
Spin-Lock

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy

pieces. WISC

2

Outline

● Locks

○ Spinning and blocking

● Semaphore

● Readers/writer lock

● Seqlocks

● Condition variable

3

Why Linux synchronization ?

● What is synchronization ?
○ Code on multiple CPUs coordinate their operations

● No need for synchronization on early OSes, why ?
○ The CPU is only single processor
○ All kernel requests wait until completion – even disk requests
○ No possibility for two CPUs to touch same data

● Optimize kernel performance by blocking inside the kernel
○ Instead of waiting on expensive disk I/O, block and schedule another

process until it completes
○ Need a lock to protect concurrent update to pages/inodes etc..
○ For better CPU utilization

4

Multi-processing

● Multi-processing

○ CPUs aren’t getting faster, just smaller

○ We can put more cores on a chip

○ The only way for software to get faster is to do more things at

the same time

● Performance scalability

○ 1 -> 2 CPUs doubles the work: perfect scalability

○ However, most software isn’t scalable. Why ?

5

Coarse vs. fine-grained locking

● Coarse-grained locking
○ A single lock for everything

○ Idea: Before touching any shared data, grab the lock

○ Problem: unrelated operations wait on each other -> adding CPUs

doesn’t improve performance

● Fine-grained locking
○ Many “small” locks for individual data structures

○ Idea: unrelated activities hold different locks -> adding CPUs can

improve performance

○ Cost: complex to coordinate locks

6

How do locks work ?

● Two key ingredients
○ A hardware-provided atomic instruction

■ Determines who wins under contention

○ A waiting strategy for the loser(s)

● Atomic instruction
○ Guarantees that the entire operation is not interleaved with any other

CPU

○ Intuition: The CPU ‘locks’ all of memory
■ Expensive !

○ Programmers must explicitly place atomic codes

7

Atomic instructions + locks

● Most lock implementations have some sort of counter

● Say initialized to 1

● To acquire the lock, use an atomic decrement

○ If someone sets the value to 0, go ahead

○ If someone gets < 0, wait

○ Atomic decrement ensures that only one CPU will decrement

the value to zero

○ To release, set the value back to 1

8

Waiting strategies

● Spinning
○ Just poll the atomic counter in a busy loop

○ When it becomes 1, try the atomic decrement again

● Blocking
○ Create a kernel wait queue and go to sleep, yield the CPU to more

useful work

○ Winner is responsible to wake up losers (in addition to setting lock

variable to 1)

○ Create a kernel wait queue – the same thing used to wait on I/O
■ Moving to a wait queue takes you out of the scheduler’s run queue

9

Which strategy is better ?

● Main consideration

○ Expected time waiting for the lock (spin) vs. time to do

two context switches (yield)

○ If the lock will be held a long time (like while waiting for

disk I/O)

■ Yield (waiting) makes sense

○ If the lock is only held momentarily

■ Spinning make sense

10

Linux spin lock

11

while (0 != atomic_dec (&lock->counter)) {

do {

// Pause the CPU until some coherence traffic

// (a prerequisite for the counter changing)

// completes

} while (lock->counter <= 0);

}

Why two loops ?

● Functionally, the outer loop is sufficient
● Problem:

○ Attempts to write this variable invalidate it in all other caches
○ If many CPUs are waiting on this lock, the cache line will bounce

between CPUs that are polling its value
○ Cache line bouncing

■ When multiple processors are trying to R/W to a same address
■ This cache line will move to other processor who is requesting
■ Then move back if the original processor again requests for the same

line

○ The inner loop read-shares this cache line, allow all polling in parallel

12

Test & Set lock

13

CPU 0 CPU 1 CPU 2

Cache Cache Cache

Write back +

evict cache

line

RAM

Get

lock

While (!atomic_dec (&lock->counter))

atomic_dec atomic_dec

Memory bus

Cache line ‘ping-pong’ back and forth

Test & Set lock

14

CPU 0 CPU 1 CPU 2

Cache Cache Cache

Unlock by

writing 1

RAM

Get

lock

While (lock->counter <= 0)

read read

Memory bus

Cache line shared in read mode until unlocked

Semaphore

● A semaphore is a counter that processes or threads can

manipulate atomically

○ A mutex (lock) is the special case of 1 at a time -> binary

semaphore

● Plus a wait queue

● Implementation

○ Similar to a spinlock, except spin loop replaced with placing

oneself on a wait queue

15

Semaphore

● Operations on a semaphore
○ P() or wait(): wait until counter > 0, then atomically decrement it

■ sem_wait(): decrement the value of the semaphore

○ V() or signal() or post(): atomically increment counter
■ sem_post(): restore the value of the semaphore

● Counter represents the number of available resources
○ Never negative

● A semaphore whose counter is always 0 or 1 is called a binary

semaphore
○ This is just a lock

16

Semaphore vs. mutex

● Mutex
○ A mutex can be released only by the thread that had acquired it
○ Let only one thread enter critical section -> should avoid priority

inversion
○ The context switch occurs when one thread completes a certain

amount of the work

● Semaphore
○ A binary semaphore can be signaled by any threads (or process)
○ Allow a number of thread enter critical section
○ Semaphore realizes the synchronization by using signals to notify

other threads

17

Reader/writer locks

● Problem: Share resource that is “read mostly”

○ Enforcing strict mutual exclusion may be unacceptable

○ Want to allow arbitrary number of “readers” concurrently

○ Only want to allow “writer” if nobody else reading or writing

● Idea

○ In reading, let multiple readers access the data at the same time

○ Writers require mutual exclusion

○ Use the writelock semaphore to ensure that only a single writer can

acquire the lock

18

Reader/writer locks

● When acquiring a read lock
○ The reader first acquires lock

○ Increments the readers

variable to track the number

of readers are inside the data

structure

○ The read also acquires the

write lock by calling sem_wait()

○ Releasing the lock by calling

sem_post ()

19

typedef struct _rwlock_t {

sem_t lock; // binary semaphore

//allow ONE writer/MANY readers

sem_t writelock;

int readers; // #readers in critical section

} rwlock_t;

void rwlock_init (rwlock_t *rw) {

rw-> readers = 0;

sem_init (&rw->lock, 0, 1);

sem_init (&rw->writelock, 0, 1);

}

void rwlock_acquire_readlock (rwlock_t *rw) {

sem_wait (&rw->lock);

rw->readers ++;

// first reader gets writelock

if (rw->readers == 1)

sem_wait (&rw->writelock);

sem_post (&rw->lock); }

Linux RW-spinlocks

● Low 24 bits count active readers

○ Unlocked: 0x01000000

○ To read lock: atomic_dec_unless (count, 0)

■ 1 reader: 0x00ffffff

■ 2 readers: 0x00fffffe

■ Readers limited to 2^24. That is a lot of CPUs !

○ 25th bits for writer

■ Readers will fail to acquire the lock until we add 0x01000000

20

Read/write lock issue

● What if we have a constant stream of readers and a

waiting writer ?

○ The writer will starve

● How to prioritize writers over readers ?

○ Seqlocks

21

Seqlocks

● Explicitly favor writers, potentially starve readers

● Idea
○ An explicit write lock (one writer at a time)

○ Plus version number – each writer increments at beginning

and end of critical section

● Readers
○ Check version number, read data, check again

○ If version changed, try again in a look

○ If version hasn’t changed and is even, neither has data

22

Condition Variables

● Queue of threads waiting on some “event” inside a critical
section

● A condition variable is always paired with a lock
● Operations

○ Wait()
■ Atomically release lock and go to sleep
■ When thread wakes up, it re-acquire the lock

○ Signal()
■ Wake up thread waiting on event -> no-op if nobody is waiting

○ Broadcast()
■ Wake up all threads waiting on event-> no-op if nobody is waiting

23https://my.eng.utah.edu/~cs5460/slides/Lecture10.pdf

Condition Variable

● Condition variables

○ Another synchronization primitive beyond locks

○ An explicit queue that threads can put themselves on when

some state of execution (condition) is not as desired

24

void *child (void *arg) {

printf (“child\n”);

// XXX how to indicate we are

done ?

return NULL;}

int main (int argc, char *argv[]) {

printf (“parent: begin\n”);

pthread_t c;

// create child

pthread_create(&c, NULL, child, NULL);

// XXX how to wait for child ?

printf (“parent: end\n”);

return 0; }
How does a parent thread check the state

of a child thread ? How to implement such

a wait ?

parent: begin

child

parent: end

Expected output:

Spin-based approach

● Spin-based approach

○ Generally work, but

○ The parent spins and waste

CPU time -> inefficient

○ Why not put parent to sleep

until the condition we are

waiting for comes true ?

25

volatile int done = 0;

void *child (void *arg) {

printf (“child\n”);

done = 1;

return NULL;

}

int main (int argc, char *argv[]) {

printf (“parent: begin\n”);

pthread_t c;

pthread_create (&c, NNULL, child,

NULL);

while (done == 0); // spin

printf (“parent: end\n”);

return 0;

}

Parent waiting for Child

26

int done = 0;

pthread_mutex_t m =

PTHREAD_MUTEX_INIT;

pthread_cond_t c = PTHREAD_COND_INIT;

void thr_exit () {

pthread_mutex_lock (&m);

done = 1;

pthread_cond_signal (&c);

pthread_mutex_unlock (&m);

}

void *child (void *arg) {

printf (“child\n”);

thr_exit ();

return NULL;

}

void thr_join () {

pthread_mutex_lock (&m);

while (done == 0)

pthread_cond_wait (&c, &m);

pthread_mutex_unlock (&m);

}

int main (int argc, char *argv[]) {

printf (“parent: begin\n”);

pthread_t p;

pthread_create (&p, NULL, child, NULL);

thr_join ();

printf (“parent: end\n”);

return 0;

}

Parent waiting for Child

● The first case

○ The parent creates the child, but

continue running itself

○ Immediately calls into thr_join () to

wait for the child thread to complete

○ The parent acquires the lock, check

if the child is done, and put itself to

sleep by calling wait ()

27

void thr_join () {

pthread_mutex_lock (&m);

while (done == 0)

pthread_cond_wait (&c,

&m);

pthread_mutex_unlock (&m);

}

int main (int argc, char *argv[]) {

printf (“parent: begin\n”);

pthread_t p;

pthread_create (&p, NULL, child,

NULL);

thr_join ();

printf (“parent: end\n”);

return 0;

}

Parent waiting for Child

● The first case
○ The child runs, print the message

○ Then, the child call thr_exit () to

wake the parent thread

○ The child grabs the lock, sets the

state variable “done”, and signals

the parent to wake it up

○ Finally, the parent runs, unlock

the lock, and print the “parent: end”

28

void thr_exit () {

pthread_mutex_lock (&m);

done = 1;

pthread_cond_signal (&c);

pthread_mutex_unlock (&m);

}

void *child (void *arg) {

printf (“child\n”);

thr_exit ();

return NULL;

}

Parent waiting for Child

● The second case
○ The child runs immediately upon

creation, sets “done” to 1

○ The child calls signal to wake a

sleeping thread

○ The parent then runs, calls

thr_join (), see that “done” is 1

○ The parent doesn’t wait and returns

○ This approach is broken, why ?

29

void thr_join () {

pthread_mutex_lock (&m);

while (done == 0)

pthread_cond_wait (&c, &m);

pthread_mutex_unlock (&m);

}

void thr_exit () {

pthread_mutex_lock (&m);

done = 1;

pthread_cond_signal (&c);

pthread_mutex_unlock (&m);

}

void *child (void *arg) {

printf (“child\n”);

thr_exit ();

return NULL;

}

Parent waiting for Child

● Why that code is broken ?

○ The child runs immediately and

calls thr_exit () immediately

○ The child will signal, but no thread

falls asleep on the condition

○ When the parent runs, it calls wait

and is stuck; no thread will ever

wake it

30

void thr_join () {

pthread_mutex_lock (&m);

while (done == 0)

pthread_cond_wait (&c, &m);

pthread_mutex_unlock (&m);

}

void thr_exit () {

pthread_mutex_lock (&m);

done = 1;

pthread_cond_signal (&c);

pthread_mutex_unlock (&m);

}

void *child (void *arg) {

printf (“child\n”);

thr_exit ();

return NULL;

}

Parent waiting for Child

● What’s wrong after removing the
lock ?

○ The parent calls thr_join (), then
checks the value of done

○ The parent sees that it is 0 and
thus try to go to sleep

○ Before the parent calls wait to sleep, the parent is interrupted, and
the child runs

○ The child changes the state variable “done” to 1 and signals, but no
thread is waiting, and woken

○ When the parent runs again, it sleeps forever

31

void thr_join () {

if (done == 0)

pthread_cond_wait (&c,

&m);

}

void thr_exit () {

done = 1;

pthread_cond_signal (&c);

}

Producer/consumer (bounded buffer) problem

● Bounded buffer problem
○ Multiple producer and consumer

threads

○ Producers generate data items

and place them in a buffer

○ Consumers grab items from the

buffer and consume them

○ Trouble when
■ Producer produces, but buffer is

full

■ Consume consumes, but buffer is

empty

32

int buffer;

int count = 0; // initially, empty

void put (int value) {

assert (count == 0);

count = 1;

buffer = value;

}

void get () {

assert (count == 1);

count = 0;

return buffer;

}

Single condition variable

● A single condition variable “cond” and associated lock “mutex”.

● If we have more than one thread, this code has two problems. What ?

33

void *producer (void *arg) {

for (int i = 0; I < loops; i++) {

pthread_mutex_lock (&mutex); //p1

if (count == 1) // p2

pthread_cond_wait (&cond, &mutex); //p3

put (i); //p4

pthread_cond_signal (&cond); // p5

pthread_mutex_unlock (&mutex); // p6

}

}

void *consumer (void *arg) {

for (int i = 0; I < loops; i++) {

pthread_mutex_lock (&mutex); //c1

if (count == 0) //c2

pthread_cond_wait (&cond, &mutex); //c3

get (i); //c4

pthread_cond_signal (&cond); //c5

pthread_mutex_unlock (&mutex); // c6

}

}

Single condition variable

34

Two consumers (Tc1 and Tc2)

and one producer (Tp)

1. Tc1 first runs, acquire the lock (c1), check

buffer state (c2), finding that none are,

wait (c3)

2. Tp runs and acquires the lock (p1), check

if the buffer is full (p2), fills the buffer (p4)

3. Tp signals that a buffer has been fill. (p5),

move Tc1 from sleeping to ready queue.

4. Tp continues until realizing the buffer is full,

at which point it sleeps (p6, p1-p3)

5. The problem occurs: when Tc2 sneaks in

and consumes the one value in the buffer

6. No data for Tc1 when Tc1 resumes

7. We should avoid Tc2 sneaking in and

consume the one produced value

https://pages.cs.wisc.edu/~remzi/OSTEP/threads-cv.pdf

While, Not if

● Change the ‘if’ to a ‘while’
○ Consumer Tc1 wakes up
○ Immediately re-checks the

state of the shared variable (c2)
○ Tc1 sleeps if the buffer is empty
○ The producer is also changed to a while (p2)
○ Using ‘while’ around conditional checks to avoid spurious wakeup occurs

● However, this code is still buggy after using ‘while’. Why ?
○ The buffer is full, Tc2 and Tp are sleeping and Tc1 is ready to run
○ Tc1 consumes the value (c4), then
○ Tc1 signals on the condition (c5), waking only one thread that is sleeping
○ However, which thread should it wake ?

35

void *consumer (void *arg) {

for (int i = 0; I < loops; i++) {

pthread_mutex_lock (&mutex); //c1

while (count == 0) //c2

pthread_cond_wait (&cond, &mutex); //c3

get (i); //c4

pthread_cond_signal (&cond); //c5

pthread_mutex_unlock (&mutex); // c6

} }

While, Not if

● Buggy code
○ Tp and Tc2 are sleeping,

which one should be waked
up ? (Shared buffer is
empty)

○ If Tc1 wakes up Tc2, Tc2
finds the buffer is empty (c2)

○ Then, Tc2 sleeps (c3)
○ Tp is left sleeping
○ Thus, everyone is

sleeping

36
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-cv.pdf

Two condition variable

37

int buffer [MAX];

int fill_ptr = 0;

int use_ptr = 0;

int count = 0; // initially, empty

void put (int value) {

buffer[fill_ptr] = value;

fill_ptr = (fill_ptr + 1) % MAX;

count ++;

}

int get () {

int tmp = buffer[use_ptr];

use_ptr = (use_ptr + 1) %MAX;

count --;

return tmp;

}

void *producer (void *arg) {

for (int i = 0; I < loops; i++) {

pthread_mutex_lock (&mutex); //p1

while (count == MAX) //p2

pthread_cond_wait (&empty, &mutex); //p3

put (i);

//p4

pthread_cond_signal (&fill); // p5

pthread_mutex_unlock (&mutex); // p6

} }

1. A producer only sleeps if all buffers are

currently filled. (p2)

2. A consumer only sleeps if all buffers are

currently empty.

Covering condition

● Covering condition
○ Assume there are zero bytes free;
○ Thread Ta allocate (100), Tb asks for

allocate (10). Tc calls free (50)
○ Which waiting thread (Ta or Tb) should

be woken up ?

● Lampson’s solution
○ Using ‘pthread_cond_broadcast’ to

wake up all waiting threads
○ Guarantee any threads that should be

woken are negative performance impact

38

int bytesLeft = MAX_HEAP_SIZE;

void *allocate (int size) {

pthread_mutex_lock (&m);

while (bytesLeft < size)

pthread_cond_wait (&c, &m);

void *ptr = …; //get mem from

heap

bytesLeft -= size;

pthread_mutex_unlock (&m);

return ptr;

}

void free (void *ptr, int size) {

pthread_mutex_lock (&m);

bytesLeft += size;

pthread_cond_signal (&c); //

who to signal

pthread_mutex_unlock (&m);

}

Conclusion

● Performance scalability vs. locking

● Fine-grained vs. coarse-grained locking

● Lock waiting strategies – spinning and yield

● Semaphore vs. mutex

● Readers/writer lock
○ Let multiple readers access the shared data at the same time

● Condition variable
○ wait(), signal(), broadcast()

39

