
IOC5226 Operating System Capstone

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

Lecture 1: Course Overview



Single-User Machines

● Hardware executes a single program

● The program can access directly all hardware resources 

in the machine

● The instruction set architecture (ISA) is the interface 

between software and hardware

● However
○ Most computer systems 

aren’t work like this !

2

Program

Hardware
(CPU, memory, hard drives, 

keyboards)

ISAs (RISC-

V, X86)



Operating systems

● Multiple executing programs share the machine

● Each program cannot access hardware resource directly

● An operating system (OS)
○ Control these programs how

they share hardware

● The application binary 

interface (ABI) is the 

interface between programs

and the OS

3

Program 1

Hardware
(CPU, memory, hard drives, 

keyboards)

ISAs (RISC-

V, X86)

Operating system

Program N …
Application 

Binary 

Interface 

(ABI)



Process vs. Program

● A program is a collection of instructions

● A process is an instance of a program that is being 

executed

○ Include program code + other state (registers, memory, and 

other resources)

● The OS kernel is a process

with special privileges

4

Process 1

Hardware
(CPU, memory, hard drives, 

keyboards)

ISAs (RISC-

V, X86)

OS Kernel

Process N … Application 

Binary 

Interface (ABI)



Goals of operating systems

● An operating system is to support several activities at 

once
○ Many running program as processes

● Protection and privacy
○ Process multiplexing

○ Processes cannot access each other’s data (isolation)

● Abstraction
○ OS hides details of underlying hardware

○ Hardware resource manager

5



Operating systems: The big picture

● The OS kernel provides a private address space

to each process
○ Each process is allocated space in physical memory

by the OS

○ A process is not allowed to access the memory

of other processes

● The OS kernel schedules processes into the CPU
○ Each process is given a fraction of CPU time

○ A process cannot use more CPU time than allowed

○ Context switch

6

OS Kernel 

memory

Process 1 

memory

Process 2 

memory

free

free

Physical 

memory

…



How does OS work?

7



Implementing an OS

● The OS works as a virtual machine (VM) to each process

○ Each process believes it runs on its own machine

● Virtual machines can be implemented entirely in software, but 

at a performance cost

○ For instance, python programs are 10 – 100x slower than native 

Linux programs because python interpreter overheads

● We want to support operating systems with minimal overheads

○ Need hardware support for virtual machine

8



User and kernel mode

● Two modes of execution: user and kernel (supervisor)
○ OS kernel runs in supervisor mode

○ All other processes run in user mode

● In the kernel mode
○ Privilege instructions and register are available

○ Interrupts and exceptions to safely transition from user to supervisor 

mode

● Virtual memory
○ Provide private address spaces and abstract the storage resources 

of the machine

9



What services does an OS kernel provides?

● Processes

● Memory allocation

● File systems 

● Security

● Others: users, networking, terminals, etc.. 

10



Process and thread

● Each process has a thread of execution

○ The state of a thread (local variables, function call return 

address) is stored on the thread’s stacks

○ Each process has two stacks: a user stack and a kernel stack

11
https://www.geeksforgeeks.org/difference-between-process-and-thread/



System call

12



What is the interrupt in the OS ?

● An interrupt is a hardware or software signal and notifies the 

processor that a critical process needs urgent execution

● Using to interrupt present working process

13



What is the interrupt in the OS ?

● Interrupt Service Routine (ISR) 
○ A specific bus control line handles interrupts in I/O devices

● A CPU contains a specific interrupt pin known as INT pin for the 
interrupt

○ The INT pin connects hardware devices such as keyboards, NIC 
cards

○ OS can invoke the keyboard interrupt handler routine to do interrupt
○ Multiple hardware devices share a single INT pin using an 

interrupt controller
○ To determine which device produced the interrupt, the processor 

contacts the interrupt controller. 

14



Difference between the trap and interrupt?

15

Trap Interrupt

A signal emitted by a user program A signal emitted by a hardware 

device

Synchronous process Asynchronous process

Can occur only from software device Can occur from a hardware or a 

software

Only generated by a user program 

ISA

Generated by an OS and user 

program ISA

Traps are subset of interrupts Interrupts are superset of traps

Execute a specific functionality in the 

OS and gives the control to the trap 

handler

Force the CPU to trigger a specific 

interrupt hander routine

https://www.baeldung.com/cs/os-trap-vs-interrupt



Exceptions

● Exception: Event that needs to be processed by the OS 

kernel. The event is usually unexpected or rare

16

Ii-1

Ii

Ii+
1

HI
1

HI
2

HI
n

Exception handler 

(in OS kernel)



Causes for exceptions

● Exceptions

○ Synchronous events generated by the process itself

○ E.g. illegal instructions, divide-by-0, illegal memory address

● Interrupts

○ Asynchronous events generated by I/O devices

○ E.g. timer expired, keystroke, packet received, disk transfer 

complete

17



Handling exceptions

● When an exception happens, the processor

○ Stop the current process at instruction Ii, completing all the instructions up to Ii-1
(precise exceptions)

○ Saves the PC of instruction Ii and the reason for the exception in special 

(privileged) register

○ Enable supervisor mode, disable interrupts, and transfers control to a pre-

specified exception handler PC

● After the OS kernel handles the exception, it returns control to the process at 

instruction Ii
○ Exception is transparent to the process

● If the exception is due to an illegal operation by the program that cannot be 

fixed, the OS aborts the process
18



Case study 1: CPU scheduling

● The OS kernel schedules processes into the CPU
○ Each process is given a fraction of CPU time

○ Enabled by timer interrupts

○ Kernel sets timer, which raises an interrupt after a specified time

19

0 1

0

3

0

6

0

8

0

110

kernelProcess 

running 

in the 

CPU

Set the timer to fire in 20 ms

Load states (regs, pc, addr space) of process 1

Return control to process 1

Time (milliseconds)



Case study 1: CPU scheduling

● The OS kernel schedules processes into the CPU
○ Each process is given a fraction of CPU time

○ Enabled by timer interrupts

○ Kernel sets timer, which raises an interrupt after a specified time

20

0 1

0

3

0

6

0

80 110

kernelProcess 

running 

in the 

CPU

Set the timer to fire in 20 ms

Load states (regs, pc, addr space) of process 1

Return control to process 1

Time (milliseconds)

Process 1

Timer interrupt -> exception handler runs

Save state of process 1

Decide to schedule process 2

Set timer to fire in 30 ms

Load state of process 2, return control to it

Process 2 Process 1 Process 2



Kernel organization

● Monolithic kernel
○ Entire operating system resides in the kernel space
○ The implementations of all system calls run in kernel mode
○ E.g. Unix, Linux

● Good
○ Easy for subsystems to cooperate
○ One cache shared by file system and virtual memory

● Bad
○ Interactions are complex
○ Mistake is fatal because an error in kernel model will result in the kernel 

to fail
○ No isolation within kernel

21



Kernel organization

● Microkernel
○ Move most OS functionality to user-space
○ Kernel can be small, mostly IPC
○ The hope:

■ Simple kernel can be fast and reliable 

● Microkernel wins:
○ Fast IPC
○ separate services force kernel developers to think about modularity

● Microkernel losses:
○ kernel can't be tiny: needs to know about processes and memory
○ it's hard to split the kernel into lots of service processes!

22

Shell File server
User 

space

Kernel 

space

Message 

passingmicrokernel


