
Lecture 6: Multi-Cycle CPU

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

CS10014 Computer Organization



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● CS 61C at UC Berkeley 

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● E85 at HMC

● https://pages.hmc.edu/harris/class/e85/old/fall21/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://pages.hmc.edu/harris/class/e85/old/fall21/


Outline

● Single-Cycle Processor

● Multi-Cycle Processor

3



Single- vs. Multicycle Processor

4

● Single-Cycle Processor

● Separate instruction and data memories

● Read the instruction memory and read or write the data 

memory all in one cycle

● Require a clock cycle long enough to support the slowest 

instruction (memory load), even though most instructions could be 

faster

● 3 adders (one in the ALU and two for the PC logic)

● Adders are relatively expensive circuits, especially if they 

must be fast



Single- vs. Multicycle Processor

5

● Single-Cycle Processor

a. 3 adders

b. Separate 

inst/data 

memory



Single- vs. Multicycle Processor

6

● Single-Cycle Processor controller

● Decoder + combinational logic



Single- vs. Multicycle Processor

7

● Multi-Cycle Processor

● Combined memory for both instructions and data → feasible

● Read the instruction in one cycle, then read or write the data 

in a separate cycle

● Break an instruction into multiple shorter steps

● The processor can read or write the memory or register file or 

use the ALU

● Simpler instructions can complete faster than complex ones

● One adder -> reused on different steps



Single- vs. Multicycle Processor

8

● Multi-Cycle Processor

● One adder -> reused on different steps

● Add a new nonarchitectural instruction register (IR) to hold 

intermediate results between steps



Single- vs. Multicycle Processor

9

● Multi-Cycle Processor

● The controller produces different signals on different steps during 

execution of a single instruction

● Use a finite state machine (FSM) rather than combinational 

logic



Single- vs. Multicycle Processor

10

● MultiCycle Processor controller



Multi-Cycle Processor

11

a. no



Multi-Cycle State Elements

12



Multi-Cycle Datapath: Instruction Fetch

13

Step 1: Read lw instruction from Instr memory



Multi-Cycle Datapath: Instruction Fetch

14

● Step 1: Read lw instruction from Instr memory

○ The PC contains the address of the instruction to execute

○ The PC is connected to the address input of the memory

○ The instruction is read and stored in IR so that it is available for 

future cycles

○ The IR receives an enable 

signal, called IRWrite, 

which is asserted when 

the IR should be loaded with 

a new instruction



Multi-Cycle Datapath: lw

15



Multi-Cycle Datapath: Instruction Fetch

16

● Step 2: read the source register (r1) base address

○ The bits of RD are connected to address input A1 of the register file

○ The register file reads the register into RD1

○ This value is stored in another nonarchitectural register, A



Multi-Cycle Datapath: Instruction Fetch

17

● Step 2: read the source register (r1) base address

● The 12-bit immediate must be zero-extended to 32 bits

● The 32-bit extended immediate is called ImmExt

● Do we need to have a register to hold the this imm constant value?



Multi-Cycle Datapath: Instruction Fetch

18

● Step 2: read the source register (r1) base address

● ImmExt is a combinational function of Instr and won’t change while 

the current instruction is being processed

● There is no need to dedicate a register to hold this constant value



Multi-Cycle Datapath: lw

19



Multi-Cycle Datapath: Instruction Fetch

20

● Step 3: The address of the load is the sum of the based 

address and offset

○ Use an ALU to compute this sum

○ ALUControl is set to 00 to perform the addition

○ ALUResult is stored in an register called ALUOut



Multi-Cycle Datapath: lw

21



Multi-Cycle Datapath: Instruction Fetch

22

● Step 4: load data from the calculated address in memory

○ Add a multiplexer in front of the memory to choose the memory 

address, Adr, from either the PC or ALUOut based on the AdrSrc

select



Multi-Cycle Datapath: Instruction Fetch

23

● Step 4: load data from the calculated address in memory

○ The data read from memory is stored in another nonarchitectural

register, call Data

○ The address MUX permits us to reuse the memory during lw instr



Multi-Cycle Datapath: Instruction Fetch

24

● Step 4: AdrSrc must have different values on different steps

○ On a first step, the address is taken from the PC to fetch a Instr

○ On a later step, the address is taken from ALUOut to load data

○ The FSM controller generates these sequences of control signals



Multi-Cycle Datapath: lw

25



Multi-Cycle Datapath: Instruction Fetch

26

● Step 5: The data is written back to the register file

○ Add a MUX on the Result bus to choose either ALUOut or Data

before feeding Result back to the register file WD3 write port



Multi-Cycle Datapath: Instruction Fetch

27

● Step 5: The data is written back to the register file

○ The RegWrite signal is 1 to indicate register should be updated

○ While all this is happening, the processor must update the program 

counter by adding 4 to the old PC



Multi-Cycle Datapath: lw

28



Multi-Cycle Datapath: Instruction Fetch

29

● Step 6: Increment PC: PC +=4 

○ We can use existing ALU during fetch step because it is not busy

○ Add source MUX to choose PC and the constant 4 as ALU inputs



Multi-Cycle Datapath: Instruction Fetch

30

● Step 6: Increment PC: PC +=4 

○ A MUX controlled by ALUSrcA chooses either PC or register A

as SrcA



Multi-Cycle Datapath: Instruction Fetch

31

● Step 6: Increment PC: PC +=4 

○ Another MUX controlled by ALUSrcB chooses either 4 or ImmExt

as SrcB



Multi-Cycle Datapath: Instruction Fetch

32

● Step 6: Increment PC: PC +=4 

○ To update the PC, the ALU adds SrcA (PC) to SrcB (4)

○ The result is written into the program counter



Multi-Cycle Datapath: Instruction Fetch

33

● Step 6: Increment PC: PC +=4 

○ ResultSrc MUX chooses the sum from ALUResult not ALUOut

○ The PCWrite control signal enables the PC to be written only on 

certain cycles



Multi-Cycle Datapath: sw

34



Multi-Cycle Datapath: Instruction Fetch (sw)

35

● Step 1: Read a base address

○ Read a base address from port 1 (RD1) of the register file and 

extends the immediate



Multi-Cycle Datapath: Instruction Fetch (sw)

36

● Step 1: Read a base address

○ The ALU adds the base address to the immediate to find the 

memory address



Multi-Cycle Datapath: Instruction Fetch (sw)

37

● Step 2: Read RS2 from register file and write it into memory

○ The Rd is connected to the second port of the register file

○ When the register is read, it is stored in a register (WriteData)



Multi-Cycle Datapath: Instruction Fetch (sw)

38

● Step 2: Read RS2 from register file and write it into memory

○ The data is send to the write data port (WD) of the data memory to be 

written



Multi-Cycle Datapath: Instruction Fetch (sw)

39

● Step 2: Read RS2 from register file and write it into memory

○ The memory receives the MemWrite control signal to indicate that 

the write should occur



Multi-Cycle RISC-V Processor

40



Multi-Cycle Control

41



Multi-Cycle Control

42

● The multicycle controller

○ The controller produces a sequence of control signals

○ The combinational main decoder of the single-cycle processor is 

replaced with a Main FSM in the multicycle processor

○ The Main FSM is a Moore machine

■ The outputs are only a function 

■ of the current state



Finite State Machine (FSMs)

43



Multi-Cycle Control: Instruction Decoder

44



Multi-Cycle Control: Instruction Decoder

45

● The multicycle controller

○ The instruction decoder computes these signals

■ The ImmSrc is a function of Op rather the current state

■ The ALU Decoder and PC Logic are identical to those in the 

single-cycle processor

■ The Conditional Logic is almost identical to that of the single-

cycle processor



Multi-Cycle Control: Instruction Decoder

46

● The multicycle controller

○ The NextPC signal forces a write to the PC when we compute PC+4



Multi-Cycle Control: Conditional Logic

47

● The multicycle controller

○ Delay CondEx by one cycle before

sending it to PCWrite, RegWrite

and MemWrite

○ Update conditional flags are not

seen until the end of an instruction



Multi-Cycle Control: Main FSM

48



Multi-Cycle Control: Main FSM

49

● The Main FSM

○ Produces multiplexer select, register enable, and memory write 

enable signals for the datapath

○ Enable signals (RegW, MemW, IRWrite, and NextPC) are list 

only when they are asserted; otherwise, they are 0



Multicycle Processor Main FSM

50



Main FSM: Fetch

51

● The first step for any instruction

○ Fetch the instruction from memory at the address held in the PC

○ To increment the PC to the next instruction

○ The FSM enters this Fetch state on reset



Main FSM: Fetch

52

AdrSrc

To read memory, 
AdrSrc = 0 -> the 

address is taken from 

the PC

IRWrite is 

asserted to write Inst 

into Insr Reg



Main FSM: Fetch

53

● The first step for any instruction

○ ALUSrcA = 10, so SrcA comes from the PC

○ ALUSrcB = 10, so SrcB is the constant 4

○ ALUOp = 0, so the ALU produces ALUControl = 00 to make the 

ALU add

○ To update the PC with PC+4, ResultSrc = 10

to choose the ALUResult

○ NextPC = 1 to enable PCWrite

0



Main FSM: Decode

54



Main FSM: Decode

55

● The second step is to decode the instruction

○ Read the register file and/or immediate

○ The registers and immediate are select based on RegSrc and 

ImmSrc, which are computed by the Instr Decoder based on Inst

0



Main FSM: Decode

56

● The FSM proceeds to one of several possible states

○ Depending on Op and Funct that are examined during the Decode

○ If the instruction is a memory load or store

■ Compute the address by adding these base address to the zero-

extended offset

■ ALUSrcA = 10 to select the base address from the register file

■ ALUSrcB = 01 to select ImmExt

■ ALUOp = 0 so the ALU adds

■ The effective address is stored in the ALUOut register for use 

on the next step



Main FSM: MemAdr

57

● The FSM for memory read computation

○ If the instruction is a 

memory load or store

○ S2: computes the

memory address

10

0



Main FSM: Address

58



Main FSM: MemRead

59

● Read data from the memory and write it to the Reg

○ To read from the memory

■ ResultSrc = 00, AdrSrc = 1 to select the memory address 

that was just computed and saved in ALUOut

■ The address in memory is read and saved in the Data register 

during the MemRead step



Main FSM: Read Memory

60



Main FSM: Read Memory Datapath

61



Main FSM: MemWB

62

● Data is written to the register file

○ ResultSrc = 01 to choose Result from Data and RegW is asserted 

to write the register file – completing lw instruction

○ Finally, the FSM returns to the Fetch state to start the next 

instruction



Main FSM: Write RF

63



Main FSM: Write RF Datapath

64



Main FSM: 

Fetch 
Revisited

65



Main FSM: Fetch (PC+4) Datapath

66



Main FSM: MemWrite

67

● In sw instruction

○ The data read from the second port of the register file is simply 

written to memory

○ In this MemWrite state

■ ResultSrc = 00 and AdrSrc = 1 to select the address 

computed in the MemSrc state and save in ALUOut

■ MemW is asserted to write the memory



Main FSM: sw

68



Main FSM: sw Datapath

69



Main FSM: R-Type 

Execute

70



Main FSM: R-Type Execute Datapath

71



Main FSM: R-Type 

ALU Write Back

72



Main FSM: R-Type Writeback Datapath

73



Main FSM: beq

74



Main FSM: 

Decode 

Revisited

75



Main FSM: Decode (Target Address)

76



Main FSM: 
beq

77



Main FSM: beq Datapath

78



Main FSM: 

I-Type ALU

Execute

79



Main FSM: I-Type ALU Exec. Datapath

80



Main FSM: 
jal

81



Main FSM: jal Datapath

82



Main 

FSM: 
jal

83



Multicycle Processor Main FSM

84



Processor Performance

85



Single-Cycle Performance

86



Single-Cycle Performance Example

87



Single-Cycle Performance Example

88



Single-Cycle Performance Example

89



Multicycle Processor Performance

90



Multicycle Processor Critical Path

91



Multicycle Processor Performance

92



Multicycle Processor Performance

93



Multicycle Processor Performance

94



Multicycle Processor Performance

95



Multicycle Processor Performance

96



Multicycle Processor Critical Path

97



Multicycle Performance Example

98



Multicycle Processor Performance

99



Multicycle Performance Example

100Why?



Multicycle Performance Example

101

● In this case, the multicycle processor is slower than the 

single-cycle processor, why?

● Not all steps the same length

● Sequencing overhead for each step (tpcq+tsetup) = (40+50 = 90)



Processor Comparison

102


