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Outline

● Single-Cycle Processor

● Multi-Cycle Processor
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Single- vs. Multicycle Processor
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● Single-Cycle Processor

● Separate instruction and data memories

● Read the instruction memory and read or write the data 

memory all in one cycle

● Require a clock cycle long enough to support the slowest 

instruction (memory load), even though most instructions could be 

faster

● 3 adders (one in the ALU and two for the PC logic)

● Adders are relatively expensive circuits, especially if they 

must be fast



Single- vs. Multicycle Processor
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● Single-Cycle Processor

a. 3 adders

b. Separate 

inst/data 

memory



Single- vs. Multicycle Processor
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● Single-Cycle Processor controller

● Decoder + combinational logic



Single- vs. Multicycle Processor
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● Multi-Cycle Processor

● Combined memory for both instructions and data → feasible

● Read the instruction in one cycle, then read or write the data 

in a separate cycle

● Break an instruction into multiple shorter steps

● The processor can read or write the memory or register file or 

use the ALU

● Simpler instructions can complete faster than complex ones

● One adder -> reused on different steps



Single- vs. Multicycle Processor
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● Multi-Cycle Processor

● One adder -> reused on different steps

● Add a new nonarchitectural instruction register (IR) to hold 

intermediate results between steps



Single- vs. Multicycle Processor

9

● Multi-Cycle Processor

● The controller produces different signals on different steps during 

execution of a single instruction

● Use a finite state machine (FSM) rather than combinational 

logic



Single- vs. Multicycle Processor
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● MultiCycle Processor controller



Multi-Cycle Processor
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a. no



Multi-Cycle State Elements
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Multi-Cycle Datapath: Instruction Fetch
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Step 1: Read lw instruction from Instr memory



Multi-Cycle Datapath: Instruction Fetch
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● Step 1: Read lw instruction from Instr memory

○ The PC contains the address of the instruction to execute

○ The PC is connected to the address input of the memory

○ The instruction is read and stored in IR so that it is available for 

future cycles

○ The IR receives an enable 

signal, called IRWrite, 

which is asserted when 

the IR should be loaded with 

a new instruction



Multi-Cycle Datapath: lw
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Multi-Cycle Datapath: Instruction Fetch
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● Step 2: read the source register (r1) base address

○ The bits of RD are connected to address input A1 of the register file

○ The register file reads the register into RD1

○ This value is stored in another nonarchitectural register, A



Multi-Cycle Datapath: Instruction Fetch

17

● Step 2: read the source register (r1) base address

● The 12-bit immediate must be zero-extended to 32 bits

● The 32-bit extended immediate is called ImmExt

● Do we need to have a register to hold the this imm constant value?



Multi-Cycle Datapath: Instruction Fetch
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● Step 2: read the source register (r1) base address

● ImmExt is a combinational function of Instr and won’t change while 

the current instruction is being processed

● There is no need to dedicate a register to hold this constant value



Multi-Cycle Datapath: lw
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Multi-Cycle Datapath: Instruction Fetch
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● Step 3: The address of the load is the sum of the based 

address and offset

○ Use an ALU to compute this sum

○ ALUControl is set to 00 to perform the addition

○ ALUResult is stored in an register called ALUOut



Multi-Cycle Datapath: lw
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Multi-Cycle Datapath: Instruction Fetch
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● Step 4: load data from the calculated address in memory

○ Add a multiplexer in front of the memory to choose the memory 

address, Adr, from either the PC or ALUOut based on the AdrSrc

select



Multi-Cycle Datapath: Instruction Fetch
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● Step 4: load data from the calculated address in memory

○ The data read from memory is stored in another nonarchitectural

register, call Data

○ The address MUX permits us to reuse the memory during lw instr



Multi-Cycle Datapath: Instruction Fetch
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● Step 4: AdrSrc must have different values on different steps

○ On a first step, the address is taken from the PC to fetch a Instr

○ On a later step, the address is taken from ALUOut to load data

○ The FSM controller generates these sequences of control signals



Multi-Cycle Datapath: lw
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Multi-Cycle Datapath: Instruction Fetch
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● Step 5: The data is written back to the register file

○ Add a MUX on the Result bus to choose either ALUOut or Data

before feeding Result back to the register file WD3 write port



Multi-Cycle Datapath: Instruction Fetch
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● Step 5: The data is written back to the register file

○ The RegWrite signal is 1 to indicate register should be updated

○ While all this is happening, the processor must update the program 

counter by adding 4 to the old PC



Multi-Cycle Datapath: lw
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Multi-Cycle Datapath: Instruction Fetch
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● Step 6: Increment PC: PC +=4 

○ We can use existing ALU during fetch step because it is not busy

○ Add source MUX to choose PC and the constant 4 as ALU inputs



Multi-Cycle Datapath: Instruction Fetch

30

● Step 6: Increment PC: PC +=4 

○ A MUX controlled by ALUSrcA chooses either PC or register A

as SrcA



Multi-Cycle Datapath: Instruction Fetch
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● Step 6: Increment PC: PC +=4 

○ Another MUX controlled by ALUSrcB chooses either 4 or ImmExt

as SrcB



Multi-Cycle Datapath: Instruction Fetch
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● Step 6: Increment PC: PC +=4 

○ To update the PC, the ALU adds SrcA (PC) to SrcB (4)

○ The result is written into the program counter



Multi-Cycle Datapath: Instruction Fetch
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● Step 6: Increment PC: PC +=4 

○ ResultSrc MUX chooses the sum from ALUResult not ALUOut

○ The PCWrite control signal enables the PC to be written only on 

certain cycles



Multi-Cycle Datapath: sw
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Multi-Cycle Datapath: Instruction Fetch (sw)

35

● Step 1: Read a base address

○ Read a base address from port 1 (RD1) of the register file and 

extends the immediate



Multi-Cycle Datapath: Instruction Fetch (sw)
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● Step 1: Read a base address

○ The ALU adds the base address to the immediate to find the 

memory address



Multi-Cycle Datapath: Instruction Fetch (sw)
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● Step 2: Read RS2 from register file and write it into memory

○ The Rd is connected to the second port of the register file

○ When the register is read, it is stored in a register (WriteData)



Multi-Cycle Datapath: Instruction Fetch (sw)
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● Step 2: Read RS2 from register file and write it into memory

○ The data is send to the write data port (WD) of the data memory to be 

written



Multi-Cycle Datapath: Instruction Fetch (sw)
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● Step 2: Read RS2 from register file and write it into memory

○ The memory receives the MemWrite control signal to indicate that 

the write should occur



Multi-Cycle RISC-V Processor
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Multi-Cycle Control
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Multi-Cycle Control
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● The multicycle controller

○ The controller produces a sequence of control signals

○ The combinational main decoder of the single-cycle processor is 

replaced with a Main FSM in the multicycle processor

○ The Main FSM is a Moore machine

■ The outputs are only a function 

■ of the current state



Finite State Machine (FSMs)
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Multi-Cycle Control: Instruction Decoder
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Multi-Cycle Control: Instruction Decoder
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● The multicycle controller

○ The instruction decoder computes these signals

■ The ImmSrc is a function of Op rather the current state

■ The ALU Decoder and PC Logic are identical to those in the 

single-cycle processor

■ The Conditional Logic is almost identical to that of the single-

cycle processor



Multi-Cycle Control: Instruction Decoder
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● The multicycle controller

○ The NextPC signal forces a write to the PC when we compute PC+4



Multi-Cycle Control: Conditional Logic
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● The multicycle controller

○ Delay CondEx by one cycle before

sending it to PCWrite, RegWrite

and MemWrite

○ Update conditional flags are not

seen until the end of an instruction



Multi-Cycle Control: Main FSM
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Multi-Cycle Control: Main FSM
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● The Main FSM

○ Produces multiplexer select, register enable, and memory write 

enable signals for the datapath

○ Enable signals (RegW, MemW, IRWrite, and NextPC) are list 

only when they are asserted; otherwise, they are 0



Multicycle Processor Main FSM
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Main FSM: Fetch
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● The first step for any instruction

○ Fetch the instruction from memory at the address held in the PC

○ To increment the PC to the next instruction

○ The FSM enters this Fetch state on reset



Main FSM: Fetch
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AdrSrc

To read memory, 
AdrSrc = 0 -> the 

address is taken from 

the PC

IRWrite is 

asserted to write Inst 

into Insr Reg



Main FSM: Fetch
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● The first step for any instruction

○ ALUSrcA = 10, so SrcA comes from the PC

○ ALUSrcB = 10, so SrcB is the constant 4

○ ALUOp = 0, so the ALU produces ALUControl = 00 to make the 

ALU add

○ To update the PC with PC+4, ResultSrc = 10

to choose the ALUResult

○ NextPC = 1 to enable PCWrite

0



Main FSM: Decode
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Main FSM: Decode
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● The second step is to decode the instruction

○ Read the register file and/or immediate

○ The registers and immediate are select based on RegSrc and 

ImmSrc, which are computed by the Instr Decoder based on Inst

0



Main FSM: Decode
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● The FSM proceeds to one of several possible states

○ Depending on Op and Funct that are examined during the Decode

○ If the instruction is a memory load or store

■ Compute the address by adding these base address to the zero-

extended offset

■ ALUSrcA = 10 to select the base address from the register file

■ ALUSrcB = 01 to select ImmExt

■ ALUOp = 0 so the ALU adds

■ The effective address is stored in the ALUOut register for use 

on the next step



Main FSM: MemAdr
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● The FSM for memory read computation

○ If the instruction is a 

memory load or store

○ S2: computes the

memory address

10

0



Main FSM: Address
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Main FSM: MemRead
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● Read data from the memory and write it to the Reg

○ To read from the memory

■ ResultSrc = 00, AdrSrc = 1 to select the memory address 

that was just computed and saved in ALUOut

■ The address in memory is read and saved in the Data register 

during the MemRead step



Main FSM: Read Memory
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Main FSM: Read Memory Datapath
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Main FSM: MemWB
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● Data is written to the register file

○ ResultSrc = 01 to choose Result from Data and RegW is asserted 

to write the register file – completing lw instruction

○ Finally, the FSM returns to the Fetch state to start the next 

instruction



Main FSM: Write RF
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Main FSM: Write RF Datapath
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Main FSM: 

Fetch 
Revisited
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Main FSM: Fetch (PC+4) Datapath
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Main FSM: MemWrite
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● In sw instruction

○ The data read from the second port of the register file is simply 

written to memory

○ In this MemWrite state

■ ResultSrc = 00 and AdrSrc = 1 to select the address 

computed in the MemSrc state and save in ALUOut

■ MemW is asserted to write the memory



Main FSM: sw
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Main FSM: sw Datapath
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Main FSM: R-Type 

Execute
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Main FSM: R-Type Execute Datapath
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Main FSM: R-Type 

ALU Write Back
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Main FSM: R-Type Writeback Datapath
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Main FSM: beq
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Main FSM: 

Decode 

Revisited
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Main FSM: Decode (Target Address)
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Main FSM: 
beq
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Main FSM: beq Datapath
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Main FSM: 

I-Type ALU

Execute
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Main FSM: I-Type ALU Exec. Datapath

80



Main FSM: 
jal
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Main FSM: jal Datapath
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Main 

FSM: 
jal
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Multicycle Processor Main FSM
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Processor Performance
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Single-Cycle Performance
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Single-Cycle Performance Example
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Single-Cycle Performance Example
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Single-Cycle Performance Example
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Multicycle Processor Performance
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Multicycle Processor Critical Path
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Multicycle Processor Performance
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Multicycle Processor Performance
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Multicycle Processor Performance
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Multicycle Processor Performance
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Multicycle Processor Performance
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Multicycle Processor Critical Path
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Multicycle Performance Example
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Multicycle Processor Performance
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Multicycle Performance Example

100Why?



Multicycle Performance Example
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● In this case, the multicycle processor is slower than the 

single-cycle processor, why?

● Not all steps the same length

● Sequencing overhead for each step (tpcq+tsetup) = (40+50 = 90)



Processor Comparison
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