3
a7+ Computer Architecture & System Lab

::\%// National Yang Ming Chiao Tung University

System Calls

|OC5226 Operating System Capstone

Tsung Tai Yeh
Department of Computer Science
National Yang Ming Chiao Tung University

%% National Yang Ming Chiao Tung University

;\ iy
14 Computer Architecture & System Lab

Acknowledgements and Disclaimer

e Slides were developed in the reference with
® MIT 6.828 Operating system engineering class, 2018
® MIT 6.004 Operating system, 2018
® Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy
pieces. WISC

§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

_‘, 874 Computer Architecture & System Lab

Outline

e System calls

e System Call Anatomy

e Passing Parameters

e Traps

e vDSO & Virtual System Call
e Create a System Call

t National Yang Ming Chiao Tung University

X
E3¢71
@ Computer Architecture & System Lab

System Call
Introduction to System Call

e What is a system call?
A user program can interact with the
i

operating system using a system

User Interface

System Calls

call
o A number of services are requested

Hardware

by the program
o A system call is initiated by executing
a specific instruction
4

= Triggers a switch to kernel mode
https://www.geeksforgeeks.org/introduction-of-system-call/

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

System Call

« What is a system call?

o A user space request of a kernel service
o A system call is just a C kernel space function
o User space call to handle some request

E #include <unistd.h>
1 int main (int argc, char **argv) {

[write (fd1, buf, strlen(buf)); | i

rm—————————

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
g7/ Computer Architecture & System Lab

System Call
e Types of system calls

- |
TE T =

https://www.geeksforgeeks.ora/introduction-of-system-call/

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

System Call

« How many system call in Linux kernel?
o 322 different system calls in x86_64
o 358 different system calls in x86
« How to use system call from the user space?
o Using the wrapper functions defined in the C standard library
o E.g. fopen, fgets, printf, and fclose ...
o Why do we use these wrapper functions without using the

system call directly?
= A system call must be quick and must be small

'X$7 % National Yang Ming Chiao Tung University
=X
a4 Computer Architecture & System Lab

ia

System Call

o System calls o f“"“e‘""e'l"’"'s' o

o Allow the kernel to expose certain lo
key pieces of functionality to user forte
programs o wl?

o To execute a system call, a io
program must execute a
special trap instruction - “’d B

syscallTable |3 sys close

5 sys_fstat °

Source: http://randibox.blogspot.tw/2016/02/the-fascinating-world-of-linux-system.html 8

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

System Call

o System calls
o Perform trap instruction-> vector to system call handler
= Low level code carefully saves CPU state
= Processor switches to kernel mode
= Syscall handler checks param and jumps to desired
handler
o Return from system call
= Result placed in register and low level code restores state
= Perform “rte” instruction: switches to user mode and
returns to location where “trap” was called

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

o In RISC-V

o EXecute ecall instruction to perform a system call
o The ecall instruction
= (generates a software interrupt
= raises a software exception
= Iinvokes an exception handling
o Linux checks if the correct access rights to perform the
requested operation
= Give back an error code like EACCES (13) if denied

10

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

o System calling convention is
o How should we do if a system call has many parameters?

1. a0-a6: Input parameters, up to seven parameters for
the system call

2. a7: The Linux system call number
3. Invoke the operating system with “ecall”

4. a0: The return code from the call

11

fﬁ\ National Yang Ming Chiao Tung University
FlaT4 Computer Architecture & System Lab

System Call

#include <asm/unistd.h>

« What is a system call? .equ 0 RDONLY, 0

o A system call can be written | - O_NRONLY, 1
.equ 0 CREAT, 0100

In high-level languages orin | .cqu o0 exct, 0200

assembly language .equ S _RDWR, 0666
.equ AT FDCWD, -100

.macro openFile fileName, flags

1i a0, AT_FDCWD

la a1, \fileName

1i a2, \flags

1i a3, S_RDWR # RW access rights
1i a7, __NR openat

ecall

.endm

X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

System Call

e Finding Linux System Call Numbers
o In Linux, the system call number

93 is the number for exit

64 is the number to write to a file

The Linux system call numbers are defined
/usr/include/asm-generic/unistd.h

#define _ NR_write 64

13

X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

System Call

 Return codes
o The return code for system calls is usually zero (0) or a
positive number for success
o The negative number is for failure
= /usr/include/errno.h

14

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

System Call

o System call Examples
o The Kkill() system call can be used to send any signal to any
Process group or process.
= Dont think that kill() is to terminate a process only. It can
send all kinds of signals.

= Kill(getpid(),SIGSEGV);

o The exit() terminates the calling process "immediately"

o The exec() is the only way to get a program executed in Linux
= execl(), execle(), execlp(), execv(), execvp()

15

N

a4 Computer Architecture & System Lab

Outline

e System calls

e System Call Anatomy

e Passing Parameters

e Traps

e vDSO & Virtual System Call
e Create a System Call

X iﬁ\ National Yang Ming Chiao Tung University

16

;\i’ﬁ‘ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

System Call Anatomy (1/5)

e Anatomy of a system call
o Program puts syscall params in
registers
o Program executes a trap
= Process state (PC, PSW)
pushed on stack
= CPU switches mode to
KERNEL

= CPU vectors to registered trap

handler in the OS kernel

syscallhdlr () {

}

foo:

movl rl,

(argl)

movl r0, #foo

syscall

switch (r0) {

case: foo
r0 € foo
}

asm(“ret");

sl

User

Kernel
foo() {

return res;

/

https://my.eng.utah.edu/~cs5460/slides/Lecture02.pdf 17

;\i’ﬁ‘ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

System Call Anatomy (2/5) fao:

movl rl, (argl)
movl r0, #foo

« Anatomy of a system call syscall
- Trap handler uses param to jump
to desired handler (e.g. fork, exec,

User

open Kernel
P ---) syscallhdlr () { foo () {

o When complete, reserve operation

_ _ switch (x0) { return res;
= Place return code in register /
case: foo

= Return from exception r0 € £ool.);
}

asm(“ret");

}

https://my.eng.utah.edu/~cs5460/slides/Lecture02.pdf 1s

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
g7/ Computer Architecture & System Lab

System Call Anatomy (3/5)

o Software interrupt used for

Implementing system calls
o INT is an assembly language
Instruction for x86 processors that
generates a software interrupt
o InLinux INT 128 (0x80) (128 is
Interrupt number) used for system
calls

System calls
INT 80

19

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

System Call Anatomy (4/5)

User space

!

libc invocation

write(STDOUT)

S |

int

Kernel space

|

int handler

Write syscall
implementation

20

Yrax

;E fﬁ\ National Yang Ming Chiao Tung University
g7/ Computer Architecture & System Lab
System Ca” An atO my (5/5) NR syscall name references
0 read man/ cs/ 0x00
(*/binffoo™ [*/bin/foo” ,NULLLNULL) 1 write man/ cs/ Ox01
2 open man/ cs/ Ox02
man/ cs/ 0x3b

59 execve

System Call Table for x86_64 in Linux

NT 80
User land

A 4
B e — -
&)
|
System Call Table

|

|

¢ .
Source: http:”monlee.es 1.es/?p=1349

nterrupt Descriptor Table

Divide O error

l Single-step

Kernel land

X %% National Yang Ming Chiao Tung University

Ny
SHZ1N

_‘, 874 Computer Architecture & System Lab

Outline

e System calls

e System Call Anatomy

e Passing Parameters

e Traps

e vDSO & Virtual System Call
e Create a System Call

22

;\i’ﬁ‘ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

Passing Parameters

o Prototype of a system call

V4 [4

int’ return, OS resource: file,

sometimes ‘void’ device, etc. if not
specified, generally

Y

means the current
process

System call specific
parameters passed.

int used to indicate completion status of system How are they passed ?

call sometimes also has additional information
like number of bytes written to file

ﬁ%ﬁ National Yang Ming Chiao Tung University
AT d 1N
=

FlaT4 Computer Architecture & System Lab

Passing Parameters

Source Assembly code
void foo (void) { <main>:
write (1, “hello\n”, 6):; pushg S%rax
} mov $0x6, $edx

mov $0x694010, %esi
mov $0x1, $edi
callg |libc write

xorl %eax, $eax

PoPg $rdx

ret
<libc_write>:

mov $50x1, %eax

syscall

cmp SOxXEfEfEEEEFEEEFFO0L, Srax
jae <__syscall error>

retqg

X if\ National Yang Ming Chiao Tung University

=3\p7

_‘r 874 Computer Architecture & System Lab

Passing Parameters

o Typical methods
o Pass by registers (e.g. Linux)
= Pros: fast
= Cons: limited registers, cannot pass too many params

const char* pathname = “"example.txt";
int flags = O RDOMNLY;
mode t mode = 8644;

int fd = open(pathname, flags, mode);

—_—e e - —) _ . . . o
// in function call open(), we passed the parameters pathanme,flags,mode to the kernal directly

25

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Passing Parameters

o Typical methods
o Passvia a designated memory region
= When the number of parameters are greater than the
number of registers
= Parameters are stored in blocks or table

int params[3];
// Block of data(parameters) in array
params[8] = (int)pathname;
params[1] = flags;
params|[2] mode ;

int fd = syscall(5Y5 open, params);

;o " _ ']
f£r system call

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Passing Parameters

o Typical methods
o Using system stack to store parameters
= Push’: store params; “Pop”: load params
Pros: can store more parameters; Cons: slow
Retrieve information from the top of the stack

int fd;
asm volatile(

"mov %1, Fardi\
"mov %2, Férsi\
"mov %3, EXrdxd\
"mov $2, XXrax\

"syscall”
: "=a" (fd)

: "r"™ (pathname),
: "RrdiT, "¥rsi”,

n"
n"
n"
n"

“r* (flags), "r" (mode)
"HErdx”

27

X ,/1\ National Yang Ming Chiao Tung University

=337
",%-r Computer Architecture & System Lab

Advantage of System Calls

e Access to Hardware Resources
o Allow programs to access hardware resources
e Memory Management

o Allow programs to allocate and deallocate memory, as well
as access memory-mapped hardware devices

e Process Management

o Allow programs to create and terminate processes
o Security

o Allow programs to access privileged resources

28

X %% National Yang Ming Chiao Tung University

Ny
SHZ1N

_‘, 874 Computer Architecture & System Lab

Outline

e System calls

e System Call Anatomy

e Passing Parameters

e T[raps

e vDSO & Virtual System Call
e Create a System Call

29

X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Traps (1/3)

o Used to detects special events

(@)

 When processor detects condition
o Save minimal CPU state (PC, sp, ...)

(@)

(@)

(@)

Invalid memory access...

Switch to KERNEL mode
Transfer control to trap handler

= Indexes trap table w/ trap number

= Jump to address in trap table
RTE/IRTE instruction reverses
operation

TRAP VECTOR:

0x0082404

0x0084d08

0x008211c

0x0082000

lllegal address
Mem Violation

lllegal instruction

System call

Here, 0x82404 is address of
handle illegal_ addr().

30

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

S

Traps (2/3)

o Interrupt raises signal on CPU pin
o [Each device uses a particular
Interrupt number
o CPU “traps” to the appropriate
Interrupt handler next cycle
S Interrupts can cost performance
o Flush CPU pipeline + cache/TLB
misses
o Handlers often need to disable
Interrupt

INTERUPT VECTOR:
0x008c408 Clock
0x0088044 | Disk
0x008317c Mouse
0x0089f0c Keyboard

31

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Traps (3/3)

o Traps are synchronous
o Generated inside the processor due to instruction being
executed
o Cannot be masked
o System calls are one kind of trap

e Interrupts are asynchronous

o Generated outside the processor
o Can be masked

32

;% A National Yang Ming Chiao Tung University
g7/ Computer Architecture & System Lab
Booting
® What happens at boot time?
1. CPU jumps to fixed piece of ROM 12. Switch to faked up syscall stack
2. Boot ROM uses registers as scratch 13. Turn on interrupts
space until it sets up VM and stack 14. Do any initialization that requires
Copy code/data from PROM to mem interrupts to be enabled
Set up trapl/interrupt vectors 15. “Return” from fake system call
16. Init runs — sets up rest of OS

® What is “kernel stack”?
® Where is “kernel stack”?
— During boot process
— During normal system call

3.
4.
5. Turn on virtual memory
6. Initialize display and other devices
7.

Map and initialize “kernel stack” (*)

for init process
Create init’s process cntl block

Create init’s address space,

e Whenever process “wakes up”, it is

8.
including space for kernel stack (*)
in scheduler (including init)!

9,
10. Create a system call frame on that
https://my.eng.utah.edu/~cs5460/slides/Lecture04.pdf

kernel stack for execl (“/init”,..)

11. Switch to that stack

N

a4 Computer Architecture & System Lab

Outline

e System calls

e System Call Anatomy

e Passing Parameters

e Traps

e vDSO & Virtual System Call
e Create a System Call

X iﬁ\ National Yang Ming Chiao Tung University

34

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
14 Computer Architecture & System Lab

vDSO & vsyscall (1/5)

o Virtual system calls (vsyscall)
o Certain system calls are fast to process
o The system call itself (kernel enter/exit) causes a significant

overhead
o Certain system calls don’t require much privilege to process

e Solution: vsyscall
o Map vsyscall data to two virtual memory addresses;
write-only for kernel mode; read-only for user mode
o The vsyscall won't pass the user/kernel model transition
o The vitural gettimeofday() can be up to 10 times faster

35

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

S

vDSO & vsyscall (2/5)

o VDSO: virtual DSO (Dynamic Shared Object)
o Mapped by the kernel into all user processes
= Linux kernel creates multiple DSO files and inserts them
Into the kernel during the compilation
= The kernel will duplicates DSO to vsyscall memory
pages
= The kernel passes DSO address to the user space
through “AT_SYSINTO_ EHDR” in the auxiliary vector
o Mainly meant for providing syscalls in user space

36

National Yang Ming Chiao Tung University

Z
iy
i{-r Computer Architecture & System Lab

vDSO & vsyscall (3/5)

o Kernel and user space setup

execve()

__

. = Maps vDSO pages (code + data)
= Sets AT_SYSINFO_EHDR in the auxiliary vector

KERNEL

USERSPACE

= Looks up AT_SYSINFO_EHDR in the auxiliary vector
= If set, links the vDSO (— [vdso])

S S -

= Looks up function symbols (e.g. _ vdso_gettimeofday)

| |
| |
. _ |
I in [vdso] I
I
. = If found, sets global function pointers i

! |

37

- - ——— o m mm m mp o mm Em mm g e mm mm m mm o - = -

I
a%"f Computer Architecture & System Lab

'X$7 % National Yang Ming Chiao Tung University
Sl

ia

vDSO & vsyscall (4/5)
o Anatomy of the vDSO on arm64

|
USERSPACE | KERNEL
|

[vvar] vdso_data

AT_SYSINFO_EHDR ——

__kernel_gettimeofday()
q __kernel_clock_gettime()
[vdso] __kernel_clock_getres()

__kernel_rt_sigreturn()

' 38
https://blog.linuxplumbersconf.org/2016/ocw/system/presentations/3711/original/LPC_vDSO.pdf

;\E‘fﬁ\ National Yang Ming Chiao Tung University

g7/ Computer Architecture & System Lab

vDSO & vsyscall (5/5)
o Anatomy of the vDSO on arm64

| : :
USERSPACE | KERNEL timekeeping_update()

Read Write | 1
A A
4 ’ update_vsyscall()
i Syscall
Function cal}l Y \ update_vs;:li;call_tz()
vdso_data settimeofday()
gettimeofday() — > [CLa ARG AR S L ET G ENAR) =======> sys _gettimeofday()
clock_gettime() ——— [N Gl IR G Q0 a4 U CIOM- - == == => sys_clock_gettime()
clock_getres() ———— > [1o 1 =1 QAL e Tol [T3 o T @) zzzz=zz=z)> sys_clock_getres()

[signal handler returning] ——————— L GCLa CLS g 95 0 L= T T 9] ———> sys_rt_sigreturn()

I 39
https://blog.linuxplumbersconf.org/2016/ocw/system/presentations/3711/original/LPC_vDSO.pdf

N

a4 Computer Architecture & System Lab

Outline

e System calls

e System Call Anatomy

e Passing Parameters

e Traps

e vDSO & Virtual System Call
e Create a System Call

X iﬁ\ National Yang Ming Chiao Tung University

40

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Create a System Call (1/3)

e In Linux kernel >v4.10

o Create a new syscall folder
o $ cd linux && mkdir workspace

o Write a new syscall
o $ vim workspace/hello_world.c

o Create a Makefile
o $ vim workspace/Makefile

obj-y := hello_world.o

asmlinkage long sys_hello_world(void)

{
printk("Hello World!\n");

return @;

41

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Create a System Call (2/3)

o Add our new syscall foler in the kernel Makefile

ifeq ($(KBUILD_EXTMOD),)
core-y += kernel/ certs/ mm/ fs/ 1pc/ security/ crypto/ blockA workspace/

o Update the system call table
o $ vim arch/arm/tools/syscall.tbl

397 common statx sys_statx
398 common hello_world sys_hello_world 42

éi’ﬁ‘ National Yang Ming Chiao Tung University

_‘, 874 Computer Architecture & System Lab

Create a System Call (3/5)

o Update system call header file
o $ vim include/linux/syscalls.h

asmlinkage

» Rebuild the m\

unsigned mask, struct statx __user xbuffer);
long sys_hello_world(void);

tells your compiler to look on the CPU
stack for the function parameters, instead

of registers

43

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Conclusion

o System calls

o Arguments are placed in well-known registers

o Perform trap instruction to activate the system call through the
system call handler

o IRTE/RTE returns from the system call

o OS manages trap/interrupt tables
o Controls the “entry points™ in the kernel -> secure

44

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

AT

Takeaway Questions

o What is the purpose of a system call?
o (A) A type of hardware interrupt
o (B) A way for programs to request services from the OS
o (C) A method of executing shell scripts

o Which system call is only used to terminate a process in
Linux?
> (A) exit ()

o (B) kill ()
o (C) terminate ()

X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Takeaway Questions

o What is the purpose of the exec () system call in Linux?
o (A) To execute a program within the current process
o (B) To control user permissions
o (C) To create a new file

46

