
Lecture 5: Single-Cycle CPU

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao University

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● E85 at HMC

● https://pages.hmc.edu/harris/class/e85/old/fall21/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://pages.hmc.edu/harris/class/e85/old/fall21/

Outline

● ALU

● State Element

● Single-Cycle CPU

● Design the Datapath

3

Introduction

4

● Microarchitecture
● How to implement an architecture in hardware

● Processor

● Datapath: functional blocks

● Control: control signals

RISC-V ISAs

5

Single Core Processor

● Processor (CPU)
● The active part of the computer that does all the work (data

manipulation and decision-making)

● Datapath
○ Contains hardware

necessary to perform

operations required by

the processor

● Control
● Tells the datapath what

needs to be done 6

Microarchitecture

7

● Multiple implements for a single architecture

● Single-cycle:

● Each instruction executes in a single cycle

● Multi-Cycle:

● Each instruction is broken up into series of shorter

steps

● Pipelined:

● Each instruction broken up into series of steps &

multiple instructions execute at once

Single-Cycle RISC-V Processor

8

ALU: Arithmetic Logic Unit

9

● ALU should perform

● Addition

● Subtraction

● AND

● OR

ALU: Arithmetic Logic Unit

10

ALUControl0

ALUControl1

ALU: Arithmetic Logic Unit

11

ALU: Arithmetic Logic Unit

12

ALU with Status Flags

13

ALU with Status Flags

14

ALU with Status Flags: Negative

15

ALU with Status Flags: Zero

16

ALU with Status Flags: Carry

17

ALU with Status Flags: oVerflow

18

ALU with Status Flags: oVerflow

19

ALU with Status Flags

20

Comparison based on Flags

21

Other ALU Operations

22

Extending ALU: SLT

23

Fixing Overflow Error in SLT Logic

24

+

-

&

|011

101

Single-Cycle RISC-V Processor

25

Architectural State Elements

26

● Determines everything about a processor

● Architectural state:

● 32 registers

● PC

● Memory

RISC-V Architectural State Elements

27

WE: Write Enable

State Elements

28

● Outputs of sequential logic depend on current and prior

input values – it has memory

● Sequential circuits

● Give sequence to events

● Have memory (short-term)

● Use feedback from output to input to store information

State Elements

29

● State

● Everything about the prior inputs to the circuit

necessary to predict its future behavior

● Usually just 1 bit, the last value captured

● State elements store state

● SR Latch

● D Latch

● D Flip-flop

SR (Set/Reset) Latch

30

● Latch
● An asynchronous circuit (it doesn’t require a clock signal to work)

● Has two stable states, HIGH (“1”), and LOW (“0”)

● Can be used for storing binary data

● Set-Reset (S-R) latch
● Two NOR gates with a cross-feedback loop

● The feedback path stores one bit of data

as long as the circuit is powered

● Two inputs (R and S)

● Two outputs (Q and inverted Q)

SR (Set/Reset) Latch

31

SR (Set/Reset) Latch

32

1

0

0

1

Set state

Reset state

SR (Set/Reset) Latch

33

Invalid state

Previous state

SR (Set/Reset) Latch

34

● Set-Reset (S-R) latch
● NOR gate gives 1 when both of its inputs

are “0”

● When both inputs S and R are equal to “0”, the output Q remains

the same as it was (saves the previous value)

D Flip Flop

35

● Flip Flops
● A flip-flop is a state element

● State element: A circuit component that can hold a value

● Store one bit (1 or 0) on flip flop output

● Synchronous circuit that need a clock signal (Clk)

● D Flip-Flop
● The D Flip-Flop will only store a new value from the D input

when the clock goes from 0 to 1 (rising edge) or 1 to 0

(falling edge)

● Commonly used as a basic building block to create

counters or memory blocks such as shift register

D Flip-Flop

D Flip Flop

36

● Samples D on rising edge of CLK

● When CLK rises from 0 to 1, D passes through to Q

● Otherwise, Q holds its previous value

● Q changes only on rising edge of CLK

● Called edge-triggered

● Activated on the clock edge
D Flip-Flop

D Flip-Flop

37

● The output Q only changes to the value of the D

input at the moment the clock goes from 0 to 1

State Elements

● State elements required by RV32I ISA

● During CPU execution, each RV32I instruction reads

and/or updates these state elements

38

P

C

Program

Counter
Register
File Reg

Reg[]
Memory
MEM

IME

M

DME

M

Registers: One or More Flip-Flops

39

State Elements

● Program Counter
● The program counter is a 32-bit register
● Input

● N-bit data input bus
● Write Enable: “Control” bit (1: asserted/high

0: de-asserted/0)
● Output

● N-bit data output bus
● Behavior

● If write enable is 1 on the rising clock edge,
set Data Out = Data in

● At all other times, Data out will not change,
it will output it current value

40

clk

Data

In

Write

Enable

N N

Data

Out

A register in

Logisim

State Elements

● Register File
● The Register File (RegFile) has 32 registers

● Input

● One 32-bit input data bus, dataW

● Three 5-bit select busses, rs1, rs2, and rsW

● Output

● Two 32-bit output data busses, data1 and data2

41

dataW

rsW

rs1 data1

rs2

data2

Reg[]

clk

32

32

5

5

5

32

RegWEn

State Elements

● Register File
● Registers are accessed via their 5-bit register

numbers

● R[rs1]: rs1 selects register to put on data1 bus out

● R[rs2]: rs2 selects register to put on data2 buts out

● R[rd]: rsW selects register to be written via dataW when

RegWEn = 1

● Clock behavior: Write operation occurs on rising clock edge

● Clock input only a factor on write!

● All read operations behave like a combinational block

● If rs1, rs2 valid, then data1, data2 valid after access time 42

dataW

rsW

rs1 data1

rs2

data2

Reg[]

clk

32

32

5

5

5

32

RegWEn

State Elements

● Memory
● 32-bit byte-addressed memory space

● Memory access with 32-bit words

● Memory words are accessed as follows

● Read: Address addr selects word to put on dataR bus

● Write: Set MemRW = 1

Address addr selects word to be written with dataW bus

● Like RegFile, clock input is only a factor on write

● If MemRW = 1, write occurs on rising clock edge

● If MemRW = 0 and addr valid, then dataR valid after access

time 43

dataR

addr

MEM

dataW

clk

MemRW

32

32

32

State Elements

● Two Memories (IMEM, DMEM)
● Memory holds both instructions and data in one

contiguous 32-bit memory space

● The processor will use two “separate” memories

● IMEM: A read-only memory for fetching instruction

● DMEM: A memory for loading (read) and storing (write) data

words

● Because IMEM is read-only, it always behaves like a combinational

block

● If addr valid, then instr valid after access time

44

dataR

addr

DMEM

dataW

clk

MemRW

32

32

32addr

inst

IMEM

32

32

Single-Cycle RISC-V Processor

● Task: “Execute an instruction”
● All necessary operations starting

with fetching the instruction

● Problem:

● A single “monolithic’ block would be bulky and inefficient

● Solution:

● Break up the process into stages, then connect the stages to

create the whole datapath

● Smaller stages are easier to design!

● Modularity: Easy to optimize one stage without touching the

others
45

RISC-V Single Cycle Processor

● The CPU comprises two types of circuit
● One-instruction-per-cycle

● One every tick of the clock, the

computer executes one instruction

● At the rising clock edge

● All the state elements are

updated with the combinational

logic outputs

● Execution moves to the next

clock cycle

46

Single-Cycle RISC-V Processor

● The single-cycle processor
● All stages of one RV32I instruction execute within the same clock

cycle

47

5 basic stages

of instruction

execution

(IF) (ID) (EX) (MEM) (WB)

Single-Cycle RISC-V Processor

● The control logic selects “needed” datapath lines based

on the instruction
● MUX selector

● ALU op selector

● Write Enable …

48

Control Logic

Not all

instructions

need all 5

stages

Single-Cycle RISC-V Datapath

49

Single-Cycle RISC-V Processor

50

Single-Cycle RISC-V Processor

51

● Datapath: start with lw instruction

● Example:

Single-Cycle Datapath: lw fetch

52

Single-Cycle Datapath: lw Reg Read

53

Single-Cycle Datapath: lw Immediate

54

Single-Cycle Datapath: lw Address

55

Single-Cycle Datapath: LDR Mem Read

56

Single-Cycle Datapath: PC Increment

57

Single-Cycle Datapath: SW

58

Single-Cycle Datapath: Data-Processing

59

Single-Cycle Datapath: Immediate

60

Single-Cycle Datapath: R-Type

61

Single-Cycle Datapath: R-Type

62

Single-Cycle Datapath: immExt

63

Review: ALU

64

Review: ALU

65

Single-Cycle Datapath: beq

66

Single-Cycle Control

67

Control Unit: Main Decoder

68

Single-Cycle Control: ALU Decoder

69

010

000

and

Example: or

70

Extended Functionality: addi

71

Extended Functionality: addi

72

Extended Functionality: jal

73

Single-Cycle Datapath: ImmExt

74

Extended Functionality: jal

75

Extended Functionality: jal

76

Processor Performance

77

Single-Cycle Performance

78

Single-Cycle Performance

79

IMEM DMEM

Single-Cycle Performance Example

80

Single-Cycle Performance Example

81

Single-Cycle Performance Example

82

Conclusion

● ALU

● State Element

● Single-Cycle CPU

● Design the Datapath

83

