
Interrupt

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy 

pieces. WISC

2



Outline

● Interrupt

● Hardware Interrupt

● Interrupt Workflow

● Software Interrupt -- Exception

● Interrupt Vector

● Interrupt Descriptor Table 

● Interrupt Stack Table

3



What is an interrupt? 

4

● What is an interrupt?
○ An interrupt is a hardware signal from a device to the CPU

○ Tells the CPU that the device needs attention

○ CPU should stop performing what it is doing and respond to 

the device

● Interrupt handler?
○ Service the device and stop it from interrupting

● What kinds of interrupts do we have?
○ Hardware interrupt

○ Software interrupt



What is an interrupt? 

5

● What is the job of an interrupt handler?

○ Save additional CPU context (written in assembly)

○ Process interrupt (communicate with I/O devices)

○ Invoke kernel scheduler

○ Restore CPU context and return (written in assembly)



What is an interrupt? 

6

● Synchronous interrupt

○ Produced by the CPU control unit while executing 

instructions

○ The control unit issues interrupt only after terminating the 

execution of an instruction

● Asynchronous interrupt

○ Generated by other hardware devices at arbitrary times with 

respect to the CPU clock signals



What is an interrupt? 

7

● When an interrupt occurs …

○ Preempt current task

■ The kernel must pause the execution of the current 

process

○ Execute interrupt handler

■ Search for the handler of the interrupt and transfer 

control

○ After the interrupt handler completes execution

■ The interrupted process can resume execution



Hardware Interrupt

8

● Why do we need the hardware interrupt?

○ Several devices connected to the CPU

■ E.g. keyboards, mouse, network card, etc.

○ These devices occasionally need to be serviced by the CPU

■ Tell the CPU that a key has been pressed

■ Interrupts can occur at any time

■ Need a way for the CPU to determine when a device 

needs attention



External Interrupt

9

● When do we need interrupt?

○ When the keypad is pressed

○ The keypad controller registers this information

○ This information requires the CPU attention and perform 

some actions

○ There must be a way

to inform the CPU that

peripheral needs its

attention



External Interrupt

10

● The keypad controller contains two 8-bit register

○ The data register

■ Indicates the last key pressed on the keypad

○ The status register

■ Indicates the 

keypad’s current

status

■ Its LSB bit is the REDAY bit that indicates whether the 

keypad was pressed since the last time the CPU read a 

value from the data register



External Interrupt

11

● The keypad controller contains two 8-bit register

○ The status register

■ Its second LSB bit is called the OVRN bit that indicates 

whether the keypad was passed more than once

○ Data overrun (OVRN)

■ The keypad controller has only one data register

■ If keypad is pressed more than once before the CPU 

gets the chance to read the data register, one or more 

key values are lost

■ How to resolve this OVRN problem?



External Interrupt

12

● To prevent data overruns

○ Copy the data register value to a FIFO queue located at the 

main memory as soon as the keypad is pressed

○ FIFO queue is an 8-element circular buffer and two pointers

■ Pointers points to queue’s head and tail

■ Whenever a key is pressed, its value is pushed into the 

queue’s tail

■ CPU must execute this routine as soon as possible to

prevent data overruns



External Interrupt

13

● There are two main methods to direct the CPU handle 

events caused by external hardware

○ Polling

○ Hardware interrupt



Polling

14

● Polling

○ The CPU periodically checks whether

peripherals need attention

○ Assuming the peripheral program is 

designed 

○ Whenever there is a peripheral that needs attention, the 

program invokes a routine to handle the peripheral 



Polling

15

● Polling

○ keypadPressed() 

■ checks if the keypad READY bit 

is set

○ getKey():

■ Read the contents of the data register

○ pushKeyOnQueue()

■ Push it to the queue’s tail

○ Compute ()

■ Represents the work that is done by the program



Polling

16

● Polling

○ The Compute() affects the frequency

in which the keypad is checked

○ The longer Compute() -> increase

the occurring data overrun

○ Could we directly remove Compute()?

○ Polling is usually not the best approach to check for and

handle peripheral events, why?



Hardware Interrupt

17

● Hardware interrupt

○ Allows hardware to inform the CPU they require attention

○ Caused by external (non-CPU) hardware such as 

peripherals to inform the CPU they require attention

○ The peripheral sends an interrupt to the CPU



Hardware Interrupt

18

● Hardware interrupt

○ Once the CPU receives this signal

■ The CPU saves the context of the current program

■ Invokes a routine to handle the hardware interrupt

■ Restores the context of the saved program and 

continues executing



Hardware Interrupt

19

● Hardware interrupt

○ The CPU contains an interrupt pin and the keypad controller 

is connected to the CPU interrupt pin

○ The interrupt pin as an input pin

■ Informs the CPU whether or not there is an external 

interrupt

■ The CPU constantly monitors the interrupt pin and

interrupts the current execution flow to execute and ISR

■ The interrupt service routine (ISR) is a software routine 

that handle the interrupt



Hardware Interrupt

20

● Detecting external interrupt

○ Before fetching an instruction for execution

○ The CPU verifies if the interrupt.pin is set

○ If the CPU receives an interrupt signal & interrupts are

enabled

■ The CPU saves the program counter (PC) into the 

SAVED_PC register

■ Set the PC register with (ISR_ADDRESS) and disable 

interrupts by clearing the interrupt.enabled register

■ Then, the next instruction (ISR) will be fetched



Hardware Interrupt

21

● Invoking the proper ISR

○ Each peripheral usually requires a specialized routine to 

handle its interrupts

○ SW-only design, the ISR is responsible for

■ Identifying which peripheral interrupted the CPU

■ Invoking the proper routine to handle the interrupt

■ Upon an interrupt

● The CPU invokes a generic ISR doing above tasks

● The ISR may have to interact with all peripherals to 

find out which one is requiring the CPU attention



Hardware Interrupt

22

● Invoking the proper ISR

○ SW-only design pros & cons

■ Simplifies the CPU hardware design

■ The ISR may take a long time trying to figure out which

peripheral interrupted the CPU



Hardware Interrupt

23

● Programmable Interrupt Controller (PIC)
○ Responsible for sequential multiple

interrupt requests from devices

○ Advanced PIC (APIC)

■ Local APIC

● Located on each CPU core

● Handle interrupts from 

APIC-timer, thermal sensor

■ I/O APIC

● Distributed external interrupts among the CPU cores



Hardware Interrupt

24

● 8259 PIC relays up to 8 interrupts to the CPU
○ Devices raise interrupts by an ‘interrupt request’ (IRQ)
○ CPU acknowledges and queries 

the 8259 to determine which 
device interrupted

○ Priorities can be assigned to each IRQ 
line

○ 8259s can be cascaded to support 
more interrupts

■ Two PICs and cascade buffer
■ IRQ2 -> IRQ9



Hardware Interrupt

25

● IRQ 0 to IRQ 15, 15 possible 

devices

● Interrupt types

○ Edge

○ Level

● Limitations

○ Limited IRQs

○ Multi-processor support limited

http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/6_Interrupts.pdf



Hardware Interrupt 

26

● Advanced PIC (APIC)

○ External interrupts are routed from peripherals to CPUs in 

multi-processor systems through APIC

○ APIC distributes and 

prioritizes interrupts to 

processors

○ APICs communicates 

through a special 3-wire 

APIC bus



Hardware Interrupt

27

● LAPIC
○ Receives interrupts from I/O APIC and routes it to the local 

CPU
○ Can also receive local interrupts such as thermal sensors, 

internal timers, etc.
○ Send and receive IPIs (Inter-processor interrupts)

■ IPIs are used to distribute interrupts between processors or 
execute system-wide functions like booting, load distribution, etc.

● I/O APIC
○ Present in the chipset (northbridge)
○ Used to route external interrupts to local APIC



Takeaway Questions

28

● Who can issue an interrupt?

○ (A) Network card

○ (B) GPU

○ (C) Keyboard

● How do peripherals tell the CPU to know their requests?

○ (A) External interrupt

○ (B) Polling

○ (C) Exception



Interrupt Vector (1/3)

29

● Interrupt vector

○ The processor uses a unique number for recognizing the type 

of interruption or exception

○ Each interrupt/exception provided a number

○ Number used to index into an interrupt descriptor table (IDT)

○ IDT provides the entry point into an interrupt/exception handler

○ 0 to 255 vectors possible



Interrupt Vector (2/3)

30

● Interrupt vector
○ 0 to 31 correspond to exception and nonmaskable

interrupts (NMI, handle non-recoverable error)
○ 32 – 47 are assigned to maskable interrupts caused by IRQs
○ 48 – 255 may be used to identify software interrupts

○ For example, Linux uses a 128 (0x80) vector that is used to 
make system calls to the kernel by other programs.

○ When a process in user mode executes int 0x80 assembly 
instruction, the CPU switches into kernel mode and starts 
executing the system_call() kernel function



Interrupt Vector (3/3)

31

● Processor generates exception



Interrupt Descriptor Table (IDT)

32

● Interrupt descriptor table
○ Stores entry points of the interrupts and exceptions handlers

○ The IDT entries are called gates

■ Interrupt gates

■ Task gates

■ Trap gates

○ The IDT is an array of 8-byte gates (256 entries) on x86 and 

16-byte gates on x86_64

○ Loaded the IDT with the null gates while transitioning into 

protected mode



Interrupt Descriptor Table (IDT)

33

● Interrupt descriptor table

○ Can be located anywhere in the linear address space

○ The base address of it must be aligned on an 8-byte boundary 

on x86, a 16-byte boundary on x86_64

○ The base address of IDT is store in IDTR register

■ LIDT/SIDT instruction to read/write IDTR register

■ The IDTR register is 48-bits on the x86



Interrupt Descriptor Table (IDT)

34

● The IDT entries (16 bytes on x86_64)

○ 0-15 bits as the base

address of entry point

of the interrupt handler

○ 16-31 bits as the base

address of the segment

selector

○ DPL (Descriptor Privilege

Level)



Interrupt Stack Table (IST)

35

● Interrupt stack table

○ New mechanism in x86_64

○ An alternative to legacy stack-switch mechanism

○ Unconditionally switches stacks when it is enabled and can be 

enabled for any interrupt

○ Seven IST pointers in the task state segment (TSS)

■ TSS contains information about a process

■ TSS is used for stack switching during the execution of an 

interrupt or exception handler



Interrupt Stack Table (IST)

36

● Stack switching

○ If the interrupt occurs when running in the user mode

■ The process switches from user stack to kernel stack

■ Then, switching to the interrupt stack

○ How to switch stack?

■ CPU should know the location of the new stack segment 

(SS) and ESP register

■ Done by task segment descriptor



Interrupt Stack Table (IST)

37

● Task state segment (TSS)

○ TSS is used to find the new stack

○ TSS resides in the memory

■ Processor register states -> used for task switching

■ I/O port permission bitmap -> specifies individual ports to 

accessible program

■ Inner-level stack pointer -> specifies the new stack pointer 

when a privilege level change occurs

■ Previous TSS link



Interrupts on RV32 I

38

● Control and Status Registers (CSR)

○ Special registers that expose the CPU status to the software

○ Allow the software to configure the CPU behavior

○ In RV32I ISA

■ mstatus CSR is a 32-bit register that exposes the current 

status of the CPU

■ csrrw rd, csr, rs1 instruction 

● Atomically swaps the contents of register a0 and CSR

■ csrr a0, mstatus instruction

● Copies the contents of the mstatus CSR into a0



Interrupts on RV32 I

39

● Interrupt related CSR registers

○ mstatus:

■ Provides information or control the interrupt handling

○ mcause (Machine Interrupt Cause):

■ Store the interrupt cause (a value that identifies whey an 

interrupt was generated)

○ mtvec (Machine Trap Vector)

■ Stores information that allows the CPU to identify the proper 

ISR



Interrupts on RV32 I

40

● Interrupt related CSR registers

○ mip (Machine Interrupt Pending)

■ Interrupts are pending (i.e., have been signaled but not 

handled by the CPU yet)

○ mepc (Machine Exception Program Counter):

■ The CPU saves the contents of the PC register into mpec

○ mscratch (Machine Scratch)

■ Is visible in machine mode



Interrupt Handling Flow

41

● How does the CPU handle external interrupts

○ 1. Check mstatus.MIE to verify if the CPU accept interrupts

○ 2. if mstatus.MIE = 1, the CPU first saves mstatus.MIE to

mstatus.MPIE, then clear it so that new interrupts are ignored

○ 3. The CPU saves PC into mepc CSR and set mcause CSR

○ 4. ISR changes the PC register to point to the first instruction of 

the ISR



Interrupt Handling Flow

42

● Implementing an ISR
Point to the top of the 

previous program stack

ISR allocates space on

the ISR stack

Identify the interrupt 

source by mcause

CSR

Loading 

register’s value 

from ISR stack



Interrupt Handling Flow

43

● Enabling interrupt

○ Once peripherals that generate interrupt signals are configured

○ The ISR and IST stack are set

Enable mie.MEIE and 

mstatus.MIE to allow 

CPU to handle 

external interrupts



Interrupt Workflow

44



Interrupt Workflow

45



Interrupt Workflow

46

● Processing Interrupt
○ Device creates IRQ
○ PIC collects IRQs
○ PIC prioritizes IRQs
○ PIC issues interrupt to CPU
○ CPU saves interrupt states
○ CPU asks PIC interrupt number
○ CPU uses an interrupt vector number as an index to find IDT entry
○ ISR saves states in registers
○ Executing ISR
○ After completing, pass the EOI (End of Interrupt) command
○ Resume registers/iret command



ISA Privilege Level

47

● How to protect system from faulty or malicious user

programs?

● Privilege level

○ Define which ISA resources are accessible by the software

○ U: User/Application

○ S: Supervisor

○ M: Machine



Exceptions

48

● Exceptions

○ Events generated by the CPU in response to exceptional 

conditions when executing instructions

○ Exceptions usually trigger an exception handling

■ The exceptional condition may be dealt with before the CPU 

continue executing the program

○ Causes the CPU to redirect the execution flow to a system 

routine



Exceptions

49

● Exceptions

○ Causes the CPU to redirect the execution flow to a system 

routine

■ Save the current program context

■ Handle the exceptional condition

■ Restore the context of the saved program to continue the 

exception



Exceptions

50

● Exceptions

○ The exception handling flow is similar to the hardware interrupt

○ RISC-V CPU uses the same mechanism to handle both

interrupt and exceptions

○ The exception handling protects the system from illegal user

code operations

■ The hardware is configured by system software

■ Generate exceptions in case the privilege mode is set as

User/Application

■ The ISR may decide what to do with the user program



Software Interrupts

51

● Software interrupts
○ Events generated by the CPU when it executes special 

instructions

■ The environment call (ecall) and breakpoint (break) insns

■ Synchronous events that occur due to executing an insn

● Comparing to exception
○ Exception are only generated on exceptional conditions

○ Software interrupts are always generated when the CPU

executes special instructions



Software Interrupt

52

● Exception

○ Caused by an exceptional condition in the processor itself

○ An example of an exceptional condition is division by zero

○ Exiting a program with syscall instruction 

● Categories

○ Faults: an exception reported before the execution of a “faulty” 

instruction

○ Traps: an exception reported by the trap instruction

○ Aborts: an exception doesn’t always report the exact 

instruction which caused the exception



Summary

● Interrupt changes the sequence of instruction execution

● Exception occurs since the illegal operation

● Hardware interrupt – programmable interrupt controller

● Interrupt vector records interrupt commands

53



Takeaway Questions

54

● Which situations will raise the exception?

○ (A) External interrupt

○ (B) Software interrupt

○ (C) Divided by zero

● What are purposes of interrupt vector?

○ (A) Recognizing the type of interruption or exception

○ (B) Improve the performance of the CPU

○ (C) Raise the privilege of executed instructions


