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Overview

• Machine Learning & Deep Neural Network
• Golden Age of Microprocessor Design
• Software Optimization Techniques
• Domain Specific Accelerator
• My Research and my CAS Lab at NYCU
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Machine Learning & Deep 
Neural Network
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What is Machine Learning ?
• “Giving computers the ability to learn without being 

explicitly programmed” – Arthur Samuel, 1959s

4
https://www.ceralytics.com/3-types-of-machine-learning/



Supervised Learning
• Data:(x, y)

• Goal: Learn a function to map x from label data y
• Examples: Object

detection, 
classification, 
image captioning
etc..

• Problems: 
• Tedious labelling work

The x is data, y is label

Train data sets

Trained Model

New data

Dog    Dock 5



Unsupervised Learning
• Data: x, no labels !
• Goal: Learn underlying hidden 

structures of the data
• Example: Clustering, 

feature learning, density
estimation, dimensionality
reduction etc..

• Problem:
• The curse of dimensionality

Dimension Reduction on PCA
http://www.nlpca.org/pca_principal_component_analysis.html

2-D Density Estimation
https://www.mathworks.com/matlabcentral/fileexchange/19280-bivariant-kernel-density-estimation-v2-1 6



Reinforcement Learning
• An agent interacts with the 

environment
• Learning from the reward

signals
• Goal: Learn how to take actions

to maximize the reward
• Examples: Robots control,

Deep mind AlphaGo, Atari Gaming
• Problems:

• Reliability

Agent

Environment Action at

Reward rt

State st
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Deep Learning

Artificial Intelligence
Machine Learning

Brain-Inspired
Spiking

Neural 
Networks

Deep 
Learning
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How does the brain work ?

• Neurons (86 B) (perception) are assembled into layers 
which are connected via synapses

• Dendrites receive inputs from upstream neurons via the synapses. 
• Soma membrane fires inputs to an axon. 
• Axons terminals transmits outputs to downstream neurons.

https://arxiv.org/pdf/2005.01467.pdf

x, w, f(), b are 
activations(input/out
put signals), weights, 
nonlinear function, 
bias
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Neural Networks (NN)
• Hidden layer: neurons in this layer are neither inputs nor outputs, 

extracting input features
• To encode the intensities of image pixels to the input neurons
• Picking the output values > 0.5 that indicates input image is 9

Multilayer perceptrons (MLPs) https://arxiv.org/pdf/2005.01467.pdf

Probability: 0.8

Probability: 0.3
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What is Deep Learning ?
• DNN has more than 3 layers (more than one hidden layer)
• DNNs can learn high-level features than shallow neural networks

11Joel Emer, ISCA 2019



Why Deep Neural Network is popular?
• DNN model outperforms human-being on the ImageNet Challenge

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf
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Convolutional (CONV) Layers
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CONV
Layer

High-Level 
FeatureCONV

Layer
FC

Layer
…

Classes

Low-Level 
Feature

1. Convolutions mainly perform vector-and-matrix multiplication.
2. Convolutions takes more than 90% of overall computation (critical path).
3. Optimization (software/hardware) for convolutions matters. 



Training versus Inference
• Training: Determining the value of the weights in the network

• Minimizing loss (L)
• Loss (L): the gap between ideal correct probabilities and the 

probabilities computed by the DNN model 
• Inference: Apply trained weights to determine output. Include only

forward pass
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No free lunch on DNN computation
• AlexNet to AlphaGo Zero: A 300,000 x Increase in Compute

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf 15



Challenges of Existing 
Computer Hardware

16



Moore’s Law

• The number of transistors per chip doubles every 18-24 
months 

• The performance 
grows linearly with 
the transistor count
(Before 2004)

17



A Golden Age in Microprocessor Design
• A great leap in microprocessor speed ~103 X faster over 30 years
• Apple computer with similar prices from 1977 to 2004
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Apple II

Launch:         1977
Clock rate:    1MHz
Data path:     8 bits
Memory: 48 KB
Cost: $1,395

Power Macintosh G4

Launch:         2000
Clock rate:    400MHz
Data path:     32 bits
Memory: 64 MB
Cost: $1,599

Power Macintosh G5

Launch:         2004
Clock rate:    1.8GHz
Data path:     64 bits
Memory: 256 MB
Cost: $1,499

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu)



Increasing transistors isn’t getting 
efficient

General purpose 
processor is not getting 

faster and power-efficient
because of

Slowdown of Moore’s 
Law and Dennard 

Scaling

19



Dennard Scaling
• As the size of the transistor becomes small

• The voltage is reduced
• Circuits can be operated at higher frequency at the same power

20

Power = alpha x CFV2

alpha: percent time switched
C: capacitance
F: Frequency
V: Voltage

What’s wrong on 
Dennard Scaling?

Dennard Scaling ignores “leakage current” ,”threshold voltage”

So, as transistors get small, power density increases !!

Related to 
transistor 
size



Vendor’s Solution: Multi-core
• Intel Core i9 10900K 

(Comet Lake-S), 2020
• 10 cores
• 3.7 GHz
• 20 MB L3 Cache

• In the new multi-core
• Big multi-core processors
• Complex cache hierarchies
• Wide vector units
• GPU
• FPGA 21

Challenge: How to adapt the 
software to utilize this hardware 
efficiently ?

https://www.techpowerup.com/review/intel-core-i9-10900k/3.html



Software Optimization 
Techniques
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Case Study: Matrix Multiplication
• Matrix Multiplication (MM) takes the majority of computation 

time in DNN apps
• Square-Matrix Multiplication
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= ∙ 

C A B
Cij

Assuming for the simplicity n = 2k



AWS Machine Specs
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Feature Specification
CPU Intel Xeon E5-2666 v3
Clock frequency 2.9 GHz
Processor chips 2
Processing cores 9 per processor chip
Hyperthreading 2 ways
Float-point units 8 double-precision operations, including 

fused-multiply-add, per core per cycle

Peak = (2.9 x 109) x 2 (hyper-threading) x 9 (# of cores) x 2 (# 
of processors) x 8 (SIMD double precision) = 836 GFLOPS 



Version 1: Nested Loops in Python

• Running time = 
21042 seconds ≈ 6 
hours

• 2n3 = 2(212)3 = 237

floating-point 
operations takes 
237/21042 ≈ 6.25
MFLOPS

• Python gets ≈ 
0.00075% of peak
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import sys, random
from time import *
n = 4096
A = [[random.random() for row in xrange(n)] for col in xrange(n)]
B = [[random.random() for row in xrange(n)] for col in xrange(n)]
C = [[random.random() for row in xrange(n)] for col in xrange(n)]

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time () 
print ‘0.3f’ % (end - start)



Version 2: Java
• Running time = 2,738

seconds ≈ 46 minutes
• About 8.8 X faster than 

Python
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import java.util.Random
Public class mm_java {

static int n = 4096
static double [][] A = new double[n][n]
static double [][] B = new double[n][n]
static double [][] C = new double[n][n]
public static void main(string [] args )
{

…. // init A, B, C
long start = System.nanoTime();
for (int i = 0; i < n; i++) {

for (int j  = 0; j < n; j++) {
for (int k  = 0; k < n; k++) {

C[i][j] += A[i][k] * B[k][j]; }}}
long stop = System.nanoTime();
System.out.println(stop - start)

}} 



Version 3: C

• Running time = 1,156
seconds ≈ 19 minutes

• 2 X faster than Java codes
• ≈ 18 X faster than Python 

codes
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#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#define n 4096
double A[n][n], B[n][n], C[n][n];

int main(int argc, const char *argv[] ) {
…. // init A, B, C
struct timeval start, end;
gettimeofday(&start, NULL);
for (int i = 0; i < n; i++) {

for (int j  = 0; j < n; j++) {
for (int k  = 0; k < n; k++) {

C[i][j] += A[i][k] * B[k][j]; }}}
gettimeofday(&end, NULL);

return 0;
} 



Comparison Python, Java, C Implementation

• Why is Python codes so slow against C ?
• Python is interpreted
• C is compiled directly to machine code. 
• Java is compiled to byte-code, which is then interpreted and just-

in-time (JIT) compiled to machine codes. 
28

version Implementation Running 
time (sec.)

Absolute 
Speedup

GFLOPS Percent of 
Peak

1 Python 21041.67 1.00 0.007 0.001

2 Java 2387.32 8.81 0.058 0.007

3 C 1155.77 18.2 0.119 0.014

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu)



More Optimization – Loop Order

• We can change the order of the loops in MM program 
without affecting its correctness
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for (int i = 0; i < n; i++) 
for (int j  = 0; j < n; j++) 

for (int k  = 0; k < n; k++) 
C[i][j] += A[i][k] * B[k][j];

for (int i = 0; i < n; i++) 
for (int k  = 0; k < n; k++)

for (int j  = 0; j < n; j++) 
C[i][j] += A[i][k] * B[k][j];

Does loop order affect the performance of MM program ?



More Optimization – Loop Order

• Loop order affects running
by a factor of 18 !!

• Why different loop orders
can make such a big
change ?

30

Loop Order (outer to inner) Running time (sec.)

i, j, k 1155.77

i, k, j 177.68

J, i, k 1080.61

J, k, i 3056.63

k, i, j 179.21

k, j, i 3032.82
6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu)



Hardware Caches
• The cache sits near the processor
• The cache reduces the memory access latency of reused data

• Cache hits – accesses to data in cache – fast
• Cache misses – accesses to data not in cache – slow
• Cache lines – data is stored as contiguous blocks in cache

31

Processor

P

Cache

DRAM
memoryCache 

line



Memory Layout of Matrices

• In this matrix-multiplication code, matrices are laid out in 
memory in row-major order. 

32

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6

Matrix

Memory Row 1 Row 2 Row 3 Row 4 Row 5

A11 A21 … An1

…
…
A1n A2n … Ann



Access Pattern of Matrix Multiplication
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for (int i = 0; i < n; i++) 
for (int j  = 0; j < n; j++) 

for (int k  = 0; k < n; k++) 
C[i][j] += A[i][k] * B[k][j];

B

A

C
=

x

In-memory layout

Running time: 
1155.77 sec. 

4096 elements

i = 0, j = 0, k = [0 … 4095]



Memory Access Pattern for Order i, k, j
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for (int i = 0; i < n; i++) 
for (int k  = 0; k < n; k++) 

for (int j  = 0; j < n; j++) 
C[i][j] += A[i][k] * B[k][j];

B

A

C
=

x

In-memory layout

Running time: 
177.68 sec. 

4096 elements

i = 0, k = 0, j = [0 … 4095]



Memory Access Pattern for Order j, k, i
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for (int j  = 0; j < n; j++) 
for (int k  = 0; k < n; k++) 

for (int i  = 0; i < n; i++) 
C[i][j] += A[i][k] * B[k][j];

B

A

C
=

x

In-memory layout

Running time: 
3056.63 sec. 

4096 elements

j = 0, k = 0, i = [0 … 4095]



Performance of Different Order
• The running time of MM is associated with cache miss rate

36

Loop Order (outer to inner) Running time (sec.) Last-level-cache 
miss rate

i, j, k 1155.77 7.7%
i, k, j 177.68 1.0%
J, i, k 1080.61 8.6%
J, k, i 3056.63 15.4%
k, i, j 179.21 1.0%
k, j, i 3032.82 15.4%

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu)



More optimization – Compiler Optimization

• Clang compiler includes a collection of optimization switches
• People can specify a switch to the compiler to perform code 

optimization

37

Opt. Level Meaning Time (sec.)

-O0 Do not optimize 177.54

-O1 Optimize 66.24

-O2 Optimize even more 54.63

-O3 Optimize yet more 55.58

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu)



Version 5: Optimization Flags

• We only reach 0.3% of the peak performance of the machine.
• How to squeeze more performance juice of MM ? 

38

version Implementation Running 
time (sec.)

Absolute 
Speedup

GFLOPS Percent of 
Peak

1 Python 21041.67 1.00 0.007 0.001
2 Java 2387.32 8.81 0.058 0.007
3 C 1155.77 18.2 0.119 0.014
4 Interchange loops 177.68 118.42 0.774 0.093
5 Optimization flag 54.63 385.17 2.516 0.301



Version 6: Parallel Loops on Multi-core

• Intel E5 has 9 cores per chip, and a AWS machine has 2 chips
• We can run MM on 18 parallel cores concurrently
• We can parallelize one of these 3 loops
• OpenMP or Cilk library can help us to run MM in parallel

39

Parallel_for (int i = 0; i < n; i++) 
for (int j  = 0; j < n; j++) 

for (int k  = 0; k < n; k++) 
C[i][j] += A[i][k] * B[k][j];

Each iteration i
is distributed 
to parallel 
cores



Version 6: Parallel Loops on Multi-core
• Using parallel loops achieves ~ 18 X speed up on 18 cores
• Disclaimer: Not all code is so easy to parallelize effectively
• However, we still use 5% of peak performance so far !!

40

version Implementation Running 
time (sec.)

Absolute 
Speedup

GFLOPS Percent of 
Peak

1 Python 21041.67 1.00 0.007 0.001
2 Java 2387.32 8.81 0.058 0.007
3 C 1155.77 18.2 0.119 0.014
4 Interchange loops 177.68 118.42 0.774 0.093
5 Optimization flag 54.63 385.17 2.516 0.301
6 Parallel loops 3.04 6921.6 45.21 5.408



Version 7: Tiling on Cache
• Restructure the computation to reuse data in the cache as 

much as possible
• How many memory accesses of fully compute 1 row of C ?

• 4096 x 1 = 4096 writes to C
• 4096 x 1 = 4096 reads from A
• 4096 x 4096 reads from B
• 16,785,408 memory access in total

41

C A B= x



Version 7: Tiling on Cache

• Partition data in blocks which are reused in the cache
• How many memory accesses to compute 64 x 64 block of C ?

• 64 x 64 = 4096 writes to C
• 64 x 4096 = 262,144 reads from A
• 4096 x 64 = 262,144 reads from B
• 528,384 memory accesses in total

42

C A B= x



Tiled Matrix Multiplication

43

Parallel_for (int ih = 0; ih < n; ih += s) 
Parallel_for (int jh = 0; jh < n; jh += s) 

for (int kh = 0; kh < n; kh += s) 
for (int il = 0; il < s;  ++ il)

for (int kl  = 0; kl < s;  ++ kl)
for (int jl = 0; jl < s; ++ jl) 

C[ih + il][jh + jl] += A[ih + il][kh + kl] * B[kh + kl][jh + jl];

The value of s (the size 
of tiling block) affect 
the performance. 

Tiling block size Running time (s)

4 6.74

8 2.76

16 2.49

32 1.74

64 2.33

n

n

s



Version 7: Tiling

44

version Implementation Running 
time (sec.)

Absolute 
Speedup

GFLOPS Percent of 
Peak

1 Python 21041.67 1.00 0.007 0.001

2 Java 2387.32 8.81 0.058 0.007

3 C 1155.77 18.2 0.119 0.014

4 Interchange loops 177.68 118.42 0.774 0.093

5 Optimization flag 54.63 385.17 2.516 0.301

6 Parallel loops 3.04 6921.6 45.21 5.408

7 Tiling 1.74 12,092.9 72.782 9.184
Implementation Cache reference (millions) L1-D cache misses (millions)

Parallel loop 104,090 17,220

Tiling 64,690 11,777

The tiling reduces 38% cache reference and 32% cache misses



Further Optimization

45

versio
n

Implementation Running 
time (sec.)

Absolute 
Speedup

GFLOPS Percent of 
Peak

1 Python 21041.67 1.00 0.007 0.001

2 Java 2387.32 8.81 0.058 0.007

3 C 1155.77 18.2 0.119 0.014

4 Interchange loops 177.68 118.42 0.774 0.093

5 Optimization flag 54.63 385.17 2.516 0.301

6 Parallel loops 3.04 6921.6 45.21 5.408

7 Tiling 1.74 12,092.9 72.782 9.184

8 Parallel divide-and-conquer 1.30 16,197 105.722 12.646

9 Vectorization 0.70 30272 196.341 23.486

10 AVX intrinsics 0.39 53292 352.408 41.677
We can gain 53,292 X faster than naïve Python codes by software optimization !



What’s Left ?

• Transistors not getting much better
• Power budget not getting much higher
• One inefficient processor/chip to N efficient processors/chip
• Only path left is Domain Specific Architectures

• Just do a few tasks, but extremely well

46John Hennessy, “The Future of Microprocessors”, 2017



Speed up Machine Learning 
through Domain-Specific 

Accelerator

47



Uncover Your Brain 
• The human-being brain comprises different areas (accelerators)
• An adult brain only consumes about 23 W a day !! (Yang)

https://askabiologist.asu.edu/sites/default/files/resources/articles/nervous_journey/brain-regions-areas.gif 48

2400 kcal/24 hr = 100 kcal/hr = 27.8 cal/
sec = 116.38 J/s = 116 W
20% x 116 W = 23.3 W

Yang, Eric. Think Dinner. Mac 
Evolution, 1998



Learn from Human Being’s Brain
• Designing “Accelerators” to boost up Machine Learning 

https://upload.wikimedia.org/wikipedia/commons/2/27/Artificial_Neural_Network_with_Chip.png

Micro-architecture

Program/Language

System Software
Algorithm

49



Domain Specific Architecture (DSAs)
• Achieving higher performance by tailoring characteristics of domain 

applications to the architecture
• Need domain-specific knowledge to work out good DSAs
• Domain Specific Languages (DSLs)  + DSAs (not strict ASIC)
• Specialize to a domain of many applications

• Examples
• GPU for computer 3D graphics, virtual reality
• Neural processing unit (NPU) for machine learning
• Visual processing unit (VPU) for image processing

50



Domain Specific Languages (DSL)

• DSLs target specific operations on a domain of applications
• Need vector, matrix or sparse matrix operations
• DSLs tailors for these operations

• OpenGL, TensorFlow, Halide
• Compilers are important if DSLs are architecture-independent

• Translate, schedule, map ISAs to right DSAs

51



Where is Domain-Specific Accelerators
• Domain-Specific Accelerators are everywhere

Domain-specific 
Accelerators

Domain-specific 
AcceleratorsCPU

2019 Apple A12 
7 nm TSMC 83 mm2

42 accelerators

2014 Apple A8 
20 nm TSMC 89 mm2

28 accelerators

2010 Apple A4 
65 nm TSMC 53 mm2

4 accelerators https://edge.seas.harvard.edu/files/edge/files/alp.pdf 52



Why DSAs can win ?
• More effective parallelism for a specific domain

• SIMD vs. MIMD
• VLIW vs. Speculative, out-of-order

• More effective use of memory bandwidth
• User controlled vs. caches

• Eliminate unneeded accuracy (Quantization)
• Lower FP/INT data precision (32 bit integers -> 8 bit integers)

• Increase the hardware utilization
• Reduce the idle time on pipelining and LD/ST

https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf 53



What is GPU?
• GPU = Graphics Processing Units
• Accelerate computer graphics rendering and rasterization
• Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)
• Why does GPU use GDDR memory?

• DDR RAM -> low latency access, GDDR RAM -> high bandwidth 

54

System 
Memory 

(DDR RAM)

Graphics 
Memory 

(GDDR RAM)

CPU GPU

bus

CPU GPU

Cache

Memory

Discrete 
GPU

Integrated 
GPU



CPU vs GPU Training Time Comparison

• Normalized Training time on CPU and GPU (CPU has 16 cores, 32 threads)
• Why the model training on GPUs is much faster than on the CPU?

55https://github.com/jcjohnson/cnn-benchmarks



CPU vs GPU

56

Cores Clock 
Speed

Memory Price Throughput

CPU (Intel 
Core i7-
7700k)

4 4.2 GHz DDR4 RAM $385 ~540 GFLOPs F32

GPU (Nvidia 
RTX 3090 Ti)

10496 1.7 GHz DDR6 24 GB $1499 36 TFLOPs F32

CPU: A small number of complex cores, the clock speed of 
each core is high, great for sequential tasks
GPU: A large number of simple cores, the clock speed of each 
core is low, great for parallel tasks

6.67X



Why do we use GPU for computing ?
• What is difference between CPU and GPU?

• GPU uses a large portion of silicon on the computation against CPU
• GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak 

performance
• Need to map applications on the GPU carefully (Programmers’ duties)

57

CPU GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html



What is Tensor Core on GPU?
• Execute 4 x 4 x 4 matrix multiplication and addition in one 

cycle (D = A x B + C)

58

Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

SIMD Dispatch 
Unit

SIMD Dispatch 
Unit

SIMD Dispatch 
Unit

SIMD Dispatch 
Unit

FP64/32 
SP/SFU

Tensor 
Core

Tensor 
Core

FP64/32 
SP/SFU

Tensor 
Core

Tensor 
Core

FP64/32 
SP/SFU

Tensor 
Core

Tensor 
Core

FP64/32 
SP/SFU

Tensor 
Core

Tensor 
Core

LD/ST 
Unit

Register 
Files

LD/ST 
Unit

Register 
Files

LD/ST 
Unit

Register 
Files

LD/ST 
Unit

Register 
Files

L1 Data Cache/Shared memory Texture memory

Streaming Multiprocessing (SM)/ SIMT Core

Zhu 
et.al., 
MICRO 
2019



Why do we need Tensor Core on GPUs ?

• Higher throughput for GEMM ?
• A CUDA (SIMT) core offers 1 single precision multiply-and-

accumulate operation per GPU cycle
• Tensor core can multiply two 4 x 4 F16 matrices and add the 

multiplication product F32 matrix per GPU cycle 
• Tensor core can achieve 125 Tflops/s vs 15.7 Tflops/s for the 

single precision operation
• Domain-specific Accelerator within the GPU

59



Story in Tensor Processing Unit (TPU)

• If people use DNN speech recognition service 3 mins per day
• Need to double Google’s data center to meet this requirement
• Why not quickly a customized ASIC for inference ?

• Need to 10 X faster than GPUs
• Must run existing apps developed for CPUs and GPUs

• Very short development time on TPU
• Only take 15 months for architecture and compiler invention, 

hardware design, build, test, deploy

60



Details in TPU v1
• The Matrix Unit: 64K (256 x 256)

8 bit INT multiply-accumulate
• Peak: 92T ops = 65536 x 2 x 700

MHz clock rate
• 4 MiB of 32-bit Accumulator

collects 16 bit products
• Hardware activation logics
• 2.4 MiB on-chip Unified Buffer

(Intermediate results)
• 3.5 X as much on-chip memory 

vs GPU
• 8 GiB off-chip weight DRAM 

61Jouppi et. al, ISCA 2017



Performance Comparison

Processor mm2 Clock(MHz) TDP 
(Watts)

Memory 
(GB/sec)

Peak TOPS/chip
8 b INT 32b FP

CPU: 
Haswell 

(18 core)

662 2300 145 51 2.6 1.3

GPU: 
Nvidia K80

561 560 150 160 -- 2.8

TPU <331 700 75 34 91.8 --

62

K80 and TPU in 28 nm process; Haswell fabbed in Intel 22nm process
Jouppi et. al, ISCA 2017



Why TPU can Win ?

• Large matrix multiply unit
• Substantial software-controlled on-chip memory
• Data Quantization (8-bit INT)
• Parallelism on the hardware instead of Thread-level 

parallelism on GPUs
• What else ? 

63



My Research Work
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Introducing Myself

• Lecturer: Tsung Tai Yeh
• E-mail: ttyeh@cs.nctu.edu.tw
• Office: EC 707
• Research topics:

• Computer architecture
• Computer systems
• Memory and storage systems
• Domain-specific accelerators (GPU,

Neural Processing Units)

“Hiring graduate and 
under-graduate students”

65



My Research Work
• Performance Engineering

• How to accelerate your applications by using software + hardware 
techniques ?

66

Algorithm/Problem
Program/Language
Operating System
SW/HW Interface

Micro-architecture
Circuits

Electrons

Computer Architecture 
(Expanded view)

Hardware-Software Co-
Design (Algorithms to 
Devices)

Computer Architecture 
(Narrow view)

Specialize on designs of 
SW/HW inference and 
Micro-architecture



Conclusion

• Speed up “machine learning”
• Need Software Opt. + Accelerator
• Sky is the limit
• May you have a beautiful mind

to explore the beautiful future
• ttyeh@cs.nctu.edu.tw
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Thank You!!
Q & A
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