
Lecture 9: Branch Predictor

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao University

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CIS510 at Upenn

● https://www.cis.upenn.edu/~cis5710/spring2019/

● IF3 at the University of Edinburgh

● https://www.inf.ed.ac.uk/teaching/courses/car/Notes/2017-

18/lecture05-handling_hazards.pdf

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://www.cis.upenn.edu/~cis5710/spring2019/

Outline

● Branch Predictor

● Branch Target Buffer

● Bimodal Branch Predictor

● Gshare History-Based Predictor

● Tournament Predictor

● Prediction

3

Static Branch Prediction

4

● Compiler determine whether branch is likely to be taken or

likely to be not taken

○ When is a branch likely to be taken?

○ When is a branch likely to be NOT

taken?

Static Branch Prediction

5

● Compiler determine whether branch is likely to be taken or

likely to be not taken

● Decision is based on analysis or profile information

○ 90% of backward-going branches are taken

○ 50% of forward-going branches are no taken

● Decision is encoded in the branch instructions themselves

○ Uses 1 bit: 0=> not likely to branch, 1=> likely to branch

● Prediction may be wrong

○ Must kill instructions in the pipeline when a bad decision is made

Branch Prediction

6

Branch Prediction

7

● Branch speculation

○ Could just stall to wait for branch outcome (two-cycle penalty)

○ Fetch past branch instructions before branch outcome is known

■ Default: assume “not-taken” (at fetch stage, can’t tell it’s a

branch)

Branch Prediction

8

● Speculative execution

○ Execute before all parameters known with certainty

○ If speculation is “correct”

■ + Avoid stall, improve performance

○ If speculation is “incorrect” (mis-speculation)

■ Must abort/flush/squash incorrect instructions

■ Must undo incorrect changes (recover pre-speculation state)

Branch Prediction

9

● Control speculation mechanics

○ Guess branch target, start fetching at guessed position

■ Doing nothing is implicitly guessing target is PC+4

■ Can actively guess other targets: dynamic branch prediction

○ Execute branch to verify guess

■ Correct speculation? Keep going

■ Mis-speculation? Flush mis-speculated instructions

● Hopefully haven’t modified permanent state (Regfile,

DMem)

+ Happens naturally in in-order 5-stage pipeline

Branch Prediction

10

● When to perform branch prediction?

○ Option #1: During decode

■ Look at instruction opcode to determine branch instructions

■ Can calculate next PC from instruction (for PC-relative branches)

■ One cycle “mis-fetch” penalty even if branch predictor is correct

○ Option #2: During fetch?

■ How do we do that?

● Branch predictor

Branch Recovery

11

● Branch recovery

○ What to do when branch is actually taken?

■ Instruction that are in F and D are wrong

■ Flush them, i.e., replace them with nops

Branch Recovery

12

● Branch recovery

○ What to do when branch is actually taken

■ Flush them, i.e., replace them with nops

■ + They haven’t written permanent state yet (regfile, DMem)

■ - Two cycle penalty for taken branches

Branch Recovery

13

● Mis-speculation recovery

○ What to do on wrong guess

■ Branch resolves in X (EXEC.) stage

■ + Younger insts (in F, D) haven’t changed permanent state

■ Flush instructions currently in D and X (i.e, replace with nops)

Takeaway Questions

14

● Assume that

○ Branch: 20%, load: 20%, store: 10%, other: 50%

○ Say, 75% of branches are taken

○ What is the CPI?

Takeaway Questions

15

● Assume that

○ Branch: 20%, load: 20%, store: 10%, other: 50%

○ Say, 75% of branches are taken

○ What is the CPI?

■ CPI = 1 + 20% * 75% *2 = 1.3

■ Branches cause 30% slowdown

● Worse with deeper pipelines, why?

● Can we do better than assuming branch is not

taken?

Dynamic Branch Prediction

16

● Monitor branch behavior and learn

○ Key assumption: past behavior indicative of future behavior

● Predict the present branch using learning history

○ Identify individual branches by their PC or dynamic branch history

● Predict

○ Outcome: taken or not taken

○ Target: address of instruction to branch to

○ Check actual outcome and update the history

○ Squash incorrectly fetched instructions

Dynamic Branch Prediction

17

● Dynamic branch prediction

○ Hardware guesses outcome

○ Start fetching

from guessed

address

○ Flush on

mis-prediction

Dynamic Branch Prediction

18

Dynamic Branch Prediction

19

● Dynamic Branch Prediction components

○ Step #1: is it a branch?

■ Easy after decode …

○ Step #2: is the branch taken or not taken?

■ Direction predictor (applies to conditional branch only)

■ Predict taken/not-taken

○ Step #3: if the branch is taken, where does it go?

Dynamic Branch Prediction

20

● Branch Prediction steps

Dynamic Branch Prediction

21

● Branch prediction performance

○ Branch: 20%, load: 20%, store: 10%, other: 50%

○ 75% of branches are taken

● Dynamic branch prediction

○ Branches predicted with 95% accuracy

○ CPI = 1 + 20% * 5% *2 = 1.02

Branch Target Buffer

22

Branch Target Buffer

23

● Revisit branch prediction

○ Step #1: is it a branch?

■ Easy after decode …during fetch: predictor

○ Step #2: is the branch taken or not taken?

■ Direction predictor (applies to conditional branch only)

○ Step #3: if the branch is taken, where does it go?

■ Branch target predictor (BTB)

■ Supplies target PC if branch is taken

Branch Target Buffer

24

● Branch Target Buffer (BTB)

○ Learn from past, predict the future, record the past in a hardware

○ Guess the future PC based on past behavior

○ E.g. “Last time the branch X was taken, it went to address Y”

■ So, in the future, if address X is fetched, fetch address Y next

■ PC indexes table of bits target addresses

■ Branch will go to same place it went last time

Branch Target Buffer

25

● Branch Target Buffer (BTB)

○ At Fetch, how does insn know it’s a branch and read BTB?

■ All insns access BTB in parallel with Imm Fetch

○ BTB is used to predict which insn are branches

■ Implement by “tagging” each entry with its corresponding PC

■ Update BTB on every taken branch insn, record target PC

● BTB[PC].tag = PC, BTB[PC].target = target of branch

Branch Target Buffer

26

● Branch Target Buffer (BTB)

○ All insns access at Fetch in parallel with Imm

■ Check for tag match, signifies insn at that PC is a branch

■ Predict PC = (BTB[PC].tag == PC) ? BTB[PC].target: PC + 4

Branch Target Buffer

27

● Why does a BTB work?

○ Because most control instructions use direct targets

■ Target encoded in insn itself -> same “taken” target every time

○ What about indirect targets?

■ Target held in a register -> can be different each time

■ Two indirect call idioms

● Dynamic linked functions (DLLs): target always the same

● Dynamic dispatched (virtual) functions: hard but uncommon

■ Two indirect unconditional jump idioms

● Switches: hard but uncommon

● Function returns: hard and common but …

Branch Target Buffer

28

● Return Address Stack (RAS)

○ Call instruction? RAS[TopOfStack++] = PC+4

○ Return instruction? Predicted-target = RAS[--TopOfStack]

○ How can we tell if an insn is a call/return before decoding it?

■ Access RAS on every insn BTB-style doesn’t work

■ Another predictor (or put them in BTB marked as “return”)

■ Or, pre-decode bits in insn mem, written when first executed

Bimodal Branch Predictor

29

● Learn from past, predict the future

○ Record the past in a hardware structure

● Direction predictor (DIRP)

○ Map conditional-branch PC to taken/not-taken (T/N) decision

○ Individual conditional branches often biased or weakly biased

■ 90%+ one way or the other considered “biased”

■ Why? Look back edges, checking for uncommon conditions

1-bit Branch Predictor

30

● 1 bit indicating Taken (1) or Not Taken (0)

● Branch prediction buffers

○ Match branch PC during IF or ID stage

1-bit Branch Predictor

31

● 1 bit indicating Taken (1) or Not Taken (0)

● Incur at least 2 mis-predictions per loop

○ Problem: “unstable” behavior

1-bit Branch Predictor

32

● 1-bit predictor: simplest predictor

○ PC indexes branch history table of bits (0 = N, 1 = T), no tags

○ Essentially: branch will go same way it went last time

○ What about aliasing?

■ Two PC with the same lower bits?

■ No problem, just a prediction!

1-bit Branch Predictor

33

● 1-bit direction predictor

○ Problem: inner loop branch below

■ The outcome is based on previous

correct prediction

■ Two “built-in” mis-predictions per

inner loop iteration

■ Branch predictor “changes its mind

too quickly”

6 incorrect

prediction

1-bit Branch Predictor FSM

34

1-bit Branch Predictor

35

2-bit (Bimodal) Branch Predictor

36

● Learns biased branches

● N-bit predictor

○ Increment on Taken outcome and decrement on Not Taken outcome

○ If counter > (2n-1) / 2 then taken, otherwise do not take

○ Takes longer to learn, but sticks longer to the prediction

2-bit (Bimodal) Branch Predictor

37

2-bit (Bimodal) Branch Predictor

38

2-bit (Bimodal) Branch Predictor

39

● Two-bit saturating counters (2bc)

○ Replace each single-bit prediction

■ (0, 1, 2, 3) = (N, n, t, T)

○ Adds “hysteresis”

■ Force predictor to mis-predict

twice before “changing its mind”

■ One mis-predict each loop

execution (rather than two)

● + Fixes this pathology (which

is not contrived) 5 incorrect

prediction

2-bit (Bimodal) Branch Predictor

40

2-bit (Bimodal) Branch Predictor

41

Correlating Predictors

42

● 1- and 2-bit predictors exploit most recent history of the

current branch

● Realization: branches are correlated!

○ Local:

■ A branch outcome maybe correlated with past outcomes of the

same branch

○ Global:

■ A branch outcome maybe correlated with past outcomes of

other branches

Correlating Predictors

43

● Branches may be correlated

○ Consider:

Correlating Predictors (Local)

44

● 1- and 2-bit predictors exploit most recent history of the

current branch

● Realization: outcomes of same branch

correlated!

○ Branch outcomes:

■ 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0 …

○ Idea: exploit recent history of same branch

in prediction

Correlating Predictors (Global)

45

Correlating Predictors (Global)

46

Global Two-level (Correlating) Predictor

47

Global Two-level (Correlating) Predictor

48

Gshare History-Based Predictor

49

● Exploits observation that branch outcomes are correlated

● Maintains recent branch outcomes in Branch History

Register (BHR)

○ In addition to BHT of counters (typically 2-bit sat. counters)

● How do we incorporate history into our predictions?

○ Use PC xor BHR to index into BHT

Gshare History-Based Predictor

50

● Gshare working example

○ Assume program has one branch

○ BHT: one 1-bit DRIP entry

○ 3BHR: last 3 branch outcomes

○ Train counter, and update BHR

after each branch

Bimodal and Global 2-level

51

● Bimodal (2-bit) branch predictor

○ + Good for biased branches

○ + No interference

○ - Cannot discern patterns

● Global 2-level Branch Predictor

○ + Leverages correlated branches

○ + Identifies patterns

○ - Cannot always take advantage of biased branches

○ - Interference

Interference in Global 2-level Predictor

52

Tournament Predictor

53

Tournament Predictor

54

Tournament Predictor

55

● Hybrid (tournament) predictor

○ + Correlated predictor can be made smaller, handles fewer branches

○ + 90 – 95% accuracy

Reduce Branch Penalty

56

● Fast branch: can decide at Decode, not Exec. Stage

○ Test must be comparison to zero or equality

○ + New taken branch penalty is 1

○ - Additional instructions (slt) for more complex tests, must bypass to

Decode

Reduce Branch Penalty

57

● Fast branch: targets control-hazard penalty

○ Basically, branch instructions that can resolve at D, not X

○ - Must bypass into decode stage

Reduce Branch Penalty

58

● Fast branch performance

○ Assume: Branch: 20%, 75% of branches are taken

■ CPI = 1 + 20% * 75% *1 = 1.15

■ 15% slowdown (better than the 30% from before)

○ Fast branches assume only simple comparisons

■ Not fine for ISAs with “branch if $1 > $2” operations

■ In such cases, say 25% of branches require an extra instruction

● CPI = 1 + (20% * 75% * 1) + 20% * 25% *1 (extra insn) = 1.2

○ Another options

■ Delayed branch or branch delay slot

Delayed Branch Slot

59

● Delayed Branch Slot

○ Old definition:

■ if we take the branch, none of the instructions after

the branch get execute by accident

○ New definition:

■ Whether or not we take the branch, the single

instruction immediately following the branch gets

executed (called the branch-delay slot)

Delayed Branch Slot

60

● Delayed Branch Slot

○ We always execution instruction after branch

○ Worst-case:

■ Can always put a no-op in the branch-delay slot

○ Better case:

■ Can find an instruction before the branch which can be placed

in the branch-delay slot without affecting flow of the program

■ The compiler must be smart to find instructions to do this

Delayed Branch Slot

61

Delayed

slot

Takeaway Questions

62

● Dynamic branch prediction

○ 20% of instruction branches

○ Simple predictor: branches predicted with 75% accuracy

■ What is the CPI when using such a simple predictor?

○ More advanced predictor: 95% accuracy

■ What is the CPI when using such an advanced predictor?

Takeaway Questions

63

● Dynamic branch prediction

○ 20% of instruction branches

○ Simple predictor: branches predicted with 75% accuracy

■ What is the CPI when using such a simple predictor?

■ CPI = 1 + (20% * 25% * 2) = 1.1

○ More advanced predictor: 95% accuracy

■ What is the CPI when using such an advanced predictor?

■ CPI = 1 + (20% * 5% * 2) = 1.02

Predication

64

● Complex predicates are converted into multiple branches

○ If ((a == b) && (c < d) && (a > 5000)) {…}

○ 3 conditional branches

● Problem:

○ This increases the number of control dependencies

● Idea

○ Combine predicate operations to feed a single branch instruction

○ Predicates stored and operated on using condition register

○ A single branch checks the value of the combined predicate

○ + Fewer branches in code -> fewer mispredictions/stalls

Predication

65

● Idea: compiler converts control dependence into data dependence ->

branch is eliminated

○ Each instruction has a predicate bit set based on the predicate

computation

○ Only instructions with TRUE predicates are committed (Other

turned into NOPs)

○ - Possible unnecessary work

■ If the first predicate is false, no need to compute other

predicates

Predication

66

● Idea: compiler converts control dependence into data dependence ->

branch is eliminated https://course.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module7.4.2-

predicated-execution.pdf

Predication

67

● Instead of predicting which way we’re going, why not go

both ways?

Predication

68

● Predication overhead is additional instructions

○ Sometimes overhead is zero

■ For if-then statement where condition is true

○ Most of the times it isn’t

■ If-then-else statement, only one of the paths is useful

● For a given branch, predicate

○ Average number of additional insns < overall mis-predication

penalty

Predication

69

● Advantages

○ + Eliminates mispredications for hard-to-predict branches

○ + No need for branch prediction for some branches

○ + Good if misprediction cost > useless work due to predictation

○ + Enable code optimizations hindered by the control dependency

○ + Can move instructions more freely within predictated code

Predication

70

● Disadvantages

○ - Cause useless work for branches that are easy to predict

○ - Reduce performance if misprediction cost < useless work

○ - Additional hardware and ISA support

○ - Cannot eliminate all hard to predict branches

■ Loop branches?

Conclusion

● Pipeline challenge is hazards

○ Forwarding helps with many data hazards

○ Delayed branch helps with control hazard in 5 stage pipeline

○ Load delay slot / interlock necessary

● More aggressive performance

○ Superscalar

○ Out-of-order execution

71

