
System Calls

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy

pieces. WISC

2

Outline

● System calls

● System Call Anatomy

● Passing Parameters

● Traps

● vDSO & Virtual System Call

● Create a System Call

3

System Call

4

● What is a system call?

○ A user program can interact with the

operating system using a system

call

○ A number of services are requested

by the program

○ A system call is initiated by executing

a specific instruction

■ Triggers a switch to kernel mode

https://www.geeksforgeeks.org/introduction-of-system-call/

System Call

5

● What is a system call?

○ A user space request of a kernel service

○ A system call is just a C kernel space function

○ User space call to handle some request

#include <unistd.h>

int main (int argc, char **argv) {

…

write (fd1, buf, strlen(buf));

…

}

System Call

6

● Types of system calls

https://www.geeksforgeeks.org/introduction-of-system-call/

System Call

7

● How many system call in Linux kernel?

○ 322 different system calls in x86_64

○ 358 different system calls in x86

● How to use system call from the user space?

○ Using the wrapper functions defined in the C standard library

○ E.g. fopen, fgets, printf, and fclose …

○ Why do we use these wrapper functions without using the

system call directly?

■ A system call must be quick and must be small

System Call

8

● System calls

○ Allow the kernel to expose certain

key pieces of functionality to user

programs

○ To execute a system call, a

program must execute a

special trap instruction

Source: http://randibox.blogspot.tw/2016/02/the-fascinating-world-of-linux-system.html

System Call

9

● System calls
○ Perform trap instruction-> vector to system call handler

■ Low level code carefully saves CPU state

■ Processor switches to kernel mode

■ Syscall handler checks param and jumps to desired

handler

○ Return from system call

■ Result placed in register and low level code restores state

■ Perform “rte” instruction: switches to user mode and

returns to location where “trap” was called

System Call

10

● In RISC-V

○ Execute ecall instruction to perform a system call

○ The ecall instruction

■ generates a software interrupt

■ raises a software exception

■ invokes an exception handling

○ Linux checks if the correct access rights to perform the

requested operation

■ Give back an error code like EACCES (13) if denied

System Call

11

● System calling convention is

○ How should we do if a system call has many parameters?

System Call

12

● What is a system call?

○ A system call can be written

in high-level languages or in

assembly language

System Call

13

● Finding Linux System Call Numbers

○ In Linux, the system call number

■ 93 is the number for exit

■ 64 is the number to write to a file

■ The Linux system call numbers are defined

■ /usr/include/asm-generic/unistd.h

■ #define __NR_write 64

System Call

14

● Return codes

○ The return code for system calls is usually zero (0) or a

positive number for success

○ The negative number is for failure

■ /usr/include/errno.h

System Call

15

● System call Examples

○ The kill() system call can be used to send any signal to any

process group or process.

■ Dont think that kill() is to terminate a process only. It can

send all kinds of signals.

■ kill(getpid(),SIGSEGV);

○ The exit() terminates the calling process "immediately"

○ The exec() is the only way to get a program executed in Linux

■ execl(), execle(), execlp(), execv(), execvp()

Outline

● System calls

● System Call Anatomy

● Passing Parameters

● Traps

● vDSO & Virtual System Call

● Create a System Call

16

System Call Anatomy (1/5)

17

● Anatomy of a system call
○ Program puts syscall params in

registers

○ Program executes a trap

■ Process state (PC, PSW)

pushed on stack

■ CPU switches mode to

KERNEL

■ CPU vectors to registered trap

handler in the OS kernel

https://my.eng.utah.edu/~cs5460/slides/Lecture02.pdf

System Call Anatomy (2/5)

18

● Anatomy of a system call

○ Trap handler uses param to jump

to desired handler (e.g. fork, exec,

open…)

○ When complete, reserve operation

■ Place return code in register

■ Return from exception

https://my.eng.utah.edu/~cs5460/slides/Lecture02.pdf

System Call Anatomy (3/5)

19

● Software interrupt used for

implementing system calls

○ INT is an assembly language

instruction for x86 processors that

generates a software interrupt

○ In Linux INT 128 (0x80) (128 is

interrupt number) used for system

calls

System Call Anatomy (4/5)

20

System Call Anatomy (5/5)

21

Source: http://monkee.esy.es/?p=1349

System Call Table for x86_64 in Linux

Outline

● System calls

● System Call Anatomy

● Passing Parameters

● Traps

● vDSO & Virtual System Call

● Create a System Call

22

Passing Parameters

23

● Prototype of a system call

Passing Parameters

24

Passing Parameters

25

● Typical methods

○ Pass by registers (e.g. Linux)

■ Pros: fast

■ Cons: limited registers, cannot pass too many params

Passing Parameters

26

● Typical methods

○ Pass via a designated memory region

■ When the number of parameters are greater than the

number of registers

■ Parameters are stored in blocks or table

Passing Parameters

27

● Typical methods

○ Using system stack to store parameters

■ “Push”: store params; “Pop”: load params

■ Pros: can store more parameters; Cons: slow

■ Retrieve information from the top of the stack

Advantage of System Calls

28

● Access to Hardware Resources

○ Allow programs to access hardware resources

● Memory Management

○ Allow programs to allocate and deallocate memory, as well

as access memory-mapped hardware devices

● Process Management

○ Allow programs to create and terminate processes

● Security

○ Allow programs to access privileged resources

Outline

● System calls

● System Call Anatomy

● Passing Parameters

● Traps

● vDSO & Virtual System Call

● Create a System Call

29

Traps (1/3)

30

● Used to detects special events
○ Invalid memory access…

● When processor detects condition
○ Save minimal CPU state (PC, sp, …)

○ Switch to KERNEL mode

○ Transfer control to trap handler

■ Indexes trap table w/ trap number

■ Jump to address in trap table

○ RTE/IRTE instruction reverses

operation

Traps (2/3)

31

● Interrupt raises signal on CPU pin
○ Each device uses a particular

interrupt number

○ CPU “traps” to the appropriate

interrupt handler next cycle

● Interrupts can cost performance
○ Flush CPU pipeline + cache/TLB

misses

○ Handlers often need to disable

interrupt

Traps (3/3)

32

● Traps are synchronous

○ Generated inside the processor due to instruction being

executed

○ Cannot be masked

○ System calls are one kind of trap

● Interrupts are asynchronous

○ Generated outside the processor

○ Can be masked

Booting

33
https://my.eng.utah.edu/~cs5460/slides/Lecture04.pdf

Outline

● System calls

● System Call Anatomy

● Passing Parameters

● Traps

● vDSO & Virtual System Call

● Create a System Call

34

vDSO & vsyscall (1/5)

35

● Virtual system calls (vsyscall)
○ Certain system calls are fast to process

○ The system call itself (kernel enter/exit) causes a significant

overhead

○ Certain system calls don’t require much privilege to process

● Solution: vsyscall
○ Map vsyscall data to two virtual memory addresses;

write-only for kernel mode; read-only for user mode

○ The vsyscall won’t pass the user/kernel model transition

○ The vitural gettimeofday() can be up to 10 times faster

vDSO & vsyscall (2/5)

36

● vDSO: virtual DSO (Dynamic Shared Object)

○ Mapped by the kernel into all user processes

■ Linux kernel creates multiple DSO files and inserts them

into the kernel during the compilation

■ The kernel will duplicates DSO to vsyscall memory

pages

■ The kernel passes DSO address to the user space

through “AT_SYSINTO_EHDR” in the auxiliary vector

○ Mainly meant for providing syscalls in user space

vDSO & vsyscall (3/5)

37

● Kernel and user space setup

https://blog.linuxplumbersconf.org/2016/ocw/system/presentations/3711/original/LPC_vDSO.pdf

vDSO & vsyscall (4/5)

38

● Anatomy of the vDSO on arm64

https://blog.linuxplumbersconf.org/2016/ocw/system/presentations/3711/original/LPC_vDSO.pdf

vDSO & vsyscall (5/5)

39

● Anatomy of the vDSO on arm64

https://blog.linuxplumbersconf.org/2016/ocw/system/presentations/3711/original/LPC_vDSO.pdf

Outline

● System calls

● System Call Anatomy

● Passing Parameters

● Traps

● vDSO & Virtual System Call

● Create a System Call

40

Create a System Call (1/3)

41

● In Linux kernel > v4.10

● Create a new syscall folder

○ $ cd linux && mkdir workspace

● Write a new syscall

○ $ vim workspace/hello_world.c

● Create a Makefile

○ $ vim workspace/Makefile

Create a System Call (2/3)

42

● Add our new syscall foler in the kernel Makefile

● Update the system call table

○ $ vim arch/arm/tools/syscall.tbl

Create a System Call (3/5)

43

● Update system call header file

○ $ vim include/linux/syscalls.h

● Rebuild the kernel

tells your compiler to look on the CPU

stack for the function parameters, instead

of registers

Conclusion

● System calls

○ Arguments are placed in well-known registers

○ Perform trap instruction to activate the system call through the

system call handler

○ IRTE/RTE returns from the system call

● OS manages trap/interrupt tables

○ Controls the “entry points” in the kernel -> secure

44

Takeaway Questions

45

● What is the purpose of a system call?

○ (A) A type of hardware interrupt

○ (B) A way for programs to request services from the OS

○ (C) A method of executing shell scripts

● Which system call is only used to terminate a process in

Linux?

○ (A) exit ()

○ (B) kill ()

○ (C) terminate ()

Takeaway Questions

46

● What is the purpose of the exec () system call in Linux?

○ (A) To execute a program within the current process

○ (B) To control user permissions

○ (C) To create a new file

