3
a7+ Computer Architecture & System Lab

::\%// National Yang Ming Chiao Tung University

File System-|
|OC5226 Operating System Capstone

Tsung Tai Yeh
Department of Computer Science
National Yang Ming Chiao Tung University

%% National Yang Ming Chiao Tung University

;\ iy
14 Computer Architecture & System Lab

Acknowledgements and Disclaimer

e Slides were developed in the reference with
e MIT 6.828 Operating system engineering class, 2018
® MIT 6.004 Operating system, 2018
® Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy
pieces. WISC

§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Outline

o File system structures
- Inode
o Superblock ...
» Allocating data blocks
- Link file allocation
- Index file allocation
- Multi-level indexed file allocation

o Soft vs. hard link
o File I/O operations

N

a4 Computer Architecture & System Lab

File system layers

X %ﬁ\ National Yang Ming Chiao Tung University

e User’s viewpoint
o Objects: files, directories, bytes
o QOperations: create, read, write
delete, rename, move, seek
e Physical viewpoint
o Objects: sectors, tracks, disks
o Operations: seek, R/W block
e User <-> OS layer
o User library hides many details
o OS can directly R/W user data
e OS <-> Hardware
o 1/O reqisters, interrupts, DMA

User
User

Apps Libs

—

Open() | Close() [Read() |
Wirite()

Seek() | ReadBIk() | WriteBIk()

I/O Register Interrupt
DMA DMA

Disk Hardware

X

a4 Computer Architecture & System Lab

What do file system users need ?

e Persistence

o Disk provides basic non-volatile storage

o OS can enhance persistence via redundancy
e Speed: Fast access to data

o Handle random access efficiently

o OS can enhance performance via file caching
e Size: can store lots of data
e Sharing/protection (access control)

e Ease of use
o Basic file abstraction (names, offsets, byte streams, ...)
o Directories simplify naming and lookup

X %ﬁ\ National Yang Ming Chiao Tung University

'X$7 % National Yang Ming Chiao Tung University
=‘;§‘;'IP Computer Architecture & System Lab
File system abstractions

o File
o Basic container of persistent data

e Directory system
o Hierarchical naming relationships
o Directories are special “files” that index other files

e Common file access patterns
o Sequential: data processed in order, byte/record at a time
s Example: compiler reads a source file
o Random access: address blocks of data based on file offset
s Example: database searches
o Keyed access: address blocks based on “key” values
s Example: accessing hash table implemented by key-value

1 National Yang Ming Chiao Tung University
1-r Computer Architecture & System Lab

Common file system operations

o Data operations « Naming operations
o Create() o HardLink()
o Delete() o SoftLink()
> Open() > Rename()
> Close() o Attribute operations
- Read() o SetAttribute()
o Write() o GetAttribute()
- Seek(| Attributes include |

i owner, protection,
Iast accessed

By
2
=X

a4 Computer Architecture & System Lab

File system organization

iﬁ\ National Yang Ming Chiao Tung University

Data Region
|||||||I|mmmmm|mmmﬁmmmmmmm
15 16 23 24
® BIOCkS Data Region
. Divide the disk into WW@@RW@W@EEW@W@QFW@W
data blocks with commonly-used size of 4KB
e Inode
o The metadata of a file such as the size, access rights, modify time
etc.
o Inode tables — holds an array of on-disk inodes
o E.g. we use 5 out of 64
blocks for inodes |
, nodes . Data Region
© Aninode is commonly (1T i DD BDDIDDIDDD) DoDDDDDD
0 15 16 23 24
128 or 256 bytes Data Region
|D|D DIDIDIDIDID] [D]D]DID[DIDIDID] [D]D]D]DID[DIDID] [D]D[DIDID DIDID
39 40 47 48 55 56

https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf 8

By
2
=X

a4 Computer Architecture & System Lab

iﬁ\ National Yang Ming Chiao Tung University

File system organization Inodes Data Region
E_ IDIDIDIDIDIDIDIDI IDIDIDIDIDIDIDIDI IDIDIDIDIDIDIDIDI
° |n0de Data Reg|on

IDIDIDIDIDIDIDIDI IDIDIDIDIDIDIDIDI IDIDIDIDIDIDIDIDI IDIDIDIDIDIDIDIDI

o Assuming 256 bytes per 32
inode, a 4-KB block can hold 16 inodes, and 80 inodes in this diagram

o The number of inode denotes the maximum number of files we can
have in a file system

e Allocation structures (bitmap)

o Tracking whether inodes or data blocks are free or allocated

o Data bitmap (for the data region)

o Inode bitmap (one for the inode table)

o Each bit of a bitmap is used to indicate whether the data block is free (0)
or in-use (1)

https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf o

X ,1 National Yang Ming Chiao Tung University
=34
a4 Computer Architecture & System Lab

File system organization

._Inodes | Data Region
_ [DID] [D] [D] [DIDIDD)
o Superblock Blid I_I_I_I_I_I_I_I_IDDDDDDD1D51%DDDDDD2%£4DDDDDDD
. . . . Data Region
; Contalns.lnformatmn [DIDIDIDIDIDIDID] [DDIDIDIDIDIDID] [DIDIDIDIDIDIDD] Iﬁlﬁﬁlﬁlﬁlﬁlﬁlﬁl
about a file system 32 39 40 47 48 55 56

o E.g. the number of inodes and data blocks in the file system

e When mounting a file system, the OS reads
o The superblock first
o Initialize various parameters
o Attach the volume to the file-system tree
o When files within the volume are accessed, the system will know
exactly where to look for the needed on-disk structures

https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

10

X ,1 National Yang Ming Chiao Tung University
=34
a4 Computer Architecture & System Lab

File organization: Inode

, Inodes . Data Region
. I_I_I_I_I_I_I_I_IDDDDDDDD [DID]DID]DID]DID] I_I_I_I_I_I_I_I_IDDDDDDDD
e Inode (index node) o 15 16 23 24
Data Region
o HO|dSthemetadataf0f _[_|_|_|_|_|_]_|DDDDDDDDI_I_I_I_]_[_I_I_IDDDDDDDD|_|_|_|_|_]_[_I_]DDDDDDDD|_I_|_[_I_I_|_[_DDDDDDDD
39 40 47 48 55 56

a given file
o Contains all of the information that is needed about a file
o The length, permissions of a file, and the location of a file’s block

e |-number
o Used to calculate where on the disk the corresponding inode is

located
o E.g. the inode table as above takes 20 KB (five 4KB block)

https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf 1

X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

A file’s metadata (inodes)

e Name
o The only information kept in human readable form
e Identifier (inode number)
o A number that uniquely identifies the file within the file system
e Type
o File type (inode based file, pipe, etc.)
e Location
o Pointer to location of file on device
e Size
e Protection
o Access control info. Owner, group (r, w, X) permissions, etc.
e Monitoring

O

Creation time, access time, etc.

12

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

File organization: inode

The Inode Table (Closeup)
" iblock 0 ! iblock 1 1 iblock 2 1 iblock 3 ! iblock 4
0[1[2[3[1e[17[18[19[32[33[34[35/4e[49]50/51]64]65[66/67

e Read inode number 32

Super [TAIUNEBNINNNN - |5 |6 | 7 202122(23(36/37]36/39/52/53/54/5568/69]70]7
o Calculate the offset P P 5 (9 [1011[24]25[26[27(a0[41]42(a3/56(57[58/5972[73(74/75
. . . 12[13[14[15/28[29[3031(44[45[46/47/6061(62/6376|77|78/79
|nt0 the InOde reglon OKB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

o (32 * sizeof(inode)) = 8192
sizeof(inode) = 256

o Inode start at 12 KB (inodeStartAddr) in above case, thus, the
desired block of inodes: 20KB (12 + 8 KB)

o Assuming a disk sector is 512 bytes, to fetch the block of inode 32
= The file system issues a read to sector 20 x 1024 / 512 = 40 where (20 x
1024 bytes = 20KB)
s Blk = (inumber * sizeof (inode_t)) / blockSize;
Sector = ((blk * blockSize) + inodeStartAddr) / sectorSize;

https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf 13

X

=3\p7

f\ National Yang Ming Chiao Tung University

‘Eg-r Computer Architecture & System Lab

File system data structures

e Kernel (in-mem) structures

O

O O O O O

O

Global open file table
Per-process open file table
Free (disk) block list

Free inode list

File buffer cache

Inode cache

Name cache

e On-disk structures

O

o O O O

Superblock: file system format info
File: collection of blocks/bytes

File descriptor (inode): File metadata
Directory: Special kind of file

Free block/inode maps

File inode | wf——

File
contents Key: Provide
this mapping

efficiently and

safely.

Disk contents

L1t

https://my.eng.utah.edu/~cs5460/slides/Lecturel?.pdf

X

a4 Computer Architecture & System Lab

Key in-memory data structures

X %ﬁ\ National Yang Ming Chiao Tung University

e Open file table: shared by all processes with open file
o Open count and “deleted” flag
o Copy of (or pointer to) file's inode
e Per-process file table: private for each process
o Pointer to entry in global open file table
o Current position in the file (“seek” pointer)
o Access mode (read, write, read-write)
o File buffer cache: cache of file data blocks
o Indexed by file-blocknum pairs (hash structure)
o Used to reduce effective access time of disk operations

X

a4 Computer Architecture & System Lab

Key in-memory data structures

X %ﬁ\ National Yang Ming Chiao Tung University

« Name cache: cache of recent name lookup results
- Indexed by full filename (hash structure)
- Used to decrease directory traversals for name lookups

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Key on-disk data structures

e File descriptor (inode)
o Link count
o Security attributes: UID, GID
o Size
o Access/modified times
o “Pointers” to blocks
e Directory file:
o File name (fixed/variable size)
o Inode number
o Length of directory entry
Free block/inode bitmap

Superblock

File descriptor (inode):

ulong links;

uid_t uid;

gid t gid;

ulong size;

time_t access_time;

time_t modified_time;

addr_t blocklist..;

Directory file:

Filename

inode#

Filename

inode#

REALLYLONGFILENAME

inode#

Fil

ename

inode#

Short

inode#

https://my.eng.utah.edu/~cs5460/slides/Lecturel?.pdf

17

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Buffer/page cache

e Ildea
o Keep recently used disk blocks in kernel memory

e Process reads from afile

o If blocks are not in page cache
= Allocate space in page cache
= [nitiate a disk read
= Block the process until disk operations complete

o Copy data from page cache to process memory

o Finally, system call returns

o Usually, a process does not see the page cache directly
o mmap() maps page cache pages into process RAM

18

N

a4 Computer Architecture & System Lab

Buffer/page cache

X %ﬁ\ National Yang Ming Chiao Tung University

e Process writes to a file

- If blocks are not in the page cache
= Allocate pages
= [Initiate disk read
= Block process until disk operations complete

- Copy written data from process RAM to page cache
o Default: writes create dirty pages in the cache, then the

system call returns
o Data gets written to device in the background

2

National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

X37
E\%u\

Finding a file's inode on disk

Locate inode for /foo/bar

O

O

O

O

O

O

O

O

O

1. Find inode for “/”

= Always in known location
2. Read “/” directory into memory
3. Find “foo” entry

= If no match, fail lookup
4. Load “foo” inode from disk
5. Check permissions

= If no permission, fail lookup
6. Load “foo” directory blocks
7. Find “bar” entry
8. Load “bar” inode from disk
9. Check permissions

“I” inode

llfool'l inode '...'.-.....

“bar” inode

A

A7

>

“I” directory

foo inode
“foo” directory
@ bar | inode#

e

Note: Pointers are
block/inode numbers,
not addresses!

https://my.eng.utah.edu/~cs5460/slides/Lecturel?.pdf

20

X

,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Finding a file's blocks on disk

e Inode consists of atable
o One entry per block in file
o Entry contains physical block address (e.qg., platter 3, cylinder 1,
sector 26)
o To locate data at offset X, read block (X / block size)

o Wants for inode table ?
o Most files are small
o Most of disk is contained few large files
o Need to efficiently support both sequential and random access
o Want simple inode lookup and management mechanisms

21

X ,/1\ National Yang Ming Chiao Tung University

=337
",%-r Computer Architecture & System Lab

Allocating blocks to files

e Contiguous allocation
o Files allocated (only) in contiguous blocks on disk
o Analogous to base-and-bounds memory management
e Linked file allocation
o Maintain a linked list of blocks used to contain file
o At end of each block, add a (hidden) pointer to the next block
e Indexed file allocation
o Maintain array of block numbers in inode
o Multi-level indexed file allocation
o Maintain pointers to blocks full of more block numbers in inode

22

National Yang Ming Chiao Tung University

Computer Architecture & System Lab

Contiguous allocation

Files allocated in contiguous blocks ~r Adicls

Maintain ordered list of free blocks
o At create time, find large enough
contiguous region to hold file
Inode contains START and SIZE

Advantages
o Simple implementation
o Easy offset ->block computation for
sequential or random access
o Few seeks
Disadvantages
o Fragmentation -> analogous to base and bounds
o How do we handle file growth/shrinkage ?

Directory

file start
count 0
tr 14

mail 19

list 28
f 6

Na @ o N

length

File ‘count’ takes
block 1 and 2
File ‘tr’ takes
block 14 - 16

23

National Yang Ming Chiao Tung University

%
=3¢71n
@ Computer Architecture & System Lab

Linked file allocation

to be contiguous

Directory

file start end
jeep 9 25

Linked list of free blocks
o Allocate any free blocks

Each file is a linked list of a
disk block which need not

Used by FAT32
_ 8D29EI30D31D
Good points k—/
o Can extend/shrink files easily -> no fragmentation
o Handles sequential accesses somewhat efficiently

Bad points

o Random access of large files is really inefficient

o Lots of seeks -> non-contiguous blocks
https://my.eng.utah.edu/~cs5460/slides/Lecture18.pdf

24

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Indexed file allocation

e Inode contains array of block
addresses

O

O

Allocate table at file creation time
File entries as blocks allocated

o Separate free block bitmap
e Good points

O

O

O

O

Can extend/shrink files to a point

(RS,
N A

o[] 1IZL\2E] 3]
4[] s[] 70]
8] e[J10[X11[]
12[J13[J14N1

directory

file
jeep

index block
19
L

]

20 J21[Je2[A23[]
24 J2s5[Je6[J27[]
28 J29[J30[131[]

R

Simple offset->block computation for sequential or random access
e Bad points

Variable sized inode structures

Lots of seeks-> non-contiguous blocks

25

https://my.eng.utah.edu/~cs5460/slides/Lecturel?.pdf

X ,ﬁ\ National Yang Ming Chiao Tung University

E‘:%-r Computer Architecture & System Lab mode
Multi-level indexed file allocation ===

o Single index block may not hold all B e r
I direct blocks m
the p0|_nters ._f_,_—J
e Inode includes o ffa]
- Fixed-size array of direct blocks il ==

o Small array of indirect blocks —— _Et:,

o Double/triple indirect (optional) E

. . o ——{data_]

e Indirection E

o Indirect pointer: points to a block that contains more pointers
o Indirect block: block full of block addresses
o Double indirect block: block full of indirect block addresses

e Use case: ext3

https://my.eng.utah.edu/~cs5460/slides/Lecturel?.pdf

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Multi-level indexed file allocation

inode
» Good points) g ==
- Simple offset->block computation — ,.
for sequential or random access — R ——
o Allow incremental growth/shrinkage indirect
block

o Fixed size (small) inodes

- Very fast access to (common) small files
o Bad points

o Indirection adds overhead to random access to large files

o Blocks can be spread all over disk -> more seeks

27
https://my.eng.utah.edu/~cs5460/slides/Lecturel?.pdf

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

§§
~
dash

Multi-level indexed file allocation

« Example: 4.3 BSD file system
- Inode contains 12 direct block addresses
- Inode contains 1 indirect block address
o Inode contains 1 double-indirect block address

« How to support ever larger files ?
o Adds another pointer to the inode (double/triple indirect blocks)

o If block addresses are 4-bytes and blocks are 2048-
bytes, what is maximum file size in this file system ?

28

N

X %ﬁ\ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

Multi-level indexed file allocation

o If block addresses are 4-bytes and blocks are 2048-bytes,
what is maximum file size in this file system ?

O

O

O

O

O

Number of block address per block =2048 /4 =512

Number of blocks mapped by direct blocks =12 (4.3 BSD file
system)

Number of blocks mapped by indirect block = 512

Number of blocks mapped by double-indirect block = 5122 = 262144
Max file size = (12 + 512 + 262144) * 2048 = ~ 513 MB (537,944,064
bytes)

29

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Extents

e An extent is simply a disk pointer plus a length (in blocks)
o (starting block, length)
o A length to specify the on-disk location of a file

o Each file is represented by a list of extents

o Pointer-based vs. extent-based
o Pointer-based is flexible but uses a large amount of metadata per file
o Extent-based is less flexible but more compact
o Extent-based work well when there is enough free space on the
disk and files can be laid out contiguously

e Use case: ext4

30

X

a4 Computer Architecture & System Lab

Linking

X %ﬁ\ National Yang Ming Chiao Tung University

o Links let us have multiple names to the same file
« An inode uniquely identifies a file for its lifespan
- Does not change when renamed

o Model: inode tracks “links” or references on disk
- Count “1” for every reference on disk
- Created by file names in a directory that point to the inode

o« When link count is zero, inode (and contents) deleted
o There is no ‘delete’ system call, only ‘unlink’

31

X ,1 National Yang Ming Chiao Tung University
=34
a4 Computer Architecture & System Lab

Hard links

In /foo/bar
nO” /tm n/Moo

i 0
- Hard links
- Two entries point to the inode # ‘inode #|
same inode
o Link count tracks
connection

- Decrement link count on delete
o Only delete file when last connection
IS deleted

- Problem: cannot cross file systems, unreachable directories

Inode

Ei’ﬁ‘ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

Soft links In —s /foo/bar /tmp/moo

e Soft links

- Adds symbolic “pointer” to bar
file

o Special flag in directory entry

> Created with symlink () system call 1

o Only one “real” link to file
= File goes away when its deleted

Inode

33

a4 Computer Architecture & System Lab

File allocation table (FAT) file system

i%ﬁ\ National Yang Ming Chiao Tung University

o FAT file system
o There are no inodes
o Directory entries which store metadata about a file
o Refer directly to the first block of said file
o Impossible to create hard links

#Z % National Yang Ming Chiao Tung University

21
d

&t/ Computer Architecture & System Lab

Mounting a file system

Locate superblock(s)
Read file system format information
Initialize inode cache
Initialize buffer cache
Initialize name cache

Optional: perform sanity checks
o UNIX/ Linux / Mac OS X: fsck

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Open (‘/foo/bar’) Operation

o Open (“/foo/bar”’, O _RDONLY)

o Once open, the problem can issue a read () to read from the file
o The first read will read the first block of the file

o Consulting the inode to find the location of such a block

o Update the inode with a new last-access time

o Update and in-memory open file table for this file descriptor

e Inaopen(

o Reading each block requires the file system to
= first consult the inode
= Read the block
= Update the inode’s last-accessed-time

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Write a file to disk

o Write ()
o Writing to the file may also allocate a block unless the block is being

overwritten
o Need to write data to disk and decide which block to allocate to the

file
o Each write to afile logically generates 5 1/Os
o 1. read the data bitmap (mark the newly-allocated block as used)

o 2.write the bitmap (reflect its new state to disk)
o 3. read and write the inode (update with the new block’s location)

o 4. write the actual block itself

37

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

File creation

e TO create afile

O

O

O

O

O

O

O

O

Allocate an inode

Allocate space within the directory containing the new file

One read to the inode bitmap (find a free inode)

One write to the inode bitmap (make it allocated)

One write to the new inode itself (initialize it)

One write to the data of directory (link high-level name of file to its
iInode number)

One read and write to the directory inode to update it

Additional 1/Os if the directory needs to grow to accommodate the
new entry (to the data bitmap and the new directory block)

38

X

a4 Computer Architecture & System Lab

Conclusion

X %ﬁ\ National Yang Ming Chiao Tung University

o File system organization

- Blocks, inode, bitmap, superblocks
o File system data structures

- Open file table, file buffer cache, file descriptor etc.
o Allocating blocks to the file

o Contiguous, linked, index, multi-level indexed file allocation,
extent

e Soft vs. hard link

§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Takeaway Questions

« What are purposes of file systems?
o (A) Fast to access data
o (B) Enhance of data persistence
o (C) Enable to access shared data concurrently

o What are correct descriptions of inode in the file system?
o (A) Hold the metadata of a given file
o (B) Hold the metadata of a file system
o (C) Used i-number to calculate where on the disk the
corresponding inode is located

%% National Yang Ming Chiao Tung University

;\ iy
a4 Computer Architecture & System Lab

Takeaway Questions

 What are problem of linked file allocation?
o (A) Fragmentation
o (B) In-efficient random access
o (C) Lots of seek

o What are benefits of multi-level indexed file allocation?

o (A) Very fast to small files
o (B) Small array of indirect blocks
o (C) Simple offset->block for sequential or random access

