X %% National Yang Ming Chiao Tung University

=X}7]

I
a7+ Computer Architecture & System Lab

Lecture 9: Branch Predictor
CS10014 Computer Organization

Tsung Tal Yeh
Department of Computer Science
National Yang Ming Chiao University

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Acknowledgements and Disclaimer

e Slides were developed in the reference with
® CS61C at UC Berkeley
® hittps://inst.eecs.berkeley.edu/~cs61c/sp23/
® (CI|S510 at Upenn
® hittps://www.cis.upenn.edu/~cis5710/spring2019/
® |F3 at the University of Edinburgh
® https://www.inf.ed.ac.uk/teaching/courses/car/Notes/2017-

18/lecture05-handling_hazards.pdf

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://www.cis.upenn.edu/~cis5710/spring2019/

#Z % National Yang Ming Chiao Tung University

21
d

&t/ Computer Architecture & System Lab

Outline

e Branc
e Branc
e Bimod

N Predictor
n Target Buffer
al Branch Predictor

e Gshare History-Based Predictor
e Tournament Predictor
e Prediction

§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Static Branch Prediction

o Compiler determine whether branch is likely to be taken or

likely to be not taken

o When is a branch likely to be taken?
o When is a branch likely to be NOT
taken?

int gtz=0;

int 1 = 0;

while (1 < 100) {
x = a[i];
if (x == 0)

continue;

gtz++;

}

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
Wit Computer Architecture & System Lab

S

Static Branch Prediction

o Compiler determine whether branch is likely to be taken or
likely to be not taken
o Decision is based on analysis or profile information

o 90% of backward-going branches are taken
o 50% of forward-going branches are no taken

o Decision is encoded in the branch instructions themselves
o Uses 1 bit: 0=> not likely to branch, 1=> likely to branch

« Prediction may be wrong
o Must kill instructions in the pipeline when a bad decision is made

@ National Yang Ming Chiao Tung University
a4 Computer Architecture & System Lab
Branch Prediction
» Idea: Predict the next fetch address (to be used in the next

cycle)

= Requires three things to be predicted at fetch stage:
o Whether the fetched instruction is a branch
o (Conditional) branch direction

o Branch target address (if taken)

= Observation: Target address remains the same for a
conditional direct branch across dynamic instances

o Idea: Store the target address from previous instance and access
it with the PC

o Called Branch Target Buffer (BTB) or Branch Target Address
Cache

X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Branch Prediction

o Branch speculation
o Could just stall to wait for branch outcome (two-cycle penalty)

o Fetch past branch instructions before branch outcome is known

= Default: assume “not-taken” (at fetch stage, can't tell it'’s a

branch)

—{
A

’|Elem
>

 F—
-
e 3 N
X O

) 1A 'l_
Reg_lster 2 o

File xS !
W > s1sedl (B8]l [lE
- >
.?R ,?R »IR

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Branch Prediction

o Speculative execution
o Execute before all parameters known with certainty
o If speculation is “correct”
= + Avoid stall, improve performance
o If speculation is “incorrect” (mis-speculation)
= Must abort/flush/squash incorrect instructions
= Must undo incorrect changes (recover pre-speculation state)

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Branch Prediction

o Control speculation mechanics
o Guess branch target, start fetching at guessed position
= Doing nothing is implicitly guessing target is PC+4
= Can actively guess other targets: dynamic branch prediction
o Execute branch to verify guess
= Correct speculation? Keep going
= Mis-speculation? Flush mis-speculated instructions
« Hopefully haven’'t modified permanent state (Redfile,
DMem)
+ Happens naturally in in-order 5-stage pipeline

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Branch Prediction

e When to perform branch prediction?

- Option #1: During decode
= Look at instruction opcode to determine branch instructions
= Can calculate next PC from instruction (for PC-relative branches)
= One cycle “mis-fetch” penalty even if branch predictor is correct

- Option #2: During fetch?
= How do we do that?
» Branch predictor

1 2 3 4 5 6 7 8 9
bnez r3,targ F D X M W
targ:add r4«r5,r4 \ F D X M W 10

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Branch Recovery

o« Branch recovery

- What to do when branch is actually taken?
Instruction that are in F and D are wrong
Flush them, i.e., replace them with nops

—

nop

¥

nop

{ f—
O o U
J[pC opC D
X
% , N
. A
Reglster 8 o
File x)
-IUI‘S" > 51 %q_ 18[] ” B
em| > i +
! ! >
g E— B 1R

11

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Branch Recovery

o« Branch recovery

- What to do when branch is actually taken
=« Flush them, i.e., replace them with nops
= + They haven’t written permanent state yet (regfile, DMem)
= - Two cycle penalty for taken branches

1 6 7 8 9

2

addi r3¢rl,1 F D

bnez r3,targ F
st rée—[r7+4]

mul rlQe—r8,r9

Correct:

Mmoo X|Ww

mOox Zbs
O X X S|wn

W
M W
X M

W

speculative
12

a4 Computer Architecture & System Lab

Branch Recovery

i%ﬁ\ National Yang Ming Chiao Tung University

« Mis-speculation recovery

- What to do on wrong guess
=« Branch resolves in X (EXEC.) stage
= + Younger insts (in F, D) haven’t changed permanent state
= Flush instructions currently in D and X (i.e, replace with nops)

1 2 3 4 5 6 7 8 9
Recovery: addi r3erl,1| F D X M W
bnez r3,targ F D X M W
e o e T = D - - -
Tkl Ol .8r20.0 F -- -- -- ==
targ:add rd4¢r4,rb5 F D X M W 13

§\§,ﬁ National Yang Ming Chiao Tung University
AT d 1N
=t

T4 Computer Architecture & System Lab

Takeaway Questions

o Assume that
- Branch: 20%, load: 20%, store: 10%, other: 50%
- Say, 75% of branches are taken
- What is the CPI?

X$7 & National Yang Ming Chiao Tung University

=E3471N
‘Eg-r Computer Architecture & System Lab

Takeaway Questions

o Assume that
- Branch: 20%, load: 20%, store: 10%, other: 50%
- Say, 75% of branches are taken
- What is the CPI?
« CPI=1+20%*75%*2=1.3
= Branches cause 30% slowdown
. Worse with deeper pipelines, why?
. Can we do better than assuming branch is not
taken?

15

N

a4 Computer Architecture & System Lab

Dynamic Branch Prediction

X %ﬁ\ National Yang Ming Chiao Tung University

o Monitor branch behavior and learn
o Key assumption: past behavior indicative of future behavior

o Predict the present branch using learning history

o ldentify individual branches by their PC or dynamic branch history
o Predict

o Outcome: taken or not taken

o Target: address of instruction to branch to

o Check actual outcome and update the history
o Squash incorrectly fetched instructions

16

'X$7 % National Yang Ming Chiao Tung University
=‘;§‘;'IP Computer Architecture & System Lab
Dynamic Branch Prediction

« Dynamic branch prediction

o Hardware guesses outcome
o Start fetching

o

L.
from guessed ; .
address Jrd
"PC
o Flush on
mis-prediction E; —g :
Register || [A
| File
nsn > .
P “Mem 31/3'1 d Bl
3 > A - >
S J—» IR IR

nop nop

Y

;\%ﬁ\ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

Dynamic Branch Prediction

Program |
Counter S/

¢

Address of the
current branch

Direction predictor (taken?)

A S J

PC + inst size ——»

hit?

v

target address

taken? :

Next Fetch
Address

Cache of Target Addresses (BTB: Branch Target Buffer)

18

§\§,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a

T4 Computer Architecture & System Lab

Dynamic Branch Prediction

« Dynamic Branch Prediction components
- Step #1:is it a branch?
= Easy after decode ...
- Step #2: Is the branch taken or not taken?

= Direction predictor (applies to conditional branch only)
= Predict taken/not-taken

- Step #3: if the branch is taken, where does it go?

regfile [¢

19

,ﬁ National Yang Ming Chiao Tung University
874 Computer Architecture & System Lab

Dynamic Branch Prediction
 Which insn’s behavior are

e Branch Prediction steps
= PCc+4 we trying to predict?
* Where does PC come
from?

iS insn a
branch?

Not Taken

prediction source:

predicted
branch target buffer

target
direction predictor

X i% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Dynamic Branch Prediction

« Branch prediction performance
o Branch: 20%, load: 20%, store: 10%, other: 50%
o 75% of branches are taken

o Dynamic branch prediction

o Branches predicted with 95% accuracy
o CPI=1+20% *5%*2=1.02

X

a4 Computer Architecture & System Lab

Branch Target Buffer

X iﬁ\ National Yang Ming Chiao Tung University

» Branch predictors tell whether the branch will be taken or not, but they
say nothing about the target of the branch

= To resolve a branch early we need to know both the outcome and the
target

= Solution: store the likely target of the branch in a table (cache) indexed
by the branch PC — BTB

= Usually BTB is accessed in the IF stage and the branch predictor is
accessed later in the ID stage

22

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

Branch Target Buffer

§§
e
daah

regfile

o Revisit branch prediction
- Step #1:is it a branch?
= Easy after decode ...during fetch: predictor
- Step #2: Is the branch taken or not taken?
= Direction predictor (applies to conditional branch only)
- Step #3: if the branch is taken, where does it go?

= Branch target predictor (BTB)
= Supplies target PC if branch is taken

23

X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Branch Target Buffer
o« Branch Target Buffer (BTB)

o Learn from past, predict the future, record the past in a hardware
o Guess the future PC based on past behavior

o E.g. “Last time the branch X was taken, it went to address Y~
= S0, in the future, If address X is fetched, fetch address Y next
= PC Iindexes table of bits target addresses

= Branch will go to same place it went last time

PC [31:10]

[9:2]

1:0

BTB

» What about aliasing?

—

e Two PCs with the same lower bits?

* No problem, just a prediction!

target

I

target

24
.l, predicted target

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Branches Branch =| SB |BEQ rsl,rs2,imm
Branch #| SB |BNE rsl,rs2,imm

Branch Target Buffer oranch 3| S8 [s6E retro, inm

rsl,rs2,imm
Branch < Unsigned| SB |BLTU rsl,rs2,imm

° Bl‘anCh Target BUffer (BTB) Branch = Unsigned| SB |BGEU rsl,rs2,imm
o At Fetch, how does insn know it's a branch and read BTB?
= All insns access BTB in parallel with Imm Fetch
o BTB is used to predict which insn are branches
= Implement by “tagging” each entry with its corresponding PC
= Update BTB on every taken branch insn, record target PC
« BTB[PC].tag = PC, BTB[PC].target = target of branch

predicted target

25

X$7 & National Yang Ming Chiao Tung University
=327 =
‘Eg-r Computer Architecture & System Lab Branches Branch

Branch =

Branch Target Buffer ranch =

Branch =
Branch < Unsigned

o« Branch Target Buffer (BTB) Branch = Unsigned
o All'insns access at Fetch in parallel with Imm

SB

SB
SB

SB
SB
SB

BEQ
BNE
BLT
BGE
BLTU
BGEU

rsl,rs2,imm
rsl,rs2,imm
rsl,rs2,imm
rsl,rs2,imm
rsl,rs2,imm
rsl,rs2,imm

= Check for tag match, signifies insn at that PC is a branch
= Predict PC = (BTB[PC].tag == PC) ? BTB[PC].target: PC + 4

predicted target

26

X

a4 Computer Architecture & System Lab

Branch Target Buffer

e Why does a BTB work?

o Because most control instructions use direct targets
= Target encoded in insn itself -> same “taken” target every time
- What about indirect targets?
= Target held in a register -> can be different each time
= Two indirect call idioms
« Dynamic linked functions (DLLS): target always the same
« Dynamic dispatched (virtual) functions: hard but uncommon
= Two indirect unconditional jump idioms
« Switches: hard but uncommon
« Function returns: hard and common but ...

X %ﬁ\ National Yang Ming Chiao Tung University

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

§§
.
)

Branch Target Buffer

o Return Address Stack (RAS)
o Call instruction? RAS[TopOfStack++] = PC+4
o Return instruction? Predicted-target = RAS[--TopOfStack]

- How can we tell if an insn is a call/return before decoding it?
= Access RAS on every insn BTB-style doesn’t work
= Another predictor (or put them in BTB marked as “return”)
= Or, pre-decode bits in insn mem, written when first executed

predicted target

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

AT

Bimodal Branch Predictor

o Learn from past, predict the future
o Record the past in a hardware structure

o Direction predictor (DIRP)
o Map conditional-branch PC to taken/not-taken (T/N) decision
o Individual conditional branches often biased or weakly biased
= 90%+ one way or the other considered “biased”
= Why? Look back edges, checking for uncommon conditions

X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

1-bit Branch Predictor

o 1 bitindicating Taken (1) or Not Taken (0)
o Branch prediction buffers

(@)

Match branch PC during IF or |

0Ox135c4: add r1,r2,r3

D stage
Branch PC Outcome
0x135c¢8 0
ko
0x147e0 1

0x135c8: bne r1,r0,n

30

#Z % National Yang Ming Chiao Tung University
NP2 -
874 Computer Architecture & System Lab

1-bit Branch Predictor

o 1 bitindicating Taken (1) or Not Taken (0)

o Incur at least 2 mis-predictions per loop
o Problem: “unstable” behavior

while (i < 100)
x = al[i];

if (x == 0)
continue;
gtz++;

}

{

31

'X$7 % National Yang Ming Chiao Tung University
=‘;§‘;'IP Computer Architecture & System Lab
1-bit Branch Predictor

o 1-bit predictor: simplest predictor
o PC indexes branch history table of bits (0 =N, 1 =T), no tags
o Essentially: branch will go same way it went last time
o What about aliasing?
= Two PC with the same lower bits?
= NoO problem, just a prediction!

PC [31:10] @:2] |1:0] BHT

Tor NT
Tor NT

l Prediction (taken or
not taken)

@ NationalYangIY[ingChiaoTungUniversity E E} 6 Incorrect
a4 Computer Architecture & System Lab E‘. — d' tion
: : 49 g g predic
1-bit Branch Predictor 55 2 g P ,
™ (D 5 o) Result:
o 1-bit direction predictor " LLN] {NL]T] Wrong
o Problem: inner loop branch below 1 2|7 |1 | 7| Correct
))) 3 orrec
for (j=0f'j{3;j++) L N| Wrong
// whatever 5N 4T Wrong
. . 61T||T] |T| Correct
= The outcome is based on previous M1
t prediction 7 | o Correct
Correfp. ., L SITLITHN] Wrong_
= Two “built-in” mis-predictions per olnlInlT+1 w
_ _ _ ‘P__,.,. rong
Inner loop iteration 1071 M7 (7] correct
= Branch predictor “changesits mind 11|1| | 7| |T| correct
too quickly” 12|1] [Tl In] wrong 33

#Z % National Yang Ming Chiao Tung University

@ Computer Architecture & System Lab
1-bit Branch Predictor FSM

actually
taken
actually predict
not taken taken
actually

not taken

actually
taken

34

'X$7 % National Yang Ming Chiao Tung University
=‘;§‘;'IP Computer Architecture & System Lab
1-bit Branch Predictor

Problem: A last-time predictor changes its prediction from
T->NT or NT-=>T too quickly

o even though the branch may be mostly taken or mostly not
taken

Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

o Use two bits to track the history of predictions for a branch
instead of a single bit

o Can have 2 states for T or NT instead of 1 state for each

Smith, "A Study of Branch Prediction Strategies,” ISCA
1981.

35

X

=3\p7

if\ National Yang Ming Chiao Tung University

_‘, 874 Computer Architecture & System Lab

2-bit (Bimodal) Branch Predictor

« Predictor states: Taken

Taken @
Predict taken) (Predict taken
(10) « (11)
Not taken

Taken Not taken
Not taken

Predict not taken) @
(01) (00)
Taken
Q Not taken

e Learns biased branches

e N-bit predictor
o Increment on Taken outcome and decrement on Not Taken outcome
o If counter > (2"1) / 2 then taken, otherwise do not take
o Takes longer to learn, but sticks longer to the prediction

36

=3\p7

;I
I

X f\ National Yang Ming Chiao Tung University
874 Computer Architecture & System Lab

2-bit (Bimodal) Branch Predictor

= Nested loop:

Loopt: ...

Loop2: ... >
bne r1,r0,loop2

bne r2,r0,loop1

= 1st outer loop execution:

00 — predict not taken; actually taken — update to 01 (misprediction)
01 — predict not taken; actually taken — update to 10 (misprediction)
10 — predict taken; actually taken — update to 11

11 — predict taken; actually taken

11 — predict taken; actually not taken — update to 10 (misprediction)

37

National Yang Ming Chiao Tung University

%%’i Computer Architecture & System Lab
2-bit (Bimodal) Branch Predictor

2nd outer loop execution onwards:
- 10 — predict taken; actually taken — update to 11

- 11 — predict taken; actually taken
- 11 — predict taken; actually not taken — update to 10 (misprediction)

In practice misprediction rates for 2-bit predictors with 4096 entries in
the buffer range from 1% to 18% (higher for integer applications than for

fp applications)

Bottom-line: 2-bit branch predictors work very well for loop-intensive

applications
- n-bit predictors (n>2) are not much better
- Larger buffer sizes do not perform much better

38

P o i 2
- . 22 5 9
2-bit (Bimodal) Branch Predictor 2 & g 3 Rpesur?
o Two-bit saturating counters (2bc) | 1|N| |[NI]T] Wrong
o Replace each single-bit prediction 2{n| —
. (0,1,2,3)=(N,n,t, T) 2 t T
o Adds “hysteresis” S : :
= Force predictor to mis-predict 67147 I+ correct
twice before “changing its mind” 7171 17| 171 correct
= One mis-predict each loop 8T JHN] _wrong
execution (rather than two) Olel [T+ correct |
« + Fixes this pathology (which 10| T "’-T’ 1| correct
IS not contrived) Sincorrect 11|1! 7! |T| Correct
prediction 12| 7| | 7] [N] wrong

X

a4 Computer Architecture & System Lab

2-bit (Bimodal) Branch Predictor

Each branch associated with a two-bit counter
One more bit provides hysteresis

A strong prediction does not change with one single
different outcome

X iﬁ\ National Yang Ming Chiao Tung University

Accuracy for a loop with N iterations = (N-1)/N
TNTNTNTNTNTNTNTNTNTN = 50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy
-- More hardware cost (but counter can be part of a BTB entry)

40

éi’ﬁ‘ National Yang Ming Chiao Tung University

_‘r 874 Computer Architecture & System Lab

2-bit (Bimodal) Branch Predictor

PC

—_—

“w\\\\
)
f'-l/
7 PC+4
0
Target 1
Hit? Taken?
01
P
T_ags H [Targets
(optional) T

BTB

Next
Fetch
Address

41

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Correlating Predictors

o 1- and 2-bit predictors exploit most recent history of the
current branch

o Realization: branches are correlated!
o Local:
= A branch outcome maybe correlated with past outcomes of the
same branch
o Global:
= A branch outcome maybe correlated with past outcomes of
other branches

42

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Correlating Predictors

« Branches may be correlated
o Consider:

for (i=0; i<1000000; i++) { // Highly biased
Gif (i $ 3 == 0) { // Locally correlated

}
if (random() % 2 == 0) {

// Unpredictable

}
if (i % 3 == 0) {
// Globally correlated
}
} 43

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

AT

Correlating Predictors (Local)

o 1- and 2-bit predictors exploit most recent history of the

current branch
T while (i < 4) {
 Realization: outcomes of same branch ™ ,"_ J7i7.

correlated!
o Branch outcomes: gtz++;
- 1,1,1,0, 1,1,1,0, 1,1,1,0... }
o ldea: exploit recent history of same branch
In prediction

44

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Correlating Predictors (Globa

)

= 1-and 2-bit predictors exploit most recent

history of the current branch

= Realization: Different branches maybe correlated!

if (a == 2)
a=20;

if (b == 2)
b =0;

if (a '= b) {
.}

If both branches are taken,
the last branch definitely not taken

char sl = “Bob”

if (sl '= NULL)
reverse str(sl)g

reverse_str(char %€)
if (sl ==
return;

sl definitely not Null
in this calling context

{

45

'X$7 % National Yang Ming Chiao Tung University
%;%'IP Computer Architecture & System Lab
Correlating Predictors (Global)

= 1-and 2-bit predictors exploit most recent
history of the current branch

= Realization: Different branches maybe correlated!

if (a == 2) char sl = “Bob”
a=2>0; ..
if (b == 2) if (sl '= NULL)
b=20; reverse str(sl)g
if (a '= b) {
..} reverse_str(char %s)
if (sl ==
return;

Idea: exploit recent history of other branches in prediction

{

46

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Global Two-level (Correlating) Predictor

= Prediction depends on the context of the branch

= Context: history (T/NT) of the last N branches

- First level of the predictor
- Implemented as a shift register
= Prediction: 2-bit saturating counters

- Indexed with the “global” history

- Second level of the predictor

000..0 | g | Pattern Histotry
D — 000.1 | 10 | Table (PHT)
1/1/0]... 11 00
Global History .1 HiD
Register GHR) 1.1 Foid

47

%f National Yang Ming Chiao Tung University

X
‘r a%"f Computer Architecture & System Lab

Global Two-level (Correlating) Predictor

Which direction earlier
branches went

Global branch \
histo

Counter >/

Address of the N\
current instruction \\

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

tak,an? ™,
)
- \'--.\,:;N
PC + inst siza — 0 Next Fetch
) Address
hit? o P
"

target address

48

N

a4 Computer Architecture & System Lab

Gshare History-Based Predictor

o EXxploits observation that branch outcomes are correlated
o Maintains recent branch outcomes in Branch History
Register (BHR)
o In addition to BHT of counters (typically 2-bit sat. counters)

o« How do we incorporate history into our predictions?

o Use PC xor BHR to index into BHT
PC

X %ﬁ\ National Yang Ming Chiao Tung University

D
)

BHR

BHT

!

direction prediction (T/NT) 49

5‘?{1‘ National Yang Ming Chiao Tung University

_‘r 874 Computer Architecture & System Lab

Gshare History-Based Predictor

o Gshare working example

@)

(@)

(@)

Assume program has one branch

BHT: one 1-bit DRIP entry
3BHR: last 3 branch outcomes
Train counter, and update BHR
after each branch

o

=1 =~ ws] ~ o

% %" ;:5 Q' % Result?
1|INJ] [NNN] [N T| wrong
2[{NJ| INNT| IN] |T] wrong
SINJ| INTT| [N] | T] wrong
AINI T L INL INT correct
5|IN]| [TTN N| |T] wrong
6 N[|TNT| IN]| |T] wrong
71T NTT | | T| | T| correct
SIN[| TrT | IN| IN| correct
91T| I TIN| | T] | T| correct
107 | [INT| | T| | T| correct
11| 1 NTT | I T| | T| Ccorrect
12|N| | TTT N| [NJ| correct

50

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Bimodal and Global 2-level

« Bimodal (2-bit) branch predictor
o + Good for biased branches
o + No interference
o - Cannot discern patterns

o Global 2-level Branch Predictor
o + Leverages correlated branches
o + ldentifies patterns
o - Cannot always take advantage of biased branches
o - Interference

51

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Interference In Global 2-level Predictor
Pattern History Table

Global History Register 1

1

0
1
0
1
1
1
0

1
1
1
1
0
1
1

Biased branches pollute the PHT!!!!

0

1

2

3

4

5

6

7

« Branch A is always Not
Taken when GHR is 101

« Branch B is aloop with a
million iterations

« Branch A and Branch B
can interfere in entry 5
of the PHT

52

#Z % National Yang Ming Chiao Tung University
SP2| -
874 Computer Architecture & System Lab

Tournament Predictor
= Most branches are biased (e.g. 99% Taken)

= Filter the biased branches with a simple predictor
(e.g. Bimodal)

= Predict the hard branches with the Global 2-level
predictor

= Use a meta-predictor to chose a different
predictor

= The meta-predictor is a PHT of 2-bit saturating
counters

53

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Tournament Predictor

GHR

Global 2-level
Predictor

Bimodal
Predictor

1

P

H
-

Meta
Predictor

//n

ﬁ Taken?

~

PC + 4

Target
Address
from BTB

0

1

Next
Fetch
Address

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Tournament Predictor

o Hybrid (tournament) predictor
o + Correlated predictor can be made smaller, handles fewer branches
o +90 - 95% accuracy

PC L
BHR|— =

i
By
BHT

BHT
chooser

55

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Reduce Branch Penalty

o Fast branch: can decide at Decode, not Exec. Stage

o Test must be comparison to zero or equality
o + New taken branch penalty is 1
o - Additional instructions (slt) for more complex tests, must bypass to

Decode
———F

3 v
Register
. 0]
File
—lp » Insn > s1s2 d] s] N B
Mem S P = N >
> | P » IR * IR IR

X ,ﬁ\ National Yang Ming Chiao Tung University

=337
‘Eg-r Computer Architecture & System Lab

Reduce Branch Penalty

o Fast branch: targets control-hazard penalty
o Basically, branch instructions that can resolve at D, not X
o - Must bypass into decode stage

1 2 3 4 5 6 7 8 9
bnez r3,targ M W

F D_ X
st rh—lr7id]l F\D - — -
F D X M W

targ:add réd4er5,r4

57

X %% National Yang Ming Chiao Tung University

Ny
SHZ1N

_‘, 874 Computer Architecture & System Lab

Reduce Branch Penalty

o Fast branch performance
o Assume: Branch: 20%, 75% of branches are taken
= CPI=1+20%*75%*1=1.15
= 15% slowdown (better than the 30% from before)
o Fast branches assume only simple comparisons
= Not fine for ISAs with “branch if $1 > $2” operations
= Insuch cases, say 25% of branches require an extra instruction
e CPI=1+(20% *75% * 1) + 20% * 25% *1 (extra insn) = 1.2
o Another options
= Delayed branch or branch delay slot

58

#Z % National Yang Ming Chiao Tung University
RN -
874 Computer Architecture & System Lab

Delayed Branch Slot

o Delayed Branch Slot
- Old definition:
« If we take the branch, none of the instructions after
the branch get execute by accident
- New definition:
= Whether or not we take the branch, the single
Instruction immediately following the branch gets
executed (called the branch-delay slot)

59

X ,/1\ National Yang Ming Chiao Tung University

=337
",%-r Computer Architecture & System Lab

Delayed Branch Slot

o Delayed Branch Slot
- We always execution instruction after branch
- Worst-case:
= Can always put a no-op in the branch-delay slot

- Better case:

= Can find an instruction before the branch which can be placed
In the branch-delay slot without affecting flow of the program
= The compiler must be smart to find instructions to do this

60

X

a4 Computer Architecture & System Lab

Delayed Branch Slot

X iﬁ\ National Yang Ming Chiao Tung University

Nondelayed Branch
or $8, $9 ,$10

add $1 ,$2,8$3

sub $4, $5,$6

beg $1, $4, Exit

xor $10, $1,8$11

Delayed Branch
add $1 ,$2,8$3

sub $4, $5,$6

beg $1, $4, Exit

d

Ko:: §8)89 810 Delayed
slot

xor $10, $1,$11

Exit: Exit:

61

X

a4 Computer Architecture & System Lab

Takeaway Questions

X %ﬁ\ National Yang Ming Chiao Tung University

o Dynamic branch prediction
o 20% of instruction branches
o Simple predictor: branches predicted with 75% accuracy
= What is the CPI when using such a simple predictor?
o More advanced predictor: 95% accuracy
= Whatis the CPI when using such an advanced predictor?

X %% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Takeaway Questions

o Dynamic branch prediction

o 20% of instruction branches

o Simple predictor: branches predicted with 75% accuracy
= What is the CPI when using such a simple predictor?
= CPI=1+(20%*25% *2)=1.1

o More advanced predictor: 95% accuracy
= Whatis the CPI when using such an advanced predictor?
= CPI=1+(20% *5% *2)=1.02

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Predication

« Complex predicates are converted into multiple branches
o If((a==b)&& (c <d)&& (a >5000)){...}
o 3 conditional branches

o Problem:
o This increases the number of control dependencies

e ldea
o Combine predicate operations to feed a single branch instruction
o Predicates stored and operated on using condition register
o A single branch checks the value of the combined predicate
o + Fewer branches in code -> fewer mispredictions/stalls

64

X ,ﬁ\ National Yang Ming Chiao Tung University

E\ td
‘,%-r Computer Architecture & System Lab

Predication

e Idea: compiler converts control dependence into data dependence ->

branch is eliminated
o Each instruction has a predicate bit set based on the predicate

computation
o Only instructions with TRUE predicates are committed (Other

turned into NOPS)
o - Possible unnecessary work
« If the first predicate is false, no need to compute other

predicates

65

X$7 & National Yang Ming Chiao Tung University

=3\p7

"ig-r Computer Architecture & System Lab

Predication
e Idea: compiler converts control dependence into data dependence ->

branch is eliminated Pipe:/lcourse.ece.cmu.edu/~ece740/{L3/iblexelfetch php Pmedia=onur-740-fallL3 module?.4.2-
(normal branch code) (predicated code)
-
if (cond) { T N A
b = 0; C B B
h ./ C
else { D D
} Pt : Erla:c{f‘l:?:}(,i)l'ARGET A pl = (cond)
?rlr?:J]BIIN ? ('p1) mov b, 1
: TARC;’ECE b, 0 ¢ (p1) mov b, 0
| add x, b, 1 ° add x, b, 1| 66

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

o Instead of predicting which way we're going, why not go
both ways?

// C code ; original RV ; imaginary predicated RV
if (a >= Db) { blt x1,x2,else slt pl,x1,x2
X +=y; add x3,x3,x4 add. !pl x3,x3,x4
} else { j after sub.pl x3,x3,x5
X -= Z; else:
} sub x3,x3,x5
after:

67

X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Predication

o Predication overhead is additional instructions
o Sometimes overhead is zero
= For if-then statement where condition is true
o Most of the times it isn’t
= If-then-else statement, only one of the paths is useful

o For a given branch, predicate
o Average number of additional insns < overall mis-predication
penalty

68

X

,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Predication

o Advantages

O

O

O

O

O

+ Eliminates mispredications for hard-to-predict branches

+ No need for branch prediction for some branches

+ Good If misprediction cost > useless work due to predictation

+ Enable code optimizations hindered by the control dependency
+ Can move instructions more freely within predictated code

69

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Predication

« Disadvantages
o - Cause useless work for branches that are easy to predict
o - Reduce performance if misprediction cost < useless work
o - Additional hardware and ISA support
o - Cannot eliminate all hard to predict branches
= Loop branches?

70

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Conclusion

« Pipeline challenge is hazards
o Forwarding helps with many data hazards
o Delayed branch helps with control hazard in 5 stage pipeline
o Load delay slot / interlock necessary
« More aggressive performance
o Superscalar
o Out-of-order execution

71

