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Single-Cycle Processor
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● Estimate the clock rate (frequency) of our single-cycle 

processor

○ 1 cycle per instruction

○ lw is the most demanding instruction

○ The max clock frequency = 1/800 ps = 1.25 GHz

Instr IF = 200ps ID = 100ps ALU = 200ps MEM=200ps WB = 100ps Total

add X X X X 600ps

beq X X X 500ps

jal X X X X 600ps

lw X X X X X 800ps

sw X X X X 700ps



Pipelined RISC-V Processor
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Single-Cycle vs. Pipelined RISC-V Processor
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Pipelined RISC-V Abstraction
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Pipelining
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● Ann, Brian, Cathy, Dave 
each has one load of clothes to wash, dry, 
fold, and put away

○ Washer takes 30 minutes

○ Dryer takes 30 minutes

○ “Folder” takes 30 minutes

○ “Stasher” takes 30 minutes to put clothes 
into drawers

A B C D



Pipelining
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● Sequential Laundry
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Pipelining
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● Pipelining laundry
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Pipelining laundry takes 

3.5 hours for 4 loads !



Pipelining
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● Pipelining doesn’t help latency of single task, it 

helps the throughput of entire workload

● Multiple tasks operating simultaneously using 

different resources

● Potential speedup = number of pipelining stages

○ Pipelining rate limited by slowest pipeline stage

○ Unbalanced lengths of pipe stages reduce speedup



Pipelining Execution
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● Steps in Executing RISC-V

○ IFtch: Instruction fetch, increment PC

○ Dcd: Instruction decode, read registers

○ Execute (Exec)

■ Mem-ref: Calculate Address

■ Arith-log: Perform Operation

○ Mem

■ Load: Read data from memory

■ Store: Write data to memory

○ WB: Write data back to register



Pipelining Execution
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● Throughput = # instructions / time



Pipelining Execution
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● The delay time of each pipeline stage

○ Memory access: 2 ns

○ ALU operation: 2 ns

○ Register file read/write: 1 ns

● Single-cycle processor

○ lw:   IF + Read Reg + ALU + Memory + Write Reg 

= 2 +       1          +   2 + 2         +  1  = 8 ns

○ add: IF + Read Reg + ALU + Write Reg  = 6 ns 

● Pipelined Execution

○ Max (IF, Read Reg, ALU, Memory, Write Reg) = 2ns



Single-Cycle & Pipelined Datapaths
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Corrected Pipelined Datapath
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Pipeline register



Pipelined Processor with Control
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Takeaway Questions

● Which statement is true after pipelining the single-cycle 

processor?

○ (a) Instructions/program (instruction counts) decreases

○ (b) Cycles/instruction (CPI) decreases

○ (c) Time/cycle (clock rate) decreases
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Takeaway Questions

● Which of the following statement(s) is/are True or False?

○ (a) Thanks to pipelining, I have reduced the time it took 

me to wash my shirt. 

(b) Longer pipelines are always a win (since less work 

per stage & a faster clock)
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Takeaway Questions

● Which of the following statement(s) is/are True or False?

○ (a) Thanks to pipelining, I have reduced the time it took 

me to wash my shirt.  (False)

■ Throughput better, not execution time

○ (b) Longer pipelines are always a win (since less work 

per stage & a faster clock) (False)

■ longer pipelines do usually mean faster clock, but 

branches cause problems!
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Pipelining Hazard
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● Limits to pipelining
○ Hazards result in pipeline “stalls” or “bubbles”

○ Structural hazards:

■ Multiple instructions in the pipeline compete for access to 

a single physical resource

○ Control hazards:

■ Pipelining of branches causes later instruction fetches to 

wait for the result of the branch

○ Data hazards:

■ Instructions have data dependency

■ Need to wait for previous instruction complete its data 

read/write



Structural Hazard
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● Structural Hazard #1: Single Memory

Read the 

same memory 

twice in the 

same clock 

cycle



Structural Hazard
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● Structural Hazard #1: Single Memory

○ Infeasible and inefficient to create a second memory

○ Solution

■ Have both an L1 instruction cache and an L1 data 

cache

■ Need more complex hardware to control when both 

caches miss



Structural Hazard 
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● Structural Hazard #1: Single Memory

○ Structural hazard if IMEM, DMEM were same hardware

RV32I 

separates 

IMEM and 

DMEM to avoid 

structural 

hazard



Structural Hazard 
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● Structural Hazard #2: Registers

Read and write 

to registers 

simultaneously



Structural Hazard
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● Structural Hazard #2: Registers
○ Two different solutions have been used

■ RegFile access is very fast: takes less than half the 

time of the ALU stage

● Write to registers during the first half of each clock 

cycle

● Read from registers during the second half of 

each clock cycle

■ Build RegFile with independent read and write ports

○ Result: can perform read and write during the same clock 

cycle



Structural Hazard 
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● Structural Hazard #2: Registers

○ Each RV32I instruction

■ Reads up to 2 operands in decode stage

■ Writes up to 1 operand in writeback stage

■ Structural hazard occurs if RegFile HW 

does not support simultaneous read/write !

○ RV32I RegFile-> no structural hazard

■ 2 independent read ports, 1 write port

■ Three accesses (2R/1W) can happen at 

the same cycle



Data Hazard
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● Data hazard

○ Instructions have data dependency

○ Need to wait for previous instruction to complete its data 

read/write

○ Occurs when an instruction reads a register before a 

previous instruction has finished writing to that register

● Three cases to consider

○ Register access

○ ALU result

○ Load data hazard



Data Hazard: REG
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● Register Access

The same register is 

written and read in one 

cycle:

1. WB must write value 

before ID reads new value

2. No structural hazard –

Separate ports allows 

simultaneous R/W



Data Hazard: REG
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● Register Access

Solution: RegFile HW 

should write-then-read in 

the same cycle

1. Exploit high speed of 

RegFile (100 ps + 100 ps)

2. Might not always be 

possible to write-then-

read in the same cycle., 

e.g. in high-frequency 

designs 



Data Hazards:REG
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Data Hazard: ALU
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● ALU Result

Problem: Instruction depends 

on WB’s RegFile write from 

previous instruction

sub, or’s ID reads old value 

of s0 and calculates wrong 

result

xor gets the right value; 

RegFile is write-then-read



Handling Data Hazards
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Data Hazard: ALU
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● ALU solution 1: Stalling
“Bubble” to effectively nop:

1. Affected pipeline 

stages do nothing during 

clock cycles

2. Stall all stages by 

preventing PC, IF/ID 

pipeline register from 

writing



Data Hazard: ALU 
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● ALU solution 1: Stalling
Stalls reduce performance

1. Compiler could 

rearrange code/insert 

nops to avoid hazard (and 

therefore stalls), but this 

requires knowledge of the 

pipeline structure



Compile-Time Hazard Elimination
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Data Hazard: ALU 
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● ALU solution 2: Forwarding
Forwarding (bypassing)

uses the result when it is

computed

1. Don’t wait for value to 

be stored in RegFile

2. Grab operand from 

the pipeline stage



Data Hazard: ALU
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● ALU solution 2: Forwarding Forwarding (bypassing) 

Implementation:

1. Make extra 

connections in the 

datapath

2. Also add forwarding 

control logic



Data Forwarding
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Data Forwarding

40



Data Forwarding
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Data Forwarding
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Data Forwarding: Hazard Unit
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Data Hazard: Load (1/8)
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● Forwarding cannot fix all data hazards



Data Hazard: Load (2/8)
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● Forwarding cannot fix all data hazards



Data Hazard: Load (3/8)
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● Forwarding cannot fix all data hazards

○ Must stall instruction dependent on load, then 

forward (more hardware)

sub $t3,$t0,$t2
A
L
UI$ Reg D$ Reg

lw $t0,0($t1)

IF ID/RF EX MEM WBA
L
UI$ Reg D$ Reg



Data Hazard: Load (4/8)
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● Hardware stalls pipeline

○ Called “interlock”



Data Hazard: Load (5/8)
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● The instruction slot after a load is called load delay slot

● If this instruction uses the result of load

○ The hardware must stall for one cycle (plus forwarding)

○ This results in performance loss!



Data Hazard: Load (6/8)
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● Stall is equivalent to “nop”



Data Hazard: Load (7/8)
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● Code scheduling: Fix data hazard using the compiler

○ In the delay slot, put an instruction unrelated to the load result

○ -> No performance loss!



Data Hazard: Load (8/8)
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● Instruction slot after a load is called “load delay slot”

● If the instruction uses the result of the “LOAD”

○ The hardware interlock will stall it for one cycle

● If the compiler puts an unrelated instruction in that slot

○ No stall

○ Letting the hardware stall the instruction in the delay 

slot is equivalent to putting a NOP in the slot



Stalling Logic
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Stalling Hardware
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Takeaway Questions

● Assume a program executed in a processor

○ Branch: 20%, load: 20%, store: 10%, others: 50%

○ 50% of loads are followed by dependent instruction

■ Require 1 cycle stall (i.e. instruction of 1 nop)

● What is the CPI of such a program in this processor?
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Takeaway Questions

● As before

○ Branch: 20%, load: 20%, store: 10%, others: 50%

● Hardware interlocks: same as software interlock

○ 20% of instructions require 1 cycle stall (i.e. insertion of 1 nop)

○ 5% of instructions require 2 cycle stall (i.e. insertion of 2 nops)

● What is the CPI?
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Takeaway Questions

● As before

○ Branch: 20%, load: 20%, store: 10%, others: 50%

● Hardware interlocks: same as software interlock

○ 20% of instructions require 1 cycle stall (i.e. insertion of 1 nop)

○ 5% of instructions require 2 cycle stall (i.e. insertion of 2 nops)

● What is the CPI?

○ CPI = 1 + 0.2 * 1 + 0.05 * 2 = 1.3

○ In software, # instructions would increase 30%

○ In hardware, # instructions stays at 1, but CPI would increase 30%
56



Control Hazards
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Control Hazard
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● Control hazard (conditional branch) occurs when the 

instruction fetched may not be the one needed

○ For example, if the “beq” branch is taken



Control Hazard
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● Kill instructions after branch (if taken)



Control Hazard
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● Branch prediction reduces penalties

○ Every taken branch in the RV32I pipeline costs 3 clock cycles

○ Note if branch is not taken, then pipeline is not stalled

○ The correct instructions are correctly fetched sequentially after the 

branch instruction

● We can improve the CPU performance on average 

through branch prediction

○ Early in the pipeline, guess which way branches will go

○ Flush pipeline if branch prediction was incorrect



Control Hazard
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● Naïve predictor: Don’t take branch



Control Hazard
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● We put branch decision-making hardware in ALU stage

○ Therefore, two more instructions after the branch will 

always be fetched, whether or not the branch is taken

● Desired functionality of a branch

○ If we do not take the branch, don’t waste any time and 

continue executing normally

○ If we take the branch, don’t execute any instructions 

after the branch, just go to the desired label



Control Hazard
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● Initial Solution: Stall until decision is made

○ Insert “no-op” instructions (those that accomplish 

nothing, just take time) or hold up the fetch of the next 

instruction (for 2 cycles)

○ Drawback

■ Seems wasteful, particularly when the branch is not 

taken

■ Branches take 3 clock cycles each (assuming 

comparator is put in ALU stage)



Control Hazard
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● User inserting no-op instruction



Control Hazard
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● Optimization #1

○ Insert special branch comparator in Stage 2

○ As soon as instruction is decoded (Opcode identifies it as a 

branch), immediately make a decision and set the new 

value of the PC

○ Benefit

■ Since branch is complete in Stage 2, only one 

unnecessary instruction is fetched, so only one no-op is 

need



Control Hazard (10/10)
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Delayed Branch Slot
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● Optimization #2: Delayed Branch Slot

○ Old definition: 

■ if we take the branch, none of the instructions after 

the branch get execute by accident

○ New definition:

■ Whether or not we take the branch, the single 

instruction immediately following the branch gets 

executed (called the branch-delay slot)



Delayed Branch Slot
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● Optimization #2: Delayed Branch Slot

○ We always execute instruction after branch

○ Worst-case:

■ Can always put a no-op in the branch-delay slot

○ Better case:

■ Can find an instruction before the branch which can be placed 

in the branch-delay slot without affecting flow of the program

■ The compiler must be smart to find instructions to do this



Delayed Branch Slot 
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Delayed 

slot



Control Hazards: Flushing Logic
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Control Hazards: Flushing Hardware
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RISC-V Pipelined Processor with Hazard Unit
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Summary of Hazard Logic
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Pipelined Processor Performance Example
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Pipelined Processor Performance Example
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Pipelined Processor Performance Example
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Pipelined Processor Critical Path
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Pipelined Performance Example
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Pipelined Performance Example
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Processor Performance Comparison
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Conclusion

● Pipelining Execution

● Pipelining Hazard

● Structural Hazard

● Data Hazard

● Control Hazard
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