Which one is bank conflict ?



How to Resolve Bank Conflict ?
• Shared memory size is 16 x 16
• Each thread takes charge of each row operation
• Threads in one block access the same location

(each column) -> 16-way bank conflict
• Solution ?

• memory padding 
• Add one float at the end of each row
• Changing access pattern
• __shared__ sData[TILE_SIZE][TILE_SIZE + 1]

40

Memory padding (blue column)

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html

Time



Constant Memory
• What is the constant memory ?

• Optimized when warp of threads read the same location
• 4 bytes per cycle through broadcasting to threads in a warp
• Serialized when warp of threads read in different locations
• Very slow when constant cache miss (read data from global mem.)

• Where is the constant memory (64KB) ?
• Data is stored in the device global memory
• Read data through SM constant cache (8KB)

• Declaration of constant memory
• __constant__ float c_mem[size];
• cudaMemcpyToSymbol() // copy host data to constant memory

41



Texture Memory
• What is the texture memory ?

• Optimized for spatial locality shown among threads in blocks
• Spatial locality implies threads of the same warp that read 

memory address that are close together
• Where is the texture memory ?

• 28 – 128 KB texture cache per SM (Nvidia GPU arch. 8.6)
• Declaration of texture memory

• text1D(texObj, x) // fetch from region of memory with texture object and 
coordinate x

• text2D(texObj, x, y) // 2 D texture object with coordinate x and y

42



L1 Data Cache

• The first level cache per SM
• Non-coherent
• Single ported (128-Byte wide)

• Take multiple cycles to service non-coalesced accesses
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GPU Data Cache Problem
• GPU is cache inefficiency

• Why L1 cache miss rate on GPU is high ?
• Massive number of parallel threads increase the cache contention
• Large cache can reduce the cache contention and improve the 

GPU performance (done ?)

44

L1 Cache Reuse Count Distribution for a GPU with 32KB L1 caches

Chen et al., MICRO 2014Nearly 80% inserted cache lines are never reused before eviction



Miss Status Holding Registers (MSHR)

• Tracking the status of misses in progress
• A fully-associative array
• Service a fixed number of miss requests for a single cache 

line
• MSHRs are limited (configurable)
• Memory unit stalls if cache runs out of MSHRs
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L2 Cache Bank

• A unified last level cache shared by all SM
• L1 cache request cannot span across two L2 cache lines 

• What are advantages of write-back policy ?
• Fast data write speed

• Write-no-allocate
• The cache doesn’t allocate a cache line on a write miss
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Local Memory Global Memory
Write Hit Write-back Write-back

Write Miss Write-no-allocate Write-no-allocate



GPU Micro-architecture Summary

47http://gpgpu-sim.org/manual/index.php/Main_Page



What is Tensor Core ?
• Execute 4 x 4 x 4 matrix multiplication and addition in one 

cycle (D = A x B + C)
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Why do we need Tensor Core on GPUs ?

• Higher throughput for GEMM ?
• A CUDA (SIMT) core offers 1 single precision multiply-and-

accumulate operation per GPU cycle
• Tensor core can multiply two 4 x 4 F16 matrices and add the 

multiplication product fp32 matrix per GPU cycle 
• Tensor core can achieve 125 Tflops/s vs 15.7 Tflops/s for the single 

precision operation
• Domain-specific Accelerator within the GPU
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PTX ISAs for Tensor Core
• Two execution modes 

• FP 16 mode: All matrices are FP 16 
• Mixed precision mode: FP32 accumulator to write results back to FP32

• Warp Matrix Multiply Accumulate (wmma) instruction
• wmma.load // Collectively load a matrix from memory
• wmma.store // Collectively store a matrix from memory
• wmma.mma // Perform a single matrix multiply-and-accumulate 

operation across a warp
• Load_matrix_sync, store_matrix_sync and mma_sync // warp-wide 

barrier sync. 
• Can access wwma ISAs through cuBLAS, cuDNN and CUTLASS 
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WMMA Operations on Tensor Core

• Given A, B, C, and D are 16 x 16 matrices
• A warp computes a matrix multiply and accumulate 

D= A x B + C
• 32 threads in a warp are divided into “8” threadgroups
• Worktuple: 2 threadgroups
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WMMA Operations

52
A        x       B         +        C      =      D

Set 1

Set 2

Set 3

Set 4

• One WMMA breaks into
4 set of HMMA (SASS)

• Each set of HMMA 
instruction computes
a product 4 x 4 tile of 
A and 4 x 8 tile of B

• Two threadgroups of 
worktuple share 4 x 8
tile of B

• 4 x 4 tile of A is private
to each theadgroup

Threadgroup

Zhu et.al., MICRO 2019



Tensor Core Details
• Each Octet has 8 dot product (DP) units
• A DP unit can compute 4-dim vector DP per cycle
• Operand Buffer A can hold a 4 x 4 tile, buffer B holds a 4 x 8 tile
• 4 DP units compute four 4-dim DP/cycle, 8 cycles for 4 x 8 x 4 matrix mul. 
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Sparse Tensor Core
• Improve tensor core utilization in sparse MMA
• Sparse MMA is used in the compressed model
• Data encoding + tensor core mapping
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Original Weight Compressed Weight

Encoded offset

Zhu et.al., MICRO 2019



Conclusion
• Programmable GPU accelerates apps with massive parallelism
• GPU follows SIMT execution model
• GPU Tensor Core increases the throughput of ML apps
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