\ \\\ V N . -- ‘;r -, *J.,..Y

oL

Acce\eratmg
Machme Learning
through

Softwa re + Hardware ;
! Tsung Tai Yeh

. Computer Science Department of
National Chiao Tung Unlver5|ty, o
Taiwan e

- »

Overview

* Machine Learning & Deep Neural Network
* Golden Age of Microprocessor Design

e Software Optimization Techniques

* Domain Specific Accelerator

* My Research and my CAS Lab at NYCU

Machine Learning & Deep
Neural Network

What is Machine Learning ?

* “Giving computers the ability to learn without being
explicitly programmed” — Arthur Samuel, 1959s

§ GUBE HAS THESE Look
W Q? un‘: GROURS/ (DoES THI\S WORK?
= 9 @EPD f ﬁ@ :b

Vo | S bf

- D

SUPERVISED UNSUPERVISED REWFORCEMENI

https://www.ceralytics.com/3-types-of-machine-learning/

Supervised Learning

e Data:(x, y)
The x is data, y is label

* Goal: Learn a function to map x from label data y

* Examples: Object
detection,
classification,
Image captioning
etc..

Trained Model

* Problems:
* Tedious labelling work

Dog Dock 5

Unsupervised Learning

* Data: x, no labels ! e e
 Goal: Learn underlying hidden o g
structures of the data Dimension Reduction on PCA

http://www.nlpca.org/pca_principal_component_analysis.html

* Example: Clustering,
feature learning, density
estimation, dimensionality
reduction etc..

* Problem:
* The curse of dimensionality

2-D Density Estimation

https://www.mathworks.com/matlabcentral/fileexchange/19280-bivariant-kernel-density-estimation-v2-1 6

Reinforcement Learning

* An agent interacts with the
environment

] State s Agent
* Learning from the reward t
signals Reward r,
* Goal: Learn how to take actions Environment Action
t

to maximize the reward

* ExXamples: Robots control,
Deep mind AlphaGo, Atari Gaming

* Problems:
* Reliability

Deep Learning

Deep
Learning

How does the brain work ?

S X0 wo
ynapse >@ S
E Axon Axon ® yoRpos
Terminal woxo~\Dendrite

'\Ab" Soma

m

wiXi y

> ¥y = Xi+ b >
Fmmmmm e

ol (% w () bare

| activations(input/out

. . i put signals), weights,
* Neurons (86 B) (perception) are assembled into layers ! nonlinear function,

which are connected via synapses ! bias

Dendrites

* Dendrites receive inputs from upstream neurons via the synapses.
 Soma membrane fires inputs to an axon.
* Axons terminals transmits outputs to downstream neurons.

https://arxiv.org/pdf/2005.01467.pdf 9

Neural Networks (NN)

* Hidden layer: neurons in this layer are neither inputs nor outputs,
extracting input features

* To encode the intensities of image pixels to the input neurons
* Picking the output values > 0.5 that indicates input image is 9

7=

Neuron

Input Hidden Output
Layer Layers Layer
[| |

1 —
? Probability: 0.8
5 Probability: 0.3

Multilayer perceptrons (MLPs) https://arxiv.org/pdf/2005.01467.pdf 10

Synapse

What is Deep Learning ?

* DNN has more than 3 layers (more than one hidden layer)

* DNNSs can learn high-level features than shallow neural networks

Low-Level Features High-Level Features

"

A ‘} ¢:¢) Output:)
(;;IAN/A\ \ “Volvo XC90

Joel Emer, ISCA 2019 11

Why Deep Neural Network is popular?

* DNN model outperforms human-being on the ImageNet Challenge

30 26,2

25.8
§25 |
- AlexNet
‘2 20 16.4
o ’ OverFeat
= 15

11.7
VGG/GoogleNet
6.7 ResNet c 1
3.6 3 23
E = = B

2010 2011 2012 2013 2014 2015 2016 2017 Human

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf

12

Convolutional (CONV) Layers

High-Level
Feature

Low-Level

Training versus Inference

* Training: Determining the value of the weights in the network

* Minimizing loss (L)

 Loss (L): the gap between ideal correct probabilities and the

probabilities computed by the DNN model

* Inference: Apply trained weights to determine output. Include only

forward pass

Machine
Learning

(Inference)

Class Probabilities

Dog (0.7)

Cat (0.1)

Bike (0.02)

Car (0.02)

Plane (0.02)

House (0.04) 14

No free lunch on DNN computation

* AlexNet to AlphaGo Zero: A 300,000 x Increase in Compute

Two Distinct Eras of Compute Usage in Training AI Systems

Petaflop/s-days

le+4
le+2
le+0
le—2
le—4
le
le
le—10
le—-12

1le—14 Perceptron

19260

AlphaGoZero

Neural Machine
Translation

TI7 Dota 1v1l

VGG
ResNets

AlexNet

3.4-month doubling

Deep Belief Nets and
layer-wise pretraining
3 DQN

TD-Gammon v2.1
BiLSTM for Speech

LeNet-5
NETtalk RNN for Speech
ALVINN
2-year doubling (Moore’'s Law)
< First Era Modern Era >
1970 1980 1990 2000 2010 2020

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf 15

Challenges of Existing
Computer Hardware

Moore’s Law

* The number of transistors per chip doubles every 18-24

months

I Stuttering

* The performance

(] Chip introduction

@ Transistors per chip, ‘000 @ Clock speed (max), MHz ® Thermal design power*, w dates, selected

Transistors bought per §, m I Pentium & l ’ Xeon | l(ore 2 Dual

grows linearly with .
the transistor count /

(Before 2004) oo ;

200204 06 08 10 12 15 486

18086] [386]

4004

Log scale
107

10°

|||||||||||||||||||||||||||||||||

1970 75 80 85 90 95 2000
Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist

............ 107
05 10 15

*Maximum safe power consumption

17

A Golden Age in Microprocessor Design

* A great leap in microprocessor speed ~103 X faster over 30 years

* Apple computer with similar prices from 1977 to 2004

Apple Il

Launch: 1977

Clock rate:

8 bits
48 KB
S1,395

Data path:
Memory:
Cost:

Power Macintosh G4

Launch: 2000
Clock rate: 400MHz
Data path: 32 bits
Memory: 64 MB
Cost: S1,599

Power Macintosh G5

Launch: 2004

Clock rate: -
Data path: 64 bits

256 MB
$1,499

Memory:
Cost:

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu)

18

Increasing transistors isn’t getting
efficient

I Stuttering [Chipintroduction
@ Transistors per chip, ‘000 ® Clock speed (max), MHz @ Thermal design power*, w dates, selected
Transistors bought per $, m l Pentium 4 J [Xeon] [Core 2 Duo] G e n e ra | p U rpose
20

1 mpr processor is not getting

10 faster and power-efficient
5 Pentium
== 10 because of

Slowdown of Moore’s

386
Law and Dennard
Scaling

ra{atrtrrmr T TTT 10:I

| NN | B N N N S B S) G

1 T T L] T] T T T T 1 T T T | L] L] T
1970 75 80 85 90 95 2000 05 10 15

Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption
19

Dennard Scaling

* As the size of the transistor becomes small
* The voltage is reduced
* Circuits can be operated at higher frequency at the same power
"""""""" Power = alpha x CFV?

' transistor E\‘ alpha: percent time switched

C: capacitance =What S wrong on

N —— .
F: Frequency 'Dennard Scaling?
V:Voltage @ = e

[[} I
i Dennard Scaling ignores “leakage current”)” “i

threshold voltage”;

. . . |
lLSo, as transistors get small, power density increases !! -
]

Vendor’s Solution: Multi-core

* Intel Core i9 10900K
(Comet Lake-S), 2020
* 10 cores
3.7 GHz
e 20 MB L3 Cache

* In the new multi-core
* Big multi-core processors
* Complex cache hierarchies

Challenge: How to adapt the

« Wide vector units software to utilize this hardware
. GPU efficiently ?

* FPGA

https://www.techpowerup.com/review/intel-core-i9-10900k/3.html

Software Optimization
Techniques

Case Study: Matrix Multiplication

e Matrix Multiplication (MM) takes the majority of computation
time in DNN apps

* Square-Matrix Multiplication

-Cll (N] Cln -All (W] Aln- -Bll (W] Bln-

c, .. ¢, lla, .. alle, .. B

C 1,16‘ B
Cij: Zk=0Aikbjk

Assuming for the simplicity n = 2k

AWS Machine Specs
Feature _Specification

CPU Intel Xeon E5-2666 v3

Clock frequency 2.9 GHz

Processor chips 2

Processing cores O per processor chip

Hyperthreading 2 ways

Float-point units 8 double-precision operations, including

fused-multiply-add, per core per cycle

Peak = (2.9 x 10°) x 2 (hyper-threading) x 9 (# of cores) x 2 (#
of processors) x 8 (SIMD double precision) = 836 GFLOPS

24

Version 1: Nested Loops in Python

* Running time =
21042 seconds = 6
hours

e 203 = 2(212)3 = 237
floating-point
operations takes
237/21042 = 6.25
MFLOPS

* Python gets =
0.00075% of peak

import sys, random

from time import *

n =4096

A = [[random.random() for row in xrange(n)] for col in xrange(n)]
B = [[random.random() for row in xrange(n)] for col in xrange(n)]
C = [[random.random() for row in xrange(n)] for col in xrange(n)]

start = time()
foriin xrange(n):
for j in xrange(n):
for k in xrange(n):
C[i][j] += Ali]{k] * B[K][j]
end = time ()
print ‘0.3f” % (end - start)

25

Version 2: Java

* Running time = 2,738
seconds = 46 minutes

 About 8.8 X faster than
Python

import java.util.Random
Public class mm_java {

static int n = 4096
static double [][] A = new double[n][n]
static double [][] B = new double[n][n]
static double [][] C = new double[n][n]
public static void main(string [] args)
{
... //initA, B, C
long start = System.nanoTime();
for(inti =0;i<n;i++) {
for (intj =0;j<n;j++) {
for (intk =0; k< n; k++) {
Clil[j] += A[i][k] * B[K][]; }}}
long stop = System.nanoTime();
System.out.printIn(stop - start)

1} 26

#include <stdlib.h>

. . #include <stdio.h>
Ve r'sion 3 . C #include <sys/time.h>
#tdefine n 4096

- Running time = 1,156 double A[n][n], B[n][n], C[n][n];

seconds = 19 minutes int main(int a?rg.c, const char *argv[]) {
...//init A, B, C
e 2 X faster than Java codes struct timeval start, end:
e ~ 18 X faster than Python gettimeofday(&start, NULL);

for (inti =0;i<n;i++){
for (intj =0;j<n;j++) {
for (intk =0; k< n; k++) {
C[i][i] += Ali][k] * B[K][i]; }}}
gettimeofday(&end, NULL);
return O;

codes

27

Comparison Python, Java, C Implementation

Implementation |Running | Absolute GFLOPS Percent of
time (sec.) | Speedup Peak

Python 21041.67 1.00 0.007 0.001
2 Java 2387.32 8.81 0.058 0.007
3 C 1155.77 18.2 0.119 0.014

* Why is Python codes so slow against C ?
e Python is interpreted
* Cis compiled directly to machine code.

* Java is compiled to byte-code, which is then interpreted and just-
in-time (JIT) compiled to machine codes.

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu) 28

More Optimization — Loop Order

* We can change the order of the loops in MM program

without affecting its correctness

for (inti =0;i<n;i++)
for (intj =0;j<n; j++)
for (intk =0; k < n; k++)
Cli][j] += Alil[k] * B[K][l;

=

Does loop order affect the performance of MM program ?

for (inti =0;i<n;i++)
for (intk =0; k < n; k++)
for (intj =0;j<n; j++)
Cli][j] += Alil[k] * B[K][il;

More Optimization — Loop Order

e Loop order affects running Ll AT IR N L E IRV ER T R ELTS|

by a factor of 18 !!

. i, j, k 1155.77
* Why different loop orders ..
can make such a big i, K,] 177.68
change ? J,i, k 1080.61
J, K, i 3056.63
K, i, | 179.21

K, j, i 3032.82

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu) 39

Hardware Caches

* The cache sits near the processor

* The cache reduces the memory access latency of reused data
» Cache hits — accesses to data in cache — fast
* Cache misses — accesses to data not in cache — slow
* Cache lines — data is stored as contiguous blocks in cache

DRAM

Cache C;ache memory
line

Processor /

1
0 o

31

Memory Layout of Matrices

* In this matrix-multiplication code, matrices are laid out in

memory in row-major order.

Matrix

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Memory

Row 2

Row 3

Row 4

Row 5

32

Access Pattern of Matrix Multiplication

: : for (inti =0;i<n;i++)
Running time: for (intj =0; j < n; j++)
for (intk =0; k < n; k++)
— 1155.77 sec. Clilj += ATIK] * BIKIG);
i=0,j=0,k=[0...4095]
C |
e T
A
X 4096 elements
L] o ’
ig | M ~ B a
] In-memory layout

Memory Access Pattern for Order i, K, |

for (inti =0;i<n;i++)
Running time: for (intk = 0; k < n; k++)
o] S r]
- 177.68 sec. il = AN Bl
. | . '
i=0,k=0,j=[0...4095]
C N
A
X 4096 elements
] —
= B N
] In-memory layout

Memory Access Pattern for Order j, k, i

Running time:

for (intj =0;j<n; j++)

for (intk =0; k < n; k++)
for (inti =0;i<n;i++)

3056.63 sec. ClilLj] += ATLi][K] * BIKI[il;
i=0,k=0,i=[0..4095]

O B H N

L B B N

4096 elements
M

In-memory layout

35

Performance of Different Order

* The running time of MM is associated with cache miss rate

Loop Order (outer to inner) | Running time (sec.) |Last-level-cache
miss rate

i, k 1155.77 7.7%
i, K, | 177.68 1.0%
1,0, k 1080.61 8.6%
5K, | 3056.63 15.4%
K, i,] 179.21 1.0%
K, j, i 3032.82 15.4%

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu) 36

More optimization — Compiler Optimization

* Clang compiler includes a collection of optimization switches
* People can specify a switch to the compiler to perform code

optimization

-00
-01
-02
-03

Do not optimize 177.54
Optimize 66.24
Optimize even more 54.63

Optimize yet more 55.58

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu) 37

Version 5: Optimization Flags

* We only reach 0.3% of the peak performance of the machine.

* How to squeeze more performance juice of MM ?

Implementation |Running | Absolute GFLOPS Percent of
time (sec.) | Speedup Peak

1 Python 21041.67 1.00 0.007 0.001
2 Java 2387.32 8.81 0.058 0.007
3 C 1155.77 18.2 0.119 0.014
4 Interchange loops 177.68 118.42 0.774 0.093
5 Optimization flag 54.63 385.17 2.516 0.301

38

Version 6: Parallel Loops on Multi-core

* Intel E5 has 9 cores per chip, and a AWS machine has 2 chips
* We can run MM on 18 parallel cores concurrently

* We can parallelize one of these 3 loops

* OpenMP or Cilk library can help us to run MM in parallel

Parallel_for (inti =0;i<n;i++) iEach iteration i 1

for (intj =0;j<n;j++) iis distributed
for (intk =0; k < n; k++) ito parallel

Clil[j] += Alil[k] * B[K][jI; | COres

Version 6: Parallel Loops on Multi-core

e Using parallel loops achieves ~ 18 X speed up on 18 cores
* Disclaimer: Not all code is so easy to parallelize effectively
* However, we still use 5% of peak performance so far !!

Implementation |Running | Absolute GFLOPS Percent of
time (sec.) | Speedup Peak

1 Python 21041.67 1.00 0.007 0.001
2 Java 2387.32 8.81 0.058 0.007
3 C 1155.77 18.2 0.119 0.014
4 Interchange loops 177.68 118.42 0.774 0.093
5 Optimization flag 54.63 385.17 2.516 0.301
6 Parallel loops 3.04 6921.6 45.21 5.408

Version 7: Tiling on Cache

* Restructure the computation to reuse data in the cache as
much as possible

* How many memory accesses of fully compute 1 row of C ?
* 4096 x 1 =4096 writesto C
* 4096 x 1 = 4096 reads from A
* 4096 x 4096 reads from B
* 16,785,408 memory access in total

.
C

I
A

41

Version 7: Tiling on Cache

e Partition data in blocks which are reused in the cache

* How many memory accesses to compute 64 x 64 block of C?
* 64 x 64 = 4096 writesto C
* 64 x 4096 = 262,144 reads from A
* 4096 x 64 = 262,144 reads from B
» 528,384 memory accesses in total

8. O

42

Tiled Matrix Multiplication

Parallel_for (intih =0; ih < n; ih +=s)

Parallel_for (intjh =0; jh<n;jh+=5s) @ . =
for (int kh =0; kh <n; kh +=5) The.\falue of s (the size
for (intil =0;il<s; ++il) of tiling block) affect
for (intkl =0; kl <'s; ++ ki) the performance.

J

for (intjl =0;jl<s; ++jl) U
Clih + il][jh + jI] += A[ih + il][kh + kI] * B[kh + kl][jh + jl];

6.74
8 2.76
n 16 2.49

1 32 1.74

‘ Tiling block size Running time (s)
4

Version 7: Tiling

Implementation Running Absolute GFLOPS Percent of
time (sec.) |Speedup Peak

1 Python 21041.67 1.00 0.007 0.001
2 Java 2387.32 8.81 0.058 0.007
3 C 1155.77 18.2 0.119 0.014
4 Interchange loops 177.68 118.42 0.774 0.093
5 Optimization flag 54.63 385.17 2.516 0.301
6 Parallel loops 3.04 6921.6 45.21 5.408
7 Tiling 1.74 12,092.9 72.782 9.184
Parallel loop 104,090 17,220

Tiling 64,690 11,777

The tiling reduces 38% cache reference and 32% cache misses 4

Further Optimization

Implementation Running Absolute GFLOPS Percent of
time (sec.) |Speedup Peak

1 Python 21041.67 1.00 0.007 0.001
2 Java 2387.32 8.81 0.058 0.007
3 C 1155.77 18.2 0.119 0.014
4 Interchange loops 177.68 118.42 0.774 0.093
5 Optimization flag 54.63 385.17 2.516 0.301
6 Parallel loops 3.04 6921.6 45.21 5.408
7 Tiling 1.74 12,092.9 72.782 9.184
8 Parallel divide-and-conquer 1.30 16,197 105.722 12.646
9 Vectorization 0.70 30272 196.341 23.486
10 AVX intrinsics 0.39 53292 352.408 41.677

We can gain 53,292 X faster than naive Python codes by software optimization ! 4

What's Left ?

* Transistors not getting much better
* Power budget not getting much higher
* One inefficient processor/chip to N efficient processors/chip

* Only path left is Domain Specific Architectures
* Just do a few tasks, but extremely well

John Hennessy, “The Future of Microprocessors”, 2017 46

Speed up Machine Learning
through Domain-Specific
Accelerator

2400 kcal/24 hr = 100 kcal/hr = 27.8 cal/

' sec = 116.38 J/s =116 W
Uncover Your Brain 0% % 116 W = 23 3 W

* The human-being brain comprises different areas (accelerators)
* An adult brain only consumes about 23 W a day !! yang)

Motor control fTouch and pressure

Concentration, planning,
problem solving

/ J

L - J
- J

-/

Speech Language
Frontal lobe Reading
Parietal lobe
Sl Vision

Temporal lobe

Occipital lobe Hearing

Cerebellum Facial recognition

Coordination Y2ng: Eric. Think Dinner. Mac
Evolution, 1998

https://askabiologist.asu.edu/sites/default/files/resources/articles/nervous_journey/brain-regions-areas.gif 48

Learn from Human Being’s Brain

» Designing “Accelerators” to boost up Machine Learning

: = T 0 o IR Gave o AR
B e o o i+ . b s =i Q): 2 s o -
T i T -, e
3 = L R « %
M
2
fc e Py
: 1
110

P Tensor

Program/Language

-

R “u
i)
\ - yi

i
gz

Micro-architecture

ONNX
RUNTIME

System Software

20000
T11

e
-
R
|/ o
L.
i

-

= @ Outpul Layer

Algorithm

https://upload.wikimedia.org/wikipedia/commons/2/27/Artificial_Neural_Network_with_Chip.png 49

Domain Specific Architecture (DSAs)

* Achieving higher performance by tailoring characteristics of domain
applications to the architecture

* Need domain-specific knowledge to work out good DSAs
 Domain Specific Languages (DSLs) + DSAs (not strict ASIC)
* Specialize to a domain of many applications

* Examples
* GPU for computer 3D graphics, virtual reality
* Neural processing unit (NPU) for machine learning
* Visual processing unit (VPU) for image processing

50

Domain Specific Languages (DSL)

* DSLs target specific operations on a domain of applications
* Need vector, matrix or sparse matrix operations

* DSLs tailors for these operations
* OpenGL, TensorFlow, Halide

* Compilers are important if DSLs are architecture-independent
* Translate, schedule, map ISAs to right DSAs

51

Where is Domain-Specific Accelerators

* Domain-Specific Accelerators are everywhere

. Domain-specific

Domain-specific
Accelerators

Accelerator

Neural Engine

IT-les‘nzahts

L
: «wunship worls e o B o ’ T
2010 Apple A4 2014 Apple A8 , Egﬁ S‘LI\\'/T(‘:";A;?)
65 nm TSMC 53 mm? 20 nm TSMC 89 mm?
42 accelerators
4 accelerators 28 accelerators 52

https://edge.seas.harvard.edu/files/edge/files/alp.pdf

Why DSAs can win ?

* More effective parallelism for a specific domain
* SIMD vs. MIMD
* VLIW vs. Speculative, out-of-order

* More effective use of memory bandwidth
e User controlled vs. caches

* Eliminate unneeded accuracy (Quantization)
* Lower FP/INT data precision (32 bit integers -> 8 bit integers)

* Increase the hardware utilization
* Reduce the idle time on pipelining and LD/ST

https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLecturelSCA4June2018.pdf 53

What is GPU?

* GPU = Graphics Processing Units
* Accelerate computer graphics rendering and rasterization
* Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)

* Why does GPU use GDDR memory?
* DDR RAM -> low latency access, GDDR RAM -> high bandwidth

System Graphics
Memory Memory CPU GPU
| (DDR RAM) (GDDR RAM)
Discrete Integrated
GPU CPU GPU GPU

bus Memory &

CPU vs GPU Training Time Comparison

 Normalized Training time on CPU and GPU (CPU has 16 cores, 32 threads)
 Why the model training on GPUs is much faster than on the CPU?

B CPU-intel E5-2630 [GPU-GTX 1080 Ti, cuDNN 5.1

77.27947768 78.28143268
80
66.2984236 66.85602769
60
o
3
® 40
0]
o
(%))
20
1 1 1 1
0
VGG-16 VGG-19 ResNet-34 ResNet-152
Network Models

https://github.com/jcjohnson/cnn-benchmarks >3

CPU vs GPU

Cores Clock Memory Throughput
Speed

CPU (Intel 4 4.2 GHz DDR4 RAM S$385 ~540 GFLOPs F32

Core i7/-
7700Kk) :
GPU (Nvidia 10496 1.7 GHz DDR624 GB $1499 36 TFLOPsF32 g 67X
RTX 3090 Ti)

CPU: A small number of complex cores, the clock speed of

each core is high, great for sequential tasks

GPU: A large number of simple cores, the clock speed of each
core is low, great for parallel tasks

56

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Why do we use GPU for computing 7
 What is difference between CPU and GPU?

* GPU uses a large portion of silicon on the computation against CPU

* GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak
performance

* Need to map applications on the GPU carefully (Programmers’ duties)

CPU GPU

L2 Cache

What is Tensor Core on GPU?

* Execute 4 x 4 x 4 matrix multiplication and addition in one

cycle(D=AxB + ()

Streaming Multiprocessing (SM)/ SIMT Core

Instruction Cache

Warp Scheduler

y

SIMD Dispatch

SP/SFU

Register
Files

L1 Data Cache/Shared memory

Warp Scheduler | | Warp Scheduler ‘ ‘ Warp Scheduler ‘

SIMD‘Dispatch SIMD Dispatch

l

SIMD Dispatch

SP/SFU SP/SFU

Tensor
Core

Tensor
Core

SP/SFU

Unit Unit Unit “Unit
* Tensor ‘ Tensor * Tensor ‘ Tensor
FP64/32 | BN FP64/32 | B FP64/32 | B FP64/32 | B

Tensor
Core

Register
Files

Register
Files

Register
Files

Texture memory

Zhu
et.al.,
MICRO
2019

58

Why do we need Tensor Core on GPUs ?

* Higher throughput for GEMM ?

* A CUDA (SIMT) core offers 1 single precision multiply-and-
accumulate operation per GPU cycle

* Tensor core can multiply two 4 x 4 F16 matrices and add the
multiplication product F32 matrix per GPU cycle

* Tensor core can achieve 125 Tflops/s vs 15.7 Tflops/s for the
single precision operation
* Domain-specific Accelerator within the GPU

59

Story in Tensor Processing Unit (TPU)

* If people use DNN speech recognition service 3 mins per day
* Need to double Google’s data center to meet this requirement

* Why not quickly a customized ASIC for inference ?
* Need to 10 X faster than GPUs
* Must run existing apps developed for CPUs and GPUs

* \Very short development time on TPU

* Only take 15 months for architecture and compiler invention,
hardware design, build, test, deploy

60

Details in TPU v1
* The Matrix Unit: 64K (256 x 256

8 bit INT multiply-accumulate o, g W P
+ Peak: 92T ops = 65536 X 2 x 700 . A
MHz clock rate p e
* 4 MiB of 32-bit Accumulator gg woue| Uit | | ey
collects 16 bit products pary | Plar§. oot | o ke o)
* Hardware activation logics] S —
2.4 MiB on-chip Unified Buffer £ ()
(Intermediate results) ol 8 wom |
* 3.5 X 'as much on-chip memory oo i)
vs GPU s U ——

* 8 GiB off-chip weight DRAM

Jouppi et. al, ISCA 2017 61

Performance Comparison

Processor Clock(MHz) TDP Memory | Peak TOPS/chip
(Watts) |(GB/sec) [E:RTNG SEVIN A
CPU: 145 51

662 2300 2.6 1.3
Haswell
(18 core)
GPU: 561 560 150 160 -- 2.8
Nvidia K80

K80 and TPU in 28 nm process; Haswell fabbed in Intel 22nm process
Jouppi et. al, ISCA 2017 o,

Why TPU can Win 7

* Large matrix multiply unit
e Substantial software-controlled on-chip memory
* Data Quantization (8-bit INT)

e Parallelism on the hardware instead of Thread-level
parallelism on GPUs

e What else ?

63

My Research Work

Introducing Myself |

* Lecturer: Tsung Tai Yeh
* E-mail: ttyeh@cs.nctu.edu.tw
* Office: EC 707
* Research topics:
 Computer architecture
* Computer systems
* Memory and storage systems

* Domain-specific accelerators (GPU,
Neural Processing Units)

2y

65

My Research Work

* Performance Engineering
* How to accelerate your applications by using software + hardware

techniques ?

Computer Architecture

(Expanded view)

Hardware-Software Co-

Design (Algorithms to
Devices)

Algorithm/Problem

Program/Language

SW/HW Interface

Micro-architecture

Electrons

Computer Architecture
(Narrow view)
Specialize on designs of
SW/HW inference and
Micro-architecture

66

Conclusion

e Speed up “machine learning”
* Need Software Opt. + Accelerator
* Sky is the limit

* May you have a beautiful mind
to explore the beautiful future

* ttyeh@cs.nctu.edu.tw

67

Thank You!l
Q&A

