

Lecture 7: Floating Point

CS10014 Computer Organization

Tsung Tai Yeh Department of Computer Science National Yang Ming Chiao University

Acknowledgements and Disclaimer

- Slides were developed in the reference with
 - CS 61C at UC Berkeley
 - https://inst.eecs.berkeley.edu/~cs61c/sp23/
 - CS 252 at UC Berkeley
 - https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
 - E85 at HMC
 - https://pages.hmc.edu/harris/class/e85/old/fall21/

Outline

- Review of Numbers
- Floating-point numbers
- The implicit leading 1
- Floating-point number addition

Number Systems

- Fixed-point notation
 - Has an implied binary point between the integer and fraction bits

<u>0110</u>.1100

Integer bits Fraction bits

 $= 2^{2} + 2^{1} + 2^{-1} + 2^{-2} = 6.75$

Number Systems

- Fixed-point notation
 - Signed fixed-point numbers can use either two's complement or sign/magnitude notation
 - E.g. How to represent -2.375 using fixed-point notations with four integer and four fraction bits

(a) 2.375 = 0010.0110 (absolute value)
(b) 1010.0110 (sign and magnitude)
(c) -2.375 = 1101.1010 (two's complement)

Two's complement inverts the bit of the absolute value and adding a 1 to the LSB

Saturating Arithmetic

- Fixed point **overflow** is usually bad
 - Produces undesired artifacts:
 - Video: dark pixel in middle of bright pixels
 - Audio: clicking sounds
- Saturating arithmetic
 - Instead of overflowing, use largest value
 - In U4.4: 11000000 + 01111000 = 1111111

Floating vs. Fixed Point Numbers

- Floating Point is preferred for general-purpose computing where programming time is most important
- Fixed Point is preferred for signal processing performance, power, and hardware cost matter most
 - Machine learning, video

Number Systems

- Floating-point number is composed of a
 - Sign
 - Mantissa (M)
 - Base (B)
 - Exponent (E)

- Binary point floats to the right of the most significant 1
- Similar to decimal scientific notation
- For example, write 273₁₀ in scientific notation:

273 = 2.73 × 10²

• In general, a number is written in scientific notation as:

$\pm \mathbf{M} \times \mathbf{B}^{\mathrm{E}}$

- M = mantissa
- B = base
- E = exponent
- In the example, M = 2.73, B = 10, and E = 2

- IEEE 754 32-bit Floating-point format
 - What is the floating-point representation of decimal number 228?
 - $228_{10} = 11100100_2 = 1.11001_2 \times 2^7$
 - The sign bit is positive (0)
 - The 8 exponent bits give the value 7
 - The remaining 23 bits are mantissa (111 001....)

Sian	Exponent	Mantissa
0	00000111	111 0010 0000 0000 0000 0000
1 bit	8 bits	23 bits

 $\pm \mathbf{M} \times \mathbf{B}^{\mathsf{E}}$

- IEEE 754 32-bit Floating-point format
 - The exponent needs to represent both positive and negative exponents
 - Uses a biased exponent, which is the original exponent plus a constant bias
 - 32-bit floating-point uses a bias of <u>127</u>

value =
$$(-1)^{s} \times 1.M \times 2^{E-127}$$

• How to convert 10.875 to IEEE 754 FP Format ?

- Step 1: Write the number in binary
 - $\bullet 1010.111_2 = 1.010111000... * 2^3$
- Step 2: Determine Sign/Exponent/Mantissa
 - Sign = Positive ->0
 - Exponent: 3-(-127) = 130 -> 1000 0010₂
 - Mantissa: 1010 1110 0000 0000 0000 0000
- Step 3: Concatenate
 - - S Exponent

- IEEE 754 32-bit Floating-point format
 - How to represent $1.11001_2 \times 2^7$ in IEEE 754 format?
 - For the exponent 7, the biased exponent is

$$7 - (-127) = 134 = 10000110_2$$

• With an implicit leading one

1 bit	8 bits	23 bits
0	10000110	110 0100 0000 0000 0000 0000
Sign	Biased Exponent	Fraction

value =
$$(-1)^{s} \times 1.M \times 2^{E-127}$$

• How to convert 0xC3CC0000 to decimal?

- Step 1: Write the number in binary

- Step 2: Determine Sign/Exponent/Mantissa
 - Sign = Negative ->1
 - Exponent: $1000\ 0111_2 \rightarrow 135(127) = 8$
 - Mantissa: 1001 1000 ... -> 1.001 1000 = 1 + 2⁻³ + 2⁻⁴
 - $(1 + 2^{-3} + 2^{-4}) * 2^8 = 2^8 + 2^5 + 2^4 = 304$

The implicit Leading 1

- Our mantissa is guaranteed not to have any leading zeros
 If we wanted to write 0.234*10⁵, we'd instead write it as 2.34*10⁴
- In binary, every digit is only either 1 or 0
 - Since the MSB can't be 0, it must therefore be 1
 - If the first bit will always be 1, we don't need to store it!
 - We can save 1 bit (or alternatively add another bit of precision) to the mantissa by not including the MSB of the mantissa
 - This is known as the implicit 1
 - The resulting mantissa is a "normalized" number

The implicit Leading 1

• How to convert 10.875 to IEEE 754 FP Format?

- Step 1: Write the number in binary
 - $1010.111_2 = 1.010111000 \dots * 2^3$
- Step 2: Determine Sign/Exponent/Mantissa
 - Sign = Positive ->0
 - Exponent: 3-(-127) = 130 -> 1000 0010₂
 - Mantissa: 0101 1100 0000 0000 0000 000
- Step 3: Concatenate
 - - S Exponent

Mantissa

Takeaway Question

 How to represent -58.25₁₀ in the IEEE 754 format with implicit leading 1?

Takeaway Question

 How to represent -58.25₁₀ in the IEEE 754 format with implicit leading 1?

Write -58.25₁₀ in floating point (IEEE 754)

1. Convert magnitude of decimal to binary:

58.25₁₀ = **111010.01**₂

2. Write in binary scientific notation:

1.1101001 × **2**⁵

3. Fill in fields:

Sign bit: 1 (negative) 8 exponent bits: (127 + 5) = 132 = 10000100₂ 23 fraction bits: 110 1001 0000 0000 0000

in hexadecimal: 0xC2690000

Floating-Point Special Cases

Number	Sign	Exponent	Fraction
0	X	0000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	non-zero

Floating-Point Precision

- Single-Precision:
 - 32-bit
 - 1 sign bit, 8 exponent bits, 23 fraction bits
 - bias = 127

Format	Total Bits	Sign Bits	Exponent Bits	Fraction Bits
single	32	1	8	23
double	64	1	11	52

- Double-Precision:
 - 64-bit
 - 1 sign bit, 11 exponent bits, 52 fraction bits
 - bias = 1023

Rounding & Overflow

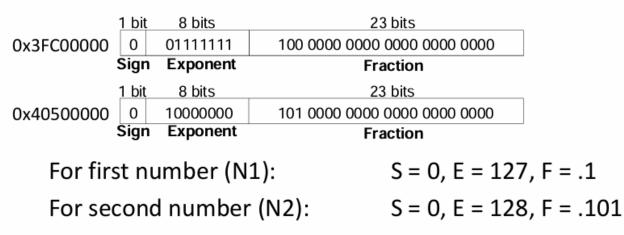
- **Overflow:** number too large to be represented
- Underflow: number too small to be represented
- Rounding modes:
 - Down
 - Up
 - Toward zero
 - To nearest

Rounding & Overflow

- Example: round 1.100101 (1.578125) to only 3 fraction bits
 - **Down:** 1.100
 - **Up:** 1.101
 - Toward zero: 1.100
 - To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Floating-Point Addition

1. Extract exponent and fraction bits



2. Prepend leading 1 to form mantissa

- N1: 1.1
- N2: 1.101

Floating-Point Addition

3. Compare exponents

127 – 128 = -1, so shift N1 right by 1 bit

- 4. Shift smaller mantissa if necessary shift N1's mantissa: 1.1 >> 1 = 0.11 (× 2¹)
- 5. Add mantissas

$$\begin{array}{rrr} 0.11 & \times 2^{1} \\ + & 1.101 \times 2^{1} \\ \hline 10.011 & \times 2^{1} \end{array}$$

Floating-Point Addition

6. Normalize mantissa and adjust exponent if necessary

10.011 \times 2 1 = 1.0011 \times 2 2

7. Round result

No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point format

S = 0, E = 2 + 127 = 129 = 10000001₂, F = 001100...

1 bit	8 bits	23 bits in hexadecimal: 0x40980000
0	10000001	001 1000 0000 0000 0000 0000
Sign	Exponent	Fraction