
Operating System
Capstone

Lecture 3: Compiler, Assembler,
Linker, Loader
Tsung Tai Yeh

Tuesday: 3:30 – 5:20 pm
Classroom: ED-302

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
UC Berkeley, CS 61 C, Great ideas in computer architecture (Machine structures),
2020
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Christopher Hallinan, Embedded Linux Primer, A Practical Real-World Approach,
Prentice Hall, 2010

2

Outline

• Translation
• Compiler
• Assembler
• Linker
• Loader
• Example

3

C program: foo.c

Compiler

Assembly program: foo.s

Assembler

Object: foo.o

Linker

Executable: a.out

Loader

Memory

Lib

Translation vs. interpretation

• How do we run a program written in a source language ?
• Interpreter: directly executes a program in the source language
• Translator: converts a program from the source language to an

equivalent program in another language

• Directly interpret a high level language when efficiency is not
critical

• Translate to a lower level language when increased
performance is desired

4

Translation vs. interpretation

• Generally easier to write an interpreter
• Interpreter closer to high-level, so can give better error

messages (e.g. Python)
• Interpreter is slower (~10x), but code is smaller (~2x)
• Interpreter provides instruction set independence: can run

on any machines

5

Translation vs. interpretation

• Translated/compiled code almost always more efficient and
therefore higher performance
• Important for many applications, particularly operating systems

• Translation/compilation helps “hide” the program “source”
from the users
• One model for creating value in the marketplace

(e.g. Microsoft keeps all their source code secret)
• Alternative model, “open source”, creates value by publishing the

source code and fostering a community of developers

6

C Translation

• Recall:
• A key feature of C is that it allows you to compile files separately,

later combining them into a single executable

• What can be accessed across files ?
• Functions
• Global variables

7

Compiler

• Input:
• High-level language (HLL) code (e.g. C, Java in files such as foo.c)

• Output:
• Assembly language code (e.g. foo.s for RISC-V)

• Note that the output may contain pseudo-instructions
• In reality, there’s a preprocessor step before this to handle

#directives

8

Assembler

• Input
• Assembly language code (e.g. foo.s for RISC-V)

• Output
• Object code (True assembly), information tables (e.g. foo.o for

RISC-V)
• Object file

• Reads and uses directives
• Replaces pseudo-instructions
• Produces machine language

9

Assembler directives
• Give directions to assembler, but do not produce machine

instructions
• .text: Subsequent items put in user text segment

• It is where the instruction codes are declared within the executable
program

• .data: Subsequent items put in user data segment
• Declares data elements that are declared with an initial value

• .globl sym: declares sym global and can be referenced from other
files

• .asciiz str: create an ASCII string in memory determinated by the
null character (‘\0’)

• .word w1…wn: store the n 32-bit quantities in successive memory
words

10

Pseudo-instruction replacement

11

Real
addi t0, t1, 0
sub t0, zero, t1
addi t0, zero, imm
xori t0, t1, -1
beq t0, zero, loop
lui t0, str[31:12]
addi t0, t0, str[11:0]

Pseudo
mv t0, t1
neg t0, t1
li t0, imm
not t0, t1
beqz t0, loop
la t0, str

Producing machine language

• Simple cases
• Arithmetic and logical instructions, shifts, etc.
• All necessary info contained in the instruction

• What about branches and jumps ?
• Branches and jumps require a relative address
• Once pseudo-instructions are replaced by real ones, we know by

how many instructions to branch, so no problem

12

Producing machine language

• “Forward Reference” problem
• Branch instructions can refer to labels that are “forward” in the

program

• Solution: Make two passes over the program

13

or s0, x0, x0
L1: slt t0, x0, a1

beq t0, x0, L2
addi a1, a1, -1
j L1

L2: add t1, a0, a1

Two passes overview

• Pass 1
• Expands pseudo instructions encountered
• Remember position of labels
• Take out comments, empty lines, etc.
• Error checking

• Pass 2
• Use label positions to generate relative addresses

(for branches and jumps)
• Outputs the object file, a collection of instructions in binary code

14

Producing machine language

• What about jumps to external labels ?
• Requiring knowing a final address
• Forward or not, can’t generate machine instruction without

knowing the position of instructions in memory

• What about reference to data ?
• la gets broken up into lui and addi
• These will require the full 32-bit address of the data
• These can’t be determined yet, so we create two tables

15

Symbol table

• List of “items” that may be used by other files
• Each file has its own symbol table

• What are they ?
• Labels: function calling
• Data: anything in the .data section
• Variables may be accessed across files

• Keeping track of the labels fixes the forward reference
problem

16

Symbol table example

17

1 #include <stdio.h>
2 extern int bar();
3 extern int dec;
4 int main() {
5 char *output = “Here”;
6 static int num = 7;
7 int i = 5;
8 while (i > 0) {
9 i --;
10 int temp = bar(num);
11 printf(“%d\n”, temp);
12 }
13 }

Symbol Type
bar U
dec U
main T
“Here” D
num D
printf U
“%\n” D

U: undefined indicates the external file reference
T: .Text section
D: .Data section

Relocation table

• List of “items” this file will need the address of later
(currently underdetermined)
• E.g. functions not defined in this file’s text segment

• What are they ?
• Any external label jumped to: jal or jalr

• Internal
• External (including library files)

• Any piece of data
• Such as anything referenced in the data section

18

Relocation table example

19

1 #include <stdio.h>
2 extern int bar();
3 extern int dec;
4 int main() {
5 char *output = “Here”;
6 static int num = 7;
7 int i = 5;
8 while (i > 0) {
9 i --;
10 int temp = bar(num);
11 printf(“%d\n”, temp);
12 }
13 }

Line Instr. Dependency
5 MV “Here”
10 LD Num
10 BR bar
11 MV “%d”
11 BR printf

Object file format (ELF)

• Object file header:
• size and position of the other pieces of the object file

• Text segment
• The machine code

• Data segment
• Data in the source file (binary)

• Relocation table
• Identifies lines of code that need to be “handled”

• Symbol table
• List of this file’s labels and data that can be referenced

• Debugging information 20

Header

Text
Data

Symbol Table

Relocation
Table

Debug Info

Linux ELF

Executable and Linkable Format (ELF)
• The ELF object file contains the following

information
• ELF header
• Program header

• Linker reads it on program loading to search for
necessary sections

• Section header
• For program analysis through “readelf”

• The section contains segments
• .text (code) segment: store CPU instructions
• .data segment:

• Initialized variables: global/static variables
• Read-only area (constant variable), read-write area

• .bss: store uninitialized data 21

ELF header
Program header

table
.text

.data

.bss
Section header

table

…

Case study: memory segment

22

• Demonstrate memory segment

• Assume our computer has 256 MB RAM
• The process called hello is executing somewhere in high RAM just above the

256 MB boundary
• The stack address is roughly halfway into a 32-bit address space
• The virtual address were assigned by the kernel and are backed by physical

RAM somewhere within 256 MB range of available memory

root@amcc:~# ./hello
Hello, World! Main is executing at 0x100000418
This address (0x7ff8ebb0) is in our stack frame
This address (0x10010a1c) is in our bss section
This address (0x10010a18) is in our data section

ELF header

23

ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x4004b0
Start of program headers: 64 (bytes into file)
Start of section headers: 16112 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 9
Size of section headers: 64 (bytes)
Number of section headers: 30
Section header string table index: 29

readelf –h study

define EI_NIDENT 16

typedef struct {
unsigned char
e_ident[EI_NIDENT];
Elf64_Half e_type;
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry;
Elf64_Off e_phoff;
Elf64_Off e_shoff;
Elf64_Word e_flags;
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;
} Elf64_Ehdr;

1. All ELF object
files start with
ELF header

2. e_shoff: the
location of the
section header

3. e_shnum is the
number of
section header
entries

ELF object file
data structure

ELF sections
• ELF sections contain:

• Binary executable code
• All binary executable code goes into the .text section

• Code for initialized variables
• Are grouped in the .data section

• Code for uninitialized variables
• Are grouped in the .bss section

• Constant strings
• Are grouped in .shstrtab section

• Information about the variable and function names used in the program
• Go in .symtab (symbol table)

• Debug information
• In .debug section

24

Using “objdump –d study” to analyze
each section of the ELF file

ELF program header

• The ELF program header indicates which ELF section goes to
a particular memory location
• e_phoff provides the offset at which the ELF program header is

presented in the ELF file
• e_phnum is the number of program header entries
• The size of each entry is e_phentsize
• “readelf –l study” to see the program header information of

study.c

25

Linker

• Input
• Object code files, information tables

(e.g. foo.o, lib.o for RISC-V)
• Output

• Executable code (e.g. a.out for RISC-V)
• Combines several object (.o) files into a single executable

(“linking”)
• Enables separate compilation of files

• Changes to one file do not require recompilation of whole
program

26

Linker

27

Text 1
Data 1
Info 1

Text 2
Data 2
Info 2

Object file 1

Object file 2

Relocated text 1
Relocated text 2
Relocated data 1
Relocated data 2

Linker

Linker

• Take text segment from each .o file and put them together
• Take data segment from each .o file, put them together, and

concatenate this onto end of text segments
• Resolve references

• Go through relocation table; handle each entry
• i.e. fill in all absolute addresses

28

Static linking
• Static linking

• Copy all the libraries required for the program into the final
executable file

• The linker combines the relevant libraries with the program code
to resolve external references (.a file)

• Large executable file because it is connected with other files
• Archive a static library

• gcc hello.c –c; ar crsv liboperator.a hello.o
• gcc –static hello.c -loperator

• Example
• gcc main /usr/local/foo/lib/liboperator.a –o main
• gcc main.c –L /usr/local/foo/lib –loperator –o main 29

Dynamic linking

• Dynamic linking
• The linking occurs at run time when the executable file and

libraries are loaded to the memory
• Dynamic shared objects

(.so file)
• There is only one copy of a

shared library is in the
memory

• Small executable file
against the one through
the static linking

30
https://hackmd.io/@ofAlpaca/r1L5Ecc_7?type=view

Three Types of Addresses

• PC-Relative addressing (beq, bne, jal)
• Never relocate
• External function reference (usually jal)

• Always relocate
• Static data reference (often auipc and addi)

• Always relocate
• RISC-V often uses auipc rather than lui so that a big block of stuff can be

further relocated as long as it is fixed relative to the pc
• auipc (Add Upper Immediate to Program Counter) instruction
• auipc is setting a0 to 0x20000004: a0 = PC + (imm20 << 12), PC =

0x10000004 and imm20 is 0x10000
31

int global;
int func(void) { return global; }

1. Assume absolute address of global:
0x20000004

2. The PC of the first instruction in func is
0x10000008

func:
auipc a0, 0x10000
lw a0, 0x004(a0)

Absolute addresses in RISC-V

• Which instructions need relocation editing ?
• J-format: jump/jump and link

• Loads and stores to variables in static area, relative to global
pointer

• PC-relative addressing preserved even if code moves

32

Resolving references

• Linker assumes the first word of the first text segment is at
0x10000 for RV32

• Linker knows
• Length of each text and data segment
• Ordering of text and data segments

• Linker calculates
• Absolute address of each label to be jumped to (internal or

external) and each piece of data being referenced

33

Resolving references

• To resolve references
• Search for reference (data or label) in all “user” symbol tables
• If not found, search library files (e.g. printf)
• Once absolute address is determined, fill in the machine

appropriately

• Output of linker
• Executable file containing text and data (plus header)

34

Loader

• Input
• Executable code (e.g. a.out for RISC-V)

• Output
• <program is run>

• Executable files are stored on disk
• When one is run, loader’s job is load it into memory and

start it running
• In reality, loader is the operating system (OS)

• Loading is one of the OS tasks

35

Loader

• Reads executable file’s header
• determine size of text and data segments

• Creates new address space for program large enough
• hold text and data segments, along with a stack segment

• Copies instructions and data from executable file into the
new address space

36

Loader

• Copies arguments passed to the program onto the stack
• Initializes machine registers

• Most registers cleared, but stack point assigned address of 1st free
stack location

• Jumps to start-up routine that copies program’s arguments
from stack to registers and set the PC
• If main routine returns, start-up routine terminates program with

the exit system call

37

C.A.L.L. Example

38

Compiled Hello.c:Hello.s

39

Assembled Hellos: Linkable Hello.o

40

Linked Hello.o: a.out

41

Summary

• Compiler
• converts a single HLL file into a single assembly file (.c -> .s)

• Assembler
• Remove pseudo-instructions, converts assembly codes to machine

language, and create a checklist for linker (relocation table) (.s -> .o)
• Linker

• Combines several object files and resolves absolute addresses (.o -> .out)
• Enable separate compilation and use of libraries

• Loader
• Loads executable into memory and begins execution

42

