3
a7+ Computer Architecture & System Lab

::\%// National Yang Ming Chiao Tung University

Process

|OC5226 Operating System Capstone

Tsung Tai Yeh
Department of Computer Science
National Yang Ming Chiao Tung University



%% National Yang Ming Chiao Tung University

;\ iy
14 Computer Architecture & System Lab

Acknowledgements and Disclaimer

e Slides were developed in the reference with
® MIT 6.828 Operating system engineering class, 2018
® MIT 6.004 Operating system, 2018
® Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy
pieces. WISC



§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Outline

e Program vs. Process

e In-Memory Layout of a Process
e Process Stack

e Process ldentifier (PID)

e Process Control Block (PCB)

e Process Creation

e Threads




X ,/1\ National Yang Ming Chiao Tung University

=337
",%-r Computer Architecture & System Lab

Program vs. Process

e A program
o A program can create several processes
o ELF header + program-header table + .text + .data + .bss
o placed on hard drive

e A process

o A process is a unigue isolated entity

o Prevent one process from wrecking on another process’s
memory, CPU, file descriptors and the kernel itself

o Dynamic instruction of code + heap + stack + process state

- Placed on main memory




Computer Architecture & System Lab

Program vs. Process
Executable file (program)

% fﬁ\ National Yang Ming Chiao Tung University
Memory layout (Process)

X
“qd
f'\*

I
Stack

ELF Header
registers
1
Program-Header Table )
CPU '
1
text /
1
1
.data Heap
process
.bss Memory [\ Initialized Data
N . ‘\
AN Executable File / \
\ Uninitialized Data
B \ (BSS)
\\ i \
N \
N \
\\ Text
\

By Majenko - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=43245083




'X$7 % National Yang Ming Chiao Tung University
=‘;§‘;'IP Computer Architecture & System Lab
Program vs. Process

o Process
o When a program is loaded into memory along with all the
resources it needs to operate
o Each process has a separate memory address space
o A process runs independently and is isolated from other
processes
o How do multiple processes share a single CPU?
= Context switch
= Require some amount of time for saving and loading
registers, memory, and other resources




X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Program vs. Process

o Process isolation

o A process has a private memory address space, which other
processes cannot read or write

o Each process has a separate page table that defines that
process’s address space

o The page table translates a virtual address (the address that an
Instruction manipulates) to a physical address (an address that
the CPU sends to main memory)




X %% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Outline

e Program vs. Process

e In-Memory Layout of a Process
e Process Stack

e Process ldentifier (PID)

e Process Control Block (PCB)

e Process Creation

e Threads




a4 Computer Architecture & System Lab

The Memory Layout of a Process

e A stored-program
® Stores both data and code on memory
® The code space is a memory space
® stores program codes starting at virtual
address O
® The static data space is a memory space
® Store the program static data (global
variables)
® The heap space is a memory space

i%ﬁ\ National Yang Ming Chiao Tung University

® Managed by the memory allocation librar

(malloc())

hlzin Memory

Bkt sses

Swarck
Ik
Fres spacs
Hr;.'zip
Static Data

o

Code

MAXWA—

0 _

trampaline

trapframe

heap

user stack

user text
and data

PXV6 Kernel

Top of

| the stack

Program

" break



X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

The Memory Layout of a Process |

e [n 64-bit xv6 kernel trepTrame
® The hardware uses the low 39 bits when looking
up virtual addresses in page tables
® Xv6 only uses 38 of those 39 bits

MAXWA—

heap

® The max address is 238 — 1 = Ox3ffffffff (MAXVA) user stack
® A page for trampoline/trapframe o and data
® XV6 uses these two pages to transition into * XV6 Kernel

the kernel and back
® Trampoline page contains codes to transition in/out the kernel
® Mapping the trapframe save/restore the state of user process

10




Ntz National Yang Ming Chiao Tung University

=221
874 Computer Architecture & System Lab

The Memory Layout of a Process

e A processor's most important pieces of kernel state
e Page table
e Kernel stack
e Run state

11



X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
g7/ Computer Architecture & System Lab

In-Memory Layout of a Process

e On a 32-bit machine i S

o [Each process has 4 GB
virtual address

o 3GB — User

o 1GB - kernel space

= Shared among processes > &

= Directly mapped to 1GB of
RAM

= Store kernel code, page tables

(1/6)

Text
Binary image of the process (e.g., /bin/1s)

0x08048000

0x00000000

OxFFFFFFFF

0xC0000000

12



X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
g7/ Computer Architecture & System Lab

In-Memory Layout of a Process (2/6)

1 GB

o Text (code) segment

Contains executable instructions of

a program

Placed below the heap or stack (why’?)3 .
Prevent overflows from
overwriting it

o The text segment is often read-only/

(@)

(@]

execute (why?)

Automatic variables (local to a function's scope), caller’s return address, etc.
(grows towards lower memory addresses)

Text
Binary image of the process (e.g., /bin/1s)

Prevent a program from accidentally being changed

0x08048000

0x00000000

13



éi’ﬁ‘ National Yang Ming Chiao Tung University

_‘r 874 Computer Architecture & System Lab

In-Memory Layout of a Process (3/6)

o Data segment

O

O

O

O

O

Initialized data segment
Contains global and stack
variables initialized by the programmer
Not read-only (why?)

= The values of variables can be altered
Read-only area (RoData)

= const char *str = “hello world”

Read-Write area

= char s[] = “hello world”

e

“Gtherwise resutingn  Segmentation

3 GB ~

‘ Stack ‘

Automatic variables (local to a function's scope), caller’s return address, etc.
(grows towards lower memory addresses)

Text
Binary image of the process (e.g, /bin/1s)

oooooooooo

0000000000

0x00000000

14



# t National Yang Ming Chiao Tung University

X
AN
‘ig-r Computer Architecture & System Lab

In-Memory Layout of a Process (4/6)

3] OXFFFFFFFF

e BSS segment
o Uninitialized data segment e |
o This segment starts at the end of D
the data segment
o Contains all global and static variables Ty T
that are initialized to zero or dont have ~ M“‘Zm'i*";m’m““‘“
explicit initialization. E.g. static int i; _“'""""""‘"""‘"“‘"“
15

Read-write area

(@)



éi’ﬁ‘ National Yang Ming Chiao Tung University

_‘, 874 Computer Architecture & System Lab

In-Memory Layout of a Process (5/6)

1GB{

Stack
o Locate in the higher memory
addresses right below the OS
kernel space
o Could switch the stack and heap?
o Store all the automatic variables
= Parameters passed as input to the function
= The caller’s return address

3 GB —

OS Kernel Space
User code cannot read from nor write to these addresses,
otherwise resulting In 2 Segmentation Fault

‘ Stack ‘

Automatic varables (local to a function's scope), caller’s return address, etc.
(grows towards lower memory addresses)

Dynamic memory aliocation through malloc/new free/delete
(grows towards higher memory addresses)

BSS
Uninitialized static variables, filled with zeros

Text
Binary image of the process (e.3. /bin/1s)

o A stack pointer register tracks the top of the stack

OOOOOOOOOO

OOOOOOOOOO

oooooooooo

16



LY v
I '\*

National Yang Ming Chiao Tung University

Computer Architecture & System Lab

(grows towards lower memory addresses)

In-Memory Layout of a Process (6/6)
A= —

° Heap
Dynamic memory allocation usually takes
Mmmwtnmmmw;mzm/m

3 GB —

0000000000

place
Managed by malloc/new, free/delete T

0x00000000

(@]

Use the brk and sbrk system calls to

(@)

adjust its size

17



X %% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Outline

e Program vs. Process

e In-Memory Layout of a Process
e Process Stack

e Process ldentifier (PID)

e Process Control Block (PCB)

e Process Creation

e Threads




X ,/1 National Yang Ming Chiao Tung University
AT d 1N
14 Computer Architecture & System Lab

Process stacks

o Kernel vs. user space stack

o Kernel stack
= Inthe kernel space
= During the syscall, the kernel stack of
the running process is used
= The size of the kernel stack is configured
during compilation and remain fixed.
« Two pages (8KB) for each thread
= When the process is executing user insn
o Only its user stack is in use
o Why is a separate kernel stack used?

Kernel (Text + Data)

Kernel stack
for process

Heap

User stack
for process

Data

Text
(instructions)

19



X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Kernel (Text + Data)

Process stacks

o Why is a separate kernel stack used? *;E"'E' stz
i . i or process
o Separation of privileges and security
o The kernel cannot trust the user space stack Heap

pointer to be valid nor usable
. User stack
o The kernel can execute even if a process has FoTIrOeaes

wreck its user stack Data
e Does each process have its own kernel
stack? Uzds

(instructions)

o Each thread has its own kernel stack




X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Process stacks

« How to know the size of user space

stack?

o We can change the user stack rather than
kernel stack

3192
32768

unlimited

Kernel (Text + Data)

Kernel stack
for process

Heap

User stack
for process

Data

Text
(instructions)

21



X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Process stacks

« How to switch in/out kernel/process

stack?
o A process makes a system call by execute
RISC-V ecall instruction

= Raise the hardware privilege level

= Change the PC to a kernel-defined entry
point

= Switch to a kernel stack and exec. kernel
Instructions that implement system calls

Kernel (Text + Data)

Kernel stack
for process

Heap

User stack
for process

Data

Text
(instructions)

22



X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Process stacks

« How to switch in/out kernel/process

stack?
o A process execute the sret instruction
= Lowers the hardware privilege level
= Resumes executing user instructions
just after the system call instruction

Kernel (Text + Data)

Kernel stack
for process

Heap

User stack
for process

Data

Text
(instructions)

23



X i% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Outline

e Program vs. Process

e In-Memory Layout of a Process
e Process Stack

e Process Identifier (PID)

e Process Control Block (PCB)

e Process Creation

e Threads




#Z % National Yang Ming Chiao Tung University

Computer Architecture & System Lab

Process identifier (PID) (1/2)
e Process identifier (PID)

Each process has a unique PID

o PIDs in Linux are of type pid_t (32-bit integer)
o The default maximum number PIDs I1s 32768

(/proc/sys/kernel/pid_max)
and you can set the value higher on 64-bit systems (up to
222 = 4,194,304 (PID_MAX_LIMIT)

- The kernel uses a bitmap to keep track of PIDs in use and

assign a unique PID for new processes

- PID eventually repeats because all the possible numbers

are used up and the next PD rolls or starts over



X f\ National Yang Ming Chiao Tung University

‘Eg-r Computer Architecture & System Lab

Process identifier (PID) (2/2)

o« Which process is PID 0?

o The sched process

PPID stands for Parent
Process ID

o Responsible for paging and is a part of the kernel
o The Init process owns PID1 and is responsible for starting and

shutting down the system

5 ps —eaf
UID FID FPID C STIME TTY TIME CMD
| root 1 @ @ Feb25 ? E0:80:85 /sbin/init splash |
root 2 @ @ Feb2s ? 90:00:80 [kthreadd]
root 3 2 @ Feb2s ? 00:00:00 [rcu_gp]
root 4 2 @ Feb2s ? @0:00:00 [rcu_par_gp]
root 9 2 @ Feb2s ? 00:00:00 [mm_percpu_wq]
root 1@ 2 @ Feb2s ? @@:80:80 [rcou_tasks_rude_] 26



X %% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Outline

e Program vs. Process

e In-Memory Layout of a Process
e Process Stack

e Process ldentifier (PID)

e Process Control Block (PCB)

e Process Creation

e Threads




§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

_‘, 874 Computer Architecture & System Lab

Process Control Block (PCB) (1/2)

o« Process Control Block (PCB)

o Used to track the process’s execution status

o Contains process state, program counter, stack pointer ...

o All this information is used when the process is switched from
one state to another

« What is the process table?

o The process table is an array of PCBs
o Contains the information for all of the current processes in the
system




X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Process Control Block (PCB) (2/2)

Pointer
Process Stat

Process Number

o Process Control Block (PCB) Program Counter
o Pointer: stack pointer Registers
o Process state Memory Limits
o Process number: PID Open File Lists
> Program counter: the address of the next Mise Accountin

O

(@)

(@)

Instruction that is to be executed for the process  process Control Block
Register: store the values used when the process is

scheduled to be run

Memory limits: page table, segment table

Open files list: the list of files opened for a process ’



X %% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Outline

e Program vs. Process

e In-Memory Layout of a Process
e Process Stack

e Process ldentifier (PID)

e Process Control Block (PCB)

e Process Creation

e Threads




National Yang Ming Chiao Tung University
Computer Architecture & System Lab

Z
2l

4y

Process Creation (1/4)

e Using fork()
system call

child|process successfully created!
child_PID = 31497, parent_PID = 31496

parentlpmceas successfully created!
child_PID = 31496, parent_PID = 31491

pid_t PID = fork( );

#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
int main( ){
pid_t child _pid;
child pid = fork (); // Create a new child process;

if (child pid < @) {
printf("fork failed");

return 1;
else if (child pid == @) {

1
printf ("child process successfully created

v

");
printf ("child _PID = %d,parent_PID = %d

getpid(), getppid( ) );
1 else {
wait (NULL);
printf ("parent process successfully created!
||}3
printf ("child PID = %d, parent_PID = %d", getpid( ), getppid( ) );
T
return @;
31



X ,ﬁ\ National Yang Ming Chiao Tung University

=337
"Eg-r Computer Architecture & System Lab

Process Creation (2/4) |

o Making a copy of a process is o
calling forking i
o Parent (is the original) o

o Child (is the new process)
o Child is an exact copy of the parent

e When the fork is invoked

o All pages are shared between Child
parent and child =
o Easily done by copying the parent’'s
page table

Physical Memory

http://www.cse.iitm.ac.in/~chester/courses/160_os/slides/5_Processes.pdf 32



§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

_‘, 874 Computer Architecture & System Lab

Process Creation (3/4)

e How can the process of cloning overhead be
reduced?
o Copy-on-write (COW)
- When data in any of the shared pages changes, OS intercepts

and makes a copy of the page
o Thus, parent and child will have different copies of this page

e Why does COW work?
o Copying each page from parent and child would incur
significant disk swapping -> huge performance penalties
o Postpone copying of pages as much as possible

33



X

,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Process Creation (4/4)
« How COW works ?

O

O

O

O

O

When forking, the kernel makes COW pages as read-only

Any writing to the pages would cause a page fault

The kernel detects that it is a COW page and duplicates the page
Pages from shared libraries, shared between processes

E.g. printf() implements in shared libraries

Process A Process B
printf()
> printf() — printf()

34
virtual memory physical memory virtual memory



National Yang Ming Chiao Tung University

%%:/IP Computer Architecture & System Lab
Some Processes (1/4)
' 1. An orphan
- Zombie PrOCess process is formed
Execution when its parent
[pm,,t ,,mm,] dies while thg
[ e — ] process continues
fork() to execute
> 2. A zombie
process is a
process that has

+++++++++++++++ Y et
Parent finished
execution (blocked) . .
+++++++++++++++++++++++++++++++++++++ ¥ terminated but its
Child terminated, 1 I
e entry is there in
the system
35

Zombie process formation



X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Some Processes (2/4)

e ZOmbie process

o A process which has finished the execution but still has entry in the
process table

o How are they formed?

= When a parent fails to wait for its terminated child process
o How can zombie processes be prevented in a program?
= Ensuring the parent process waits for its child processes
= wait() system call is used for the removal of zombie processes

= wait() call ensures that the parent doesn't execute or sits idle till
the child process is completed.




[/ A C program to demonstrate Zombie Process.
National Yang Ming Chiao Tung University

Computer Architecture & System Lab
#include <stdlib.h>»

#include <sys/types.h>

Some Processes (3/4) #include <unistd.h>

e ZOmbie process " main()
© The Chlld proceSS // Fork returns process id in parent process
completes through

exit() system call

pid_t child_pid = fork();

The child process // Parent process
Issues ‘SIGCHLD’ R
to the parent teep(60);
The child’s exit // Child process
status is never slse .
read by the parent

return @;




X ,ﬁ\ National Yang Ming Chiao Tung University

=337
‘Eg-r Computer Architecture & System Lab

Some Processes (4/4)

« Orphan process
o Processes that are still running even if their parent process has

been terminated or finished.
- Why do we have the orphan process?
= Intentional orphaned: run in the background without any
manual support
= Unintentional orphaned: when the process crashes or
terminates

38



§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Outline

e Program vs. Process

e In-Memory Layout of a Process
e Process Stack

e Process ldentifier (PID)

e Process Control Block (PCB)

e Process Creation

e Threads




X

=\§{1\ National Yang Ming Chiao Tung University

_‘, 874 Computer Architecture & System Lab

Thread (1/2)

o A thread is the unit of execution within a process
o Each thread has its own stack
o All the threads in a process share the heap
o Threads share the same address space as the process
= easy to communicate between the threads

40



X ,ﬁ National Yang Ming Chiao Tung University

=3\p7 '\
‘ig-r Computer Architecture & System Lab

Thread (2/2)

o A thread is the unit of execution within a process

Single Thread Multi Threaded

[Registers][ Stack ] [Registers” Stack ] [Registers][ Stack }

R

Thread

Thread
Thread



X$7 & National Yang Ming Chiao Tung University

=E3471N
‘,%-r Computer Architecture & System Lab

Takeaway Questions

e Which process is PID 07
- (A) sched
- (B) init
- (C) top
o A thread has its own?
- (A) Heap
- (B) Stack
- (C) Reqister

42



#Z % National Yang Ming Chiao Tung University
NP2 -
874 Computer Architecture & System Lab

Takeaway Questions

o What is the parent PID of a zombie process?
- (A)1
- (B)O
o (C) Can’t be determined
o Which process is the parent of a zombie process whose

parent has terminated?
o (A) sched

- (B) init

o (C)top

43



X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Takeaway Questions

o Question: the kernel can address 1 GB of
virtual addresses, translating to a maximum
1 GB of physical memory.
e Answer:
- 2G/2G, 1G/3G split
- Physical Address Extension (PAE)
allows processors to access physical
memory up to 64 GB

————————————

------------

————————————

————————————

44



