
Lecture 8: Pipelining

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao University

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● CSCE 513 at University of South Carolina

● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://passlab.github.io/CSCE513/

Outline

● Pipelining Execution

● Pipelining Hazard

● Structural Hazard

● Data Hazard

● Control Hazard

3

Single-Cycle Processor

4

● Estimate the clock rate (frequency) of our single-cycle

processor

○ 1 cycle per instruction

○ lw is the most demanding instruction

○ The max clock frequency = 1/800 ps = 1.25 GHz

Instr IF = 200ps ID = 100ps ALU = 200ps MEM=200ps WB = 100ps Total

add X X X X 600ps

beq X X X 500ps

jal X X X X 600ps

lw X X X X X 800ps

sw X X X X 700ps

Pipelined RISC-V Processor

5

Single-Cycle vs. Pipelined RISC-V Processor

6

Pipelined RISC-V Abstraction

7

Pipelining

8

● Ann, Brian, Cathy, Dave
each has one load of clothes to wash, dry,
fold, and put away

○ Washer takes 30 minutes

○ Dryer takes 30 minutes

○ “Folder” takes 30 minutes

○ “Stasher” takes 30 minutes to put clothes
into drawers

A B C D

Pipelining

9

● Sequential Laundry

T
a
s
k

O
r
d
e
r

B

C

D

A

30
Time

30 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1 2 AM

Sequential laundry takes

8 hours for 4 loads

Pipelining

10

● Pipelining laundry

T

a

s

k

O

r

d

e

r

B

C

D

A

12 2 AM6 PM 7 8 9 10 11 1

Time3030 30 3030 30 30

Pipelining laundry takes

3.5 hours for 4 loads !

Pipelining

11

● Pipelining doesn’t help latency of single task, it

helps the throughput of entire workload

● Multiple tasks operating simultaneously using

different resources

● Potential speedup = number of pipelining stages

○ Pipelining rate limited by slowest pipeline stage

○ Unbalanced lengths of pipe stages reduce speedup

Pipelining Execution

12

● Steps in Executing RISC-V

○ IFtch: Instruction fetch, increment PC

○ Dcd: Instruction decode, read registers

○ Execute (Exec)

■ Mem-ref: Calculate Address

■ Arith-log: Perform Operation

○ Mem

■ Load: Read data from memory

■ Store: Write data to memory

○ WB: Write data back to register

Pipelining Execution

13

● Throughput = # instructions / time

Pipelining Execution

14

● The delay time of each pipeline stage

○ Memory access: 2 ns

○ ALU operation: 2 ns

○ Register file read/write: 1 ns

● Single-cycle processor

○ lw: IF + Read Reg + ALU + Memory + Write Reg

= 2 + 1 + 2 + 2 + 1 = 8 ns

○ add: IF + Read Reg + ALU + Write Reg = 6 ns

● Pipelined Execution

○ Max (IF, Read Reg, ALU, Memory, Write Reg) = 2ns

Single-Cycle & Pipelined Datapaths

15

Corrected Pipelined Datapath

16

Pipeline register

Pipelined Processor with Control

17

Takeaway Questions

● Which statement is true after pipelining the single-cycle

processor?

○ (a) Instructions/program (instruction counts) decreases

○ (b) Cycles/instruction (CPI) decreases

○ (c) Time/cycle (clock rate) decreases

18

Takeaway Questions

● Which of the following statement(s) is/are True or False?

○ (a) Thanks to pipelining, I have reduced the time it took

me to wash my shirt.

(b) Longer pipelines are always a win (since less work

per stage & a faster clock)

19

Takeaway Questions

● Which of the following statement(s) is/are True or False?

○ (a) Thanks to pipelining, I have reduced the time it took

me to wash my shirt. (False)

■ Throughput better, not execution time

○ (b) Longer pipelines are always a win (since less work

per stage & a faster clock) (False)

■ longer pipelines do usually mean faster clock, but

branches cause problems!

20

Pipelining Hazard

21

● Limits to pipelining
○ Hazards result in pipeline “stalls” or “bubbles”

○ Structural hazards:

■ Multiple instructions in the pipeline compete for access to

a single physical resource

○ Control hazards:

■ Pipelining of branches causes later instruction fetches to

wait for the result of the branch

○ Data hazards:

■ Instructions have data dependency

■ Need to wait for previous instruction complete its data

read/write

Structural Hazard

22

● Structural Hazard #1: Single Memory

Read the

same memory

twice in the

same clock

cycle

Structural Hazard

23

● Structural Hazard #1: Single Memory

○ Infeasible and inefficient to create a second memory

○ Solution

■ Have both an L1 instruction cache and an L1 data

cache

■ Need more complex hardware to control when both

caches miss

Structural Hazard

24

● Structural Hazard #1: Single Memory

○ Structural hazard if IMEM, DMEM were same hardware

RV32I

separates

IMEM and

DMEM to avoid

structural

hazard

Structural Hazard

25

● Structural Hazard #2: Registers

Read and write

to registers

simultaneously

Structural Hazard

26

● Structural Hazard #2: Registers
○ Two different solutions have been used

■ RegFile access is very fast: takes less than half the

time of the ALU stage

● Write to registers during the first half of each clock

cycle

● Read from registers during the second half of

each clock cycle

■ Build RegFile with independent read and write ports

○ Result: can perform read and write during the same clock

cycle

Structural Hazard

27

● Structural Hazard #2: Registers

○ Each RV32I instruction

■ Reads up to 2 operands in decode stage

■ Writes up to 1 operand in writeback stage

■ Structural hazard occurs if RegFile HW

does not support simultaneous read/write !

○ RV32I RegFile-> no structural hazard

■ 2 independent read ports, 1 write port

■ Three accesses (2R/1W) can happen at

the same cycle

Data Hazard

28

● Data hazard

○ Instructions have data dependency

○ Need to wait for previous instruction to complete its data

read/write

○ Occurs when an instruction reads a register before a

previous instruction has finished writing to that register

● Three cases to consider

○ Register access

○ ALU result

○ Load data hazard

Data Hazard: REG

29

● Register Access

The same register is

written and read in one

cycle:

1. WB must write value

before ID reads new value

2. No structural hazard –

Separate ports allows

simultaneous R/W

Data Hazard: REG

30

● Register Access

Solution: RegFile HW

should write-then-read in

the same cycle

1. Exploit high speed of

RegFile (100 ps + 100 ps)

2. Might not always be

possible to write-then-

read in the same cycle.,

e.g. in high-frequency

designs

Data Hazards:REG

31

Data Hazard: ALU

32

● ALU Result

Problem: Instruction depends

on WB’s RegFile write from

previous instruction

sub, or’s ID reads old value

of s0 and calculates wrong

result

xor gets the right value;

RegFile is write-then-read

Handling Data Hazards

33

Data Hazard: ALU

34

● ALU solution 1: Stalling
“Bubble” to effectively nop:

1. Affected pipeline

stages do nothing during

clock cycles

2. Stall all stages by

preventing PC, IF/ID

pipeline register from

writing

Data Hazard: ALU

35

● ALU solution 1: Stalling
Stalls reduce performance

1. Compiler could

rearrange code/insert

nops to avoid hazard (and

therefore stalls), but this

requires knowledge of the

pipeline structure

Compile-Time Hazard Elimination

36

Data Hazard: ALU

37

● ALU solution 2: Forwarding
Forwarding (bypassing)

uses the result when it is

computed

1. Don’t wait for value to

be stored in RegFile

2. Grab operand from

the pipeline stage

Data Hazard: ALU

38

● ALU solution 2: Forwarding Forwarding (bypassing)

Implementation:

1. Make extra

connections in the

datapath

2. Also add forwarding

control logic

Data Forwarding

39

Data Forwarding

40

Data Forwarding

41

Data Forwarding

42

Data Forwarding: Hazard Unit

43

Data Hazard: Load (1/8)

44

● Forwarding cannot fix all data hazards

Data Hazard: Load (2/8)

45

● Forwarding cannot fix all data hazards

Data Hazard: Load (3/8)

46

● Forwarding cannot fix all data hazards

○ Must stall instruction dependent on load, then

forward (more hardware)

sub $t3,$t0,$t2
A
L
UI$ Reg D$ Reg

lw $t0,0($t1)

IF ID/RF EX MEM WBA
L
UI$ Reg D$ Reg

Data Hazard: Load (4/8)

47

● Hardware stalls pipeline

○ Called “interlock”

Data Hazard: Load (5/8)

48

● The instruction slot after a load is called load delay slot

● If this instruction uses the result of load

○ The hardware must stall for one cycle (plus forwarding)

○ This results in performance loss!

Data Hazard: Load (6/8)

49

● Stall is equivalent to “nop”

Data Hazard: Load (7/8)

50

● Code scheduling: Fix data hazard using the compiler

○ In the delay slot, put an instruction unrelated to the load result

○ -> No performance loss!

Data Hazard: Load (8/8)

51

● Instruction slot after a load is called “load delay slot”

● If the instruction uses the result of the “LOAD”

○ The hardware interlock will stall it for one cycle

● If the compiler puts an unrelated instruction in that slot

○ No stall

○ Letting the hardware stall the instruction in the delay

slot is equivalent to putting a NOP in the slot

Stalling Logic

52

Stalling Hardware

53

Takeaway Questions

● Assume a program executed in a processor

○ Branch: 20%, load: 20%, store: 10%, others: 50%

○ 50% of loads are followed by dependent instruction

■ Require 1 cycle stall (i.e. instruction of 1 nop)

● What is the CPI of such a program in this processor?

54

Takeaway Questions

● As before

○ Branch: 20%, load: 20%, store: 10%, others: 50%

● Hardware interlocks: same as software interlock

○ 20% of instructions require 1 cycle stall (i.e. insertion of 1 nop)

○ 5% of instructions require 2 cycle stall (i.e. insertion of 2 nops)

● What is the CPI?

55

Takeaway Questions

● As before

○ Branch: 20%, load: 20%, store: 10%, others: 50%

● Hardware interlocks: same as software interlock

○ 20% of instructions require 1 cycle stall (i.e. insertion of 1 nop)

○ 5% of instructions require 2 cycle stall (i.e. insertion of 2 nops)

● What is the CPI?

○ CPI = 1 + 0.2 * 1 + 0.05 * 2 = 1.3

○ In software, # instructions would increase 30%

○ In hardware, # instructions stays at 1, but CPI would increase 30%
56

Control Hazards

57

Control Hazard

58

● Control hazard (conditional branch) occurs when the

instruction fetched may not be the one needed

○ For example, if the “beq” branch is taken

Control Hazard

59

● Kill instructions after branch (if taken)

Control Hazard

60

● Branch prediction reduces penalties

○ Every taken branch in the RV32I pipeline costs 3 clock cycles

○ Note if branch is not taken, then pipeline is not stalled

○ The correct instructions are correctly fetched sequentially after the

branch instruction

● We can improve the CPU performance on average

through branch prediction

○ Early in the pipeline, guess which way branches will go

○ Flush pipeline if branch prediction was incorrect

Control Hazard

61

● Naïve predictor: Don’t take branch

Control Hazard

62

● We put branch decision-making hardware in ALU stage

○ Therefore, two more instructions after the branch will

always be fetched, whether or not the branch is taken

● Desired functionality of a branch

○ If we do not take the branch, don’t waste any time and

continue executing normally

○ If we take the branch, don’t execute any instructions

after the branch, just go to the desired label

Control Hazard

63

● Initial Solution: Stall until decision is made

○ Insert “no-op” instructions (those that accomplish

nothing, just take time) or hold up the fetch of the next

instruction (for 2 cycles)

○ Drawback

■ Seems wasteful, particularly when the branch is not

taken

■ Branches take 3 clock cycles each (assuming

comparator is put in ALU stage)

Control Hazard

64

● User inserting no-op instruction

Control Hazard

65

● Optimization #1

○ Insert special branch comparator in Stage 2

○ As soon as instruction is decoded (Opcode identifies it as a

branch), immediately make a decision and set the new

value of the PC

○ Benefit

■ Since branch is complete in Stage 2, only one

unnecessary instruction is fetched, so only one no-op is

need

Control Hazard (10/10)

66

Delayed Branch Slot

67

● Optimization #2: Delayed Branch Slot

○ Old definition:

■ if we take the branch, none of the instructions after

the branch get execute by accident

○ New definition:

■ Whether or not we take the branch, the single

instruction immediately following the branch gets

executed (called the branch-delay slot)

Delayed Branch Slot

68

● Optimization #2: Delayed Branch Slot

○ We always execute instruction after branch

○ Worst-case:

■ Can always put a no-op in the branch-delay slot

○ Better case:

■ Can find an instruction before the branch which can be placed

in the branch-delay slot without affecting flow of the program

■ The compiler must be smart to find instructions to do this

Delayed Branch Slot

69

Delayed

slot

Control Hazards: Flushing Logic

70

Control Hazards: Flushing Hardware

71

RISC-V Pipelined Processor with Hazard Unit

72

Summary of Hazard Logic

73

Pipelined Processor Performance Example

74

Pipelined Processor Performance Example

75

Pipelined Processor Performance Example

76

Pipelined Processor Critical Path

77

Pipelined Performance Example

78

Pipelined Performance Example

79

Processor Performance Comparison

80

Conclusion

● Pipelining Execution

● Pipelining Hazard

● Structural Hazard

● Data Hazard

● Control Hazard

81

