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Outline

● ALU

● State Element

● Single-Cycle CPU

● Design the Datapath 
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Introduction
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● Microarchitecture
● How to implement an architecture in hardware

● Processor

● Datapath: functional blocks

● Control: control signals



RISC-V ISAs
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Single Core Processor

● Processor (CPU)
● The active part of the computer that does all the work (data 

manipulation and decision-making)

● Datapath
○ Contains hardware

necessary to perform

operations required by

the processor

● Control
● Tells the datapath what

needs to be done 6



Microarchitecture
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● Multiple implements for a single architecture

● Single-cycle:

● Each instruction executes in a single cycle

● Multi-Cycle:

● Each instruction is broken up into series of shorter 

steps

● Pipelined:

● Each instruction broken up into series of steps & 

multiple instructions execute at once



Single-Cycle RISC-V Processor
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ALU: Arithmetic Logic Unit
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● ALU should perform

● Addition

● Subtraction

● AND

● OR



ALU: Arithmetic Logic Unit
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ALUControl0

ALUControl1



ALU: Arithmetic Logic Unit
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ALU: Arithmetic Logic Unit
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ALU with Status Flags
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ALU with Status Flags
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ALU with Status Flags: Negative
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ALU with Status Flags: Zero
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ALU with Status Flags: Carry
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ALU with Status Flags: oVerflow
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ALU with Status Flags: oVerflow
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ALU with Status Flags
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Comparison based on Flags
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Other ALU Operations
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Extending ALU: SLT
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Fixing Overflow Error in SLT Logic
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Single-Cycle RISC-V Processor
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Architectural State Elements
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● Determines everything about a processor

● Architectural state:

● 32 registers

● PC

● Memory



RISC-V Architectural State Elements
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WE: Write Enable



State Elements
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● Outputs of sequential logic depend on current and prior 

input values – it has memory

● Sequential circuits

● Give sequence to events

● Have memory (short-term)

● Use feedback from output to input to store information



State Elements
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● State

● Everything about the prior inputs to the circuit 

necessary to predict its future behavior

● Usually just 1 bit, the last value captured

● State elements store state

● SR Latch

● D Latch

● D Flip-flop



SR (Set/Reset) Latch
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● Latch
● An asynchronous circuit (it doesn’t require a clock signal to work)

● Has two stable states, HIGH (“1”), and LOW (“0”)

● Can be used for storing binary data

● Set-Reset (S-R) latch
● Two NOR gates with a cross-feedback loop

● The feedback path stores one bit of data

as long as the circuit is powered

● Two inputs (R and S)

● Two outputs (Q and inverted Q)



SR (Set/Reset) Latch
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SR (Set/Reset) Latch
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SR (Set/Reset) Latch
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Invalid state

Previous state



SR (Set/Reset) Latch
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● Set-Reset (S-R) latch
● NOR gate gives 1 when both of its inputs

are “0”

● When both inputs S and R are equal to “0”, the output Q remains 

the same as it was (saves the previous value)



D Flip Flop
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● Flip Flops
● A flip-flop is a state element

● State element: A circuit component that can hold a value

● Store one bit (1 or 0) on flip flop output

● Synchronous circuit that need a clock signal (Clk)

● D Flip-Flop
● The D Flip-Flop will only store a new value from the D input 

when the clock goes from 0 to 1 (rising edge) or 1 to 0 

(falling edge)

● Commonly used as a basic building block to create 

counters or memory blocks such as shift register

D Flip-Flop



D Flip Flop
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● Samples D on rising edge of CLK

● When CLK rises from 0 to 1, D passes through to Q

● Otherwise, Q holds its previous value

● Q changes only on rising edge of CLK

● Called edge-triggered

● Activated on the clock edge
D Flip-Flop



D Flip-Flop
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● The output Q only changes to the value of the D 

input at the moment the clock goes from 0 to 1



State Elements

● State elements required by RV32I ISA

● During CPU execution, each RV32I instruction reads 

and/or updates these state elements
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Registers: One or More Flip-Flops
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State Elements

● Program Counter
● The program counter is a 32-bit register
● Input

● N-bit data input bus
● Write Enable: “Control” bit (1: asserted/high

0: de-asserted/0)
● Output

● N-bit data output bus
● Behavior

● If write enable is 1 on the rising clock edge,
set Data Out = Data in

● At all other times, Data out will not change,
it will output it current value
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State Elements

● Register File
● The Register File (RegFile) has 32 registers

● Input

● One 32-bit input data bus, dataW

● Three 5-bit select busses, rs1, rs2, and rsW

● Output

● Two 32-bit output data busses, data1 and data2
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State Elements

● Register File
● Registers are accessed via their 5-bit register

numbers

● R[rs1]: rs1 selects register to put on data1 bus out

● R[rs2]: rs2 selects register to put on data2 buts out

● R[rd]:   rsW selects register to be written via dataW when 

RegWEn = 1

● Clock behavior: Write operation occurs on rising clock edge

● Clock input only a factor on write!

● All read operations behave like a combinational block

● If rs1, rs2 valid, then data1, data2 valid after access time 42

dataW

rsW

rs1        data1

rs2

data2

Reg[]

clk

32

32

5

5

5

32

RegWEn



State Elements

● Memory
● 32-bit byte-addressed memory space

● Memory access with 32-bit words

● Memory words are accessed as follows

● Read: Address addr selects word to put on dataR bus

● Write: Set MemRW = 1

Address addr selects word to be written with dataW bus

● Like RegFile, clock input is only a factor on write

● If MemRW = 1, write occurs on rising clock edge

● If MemRW = 0 and addr valid, then dataR valid after access 

time 43
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State Elements

● Two Memories (IMEM, DMEM)
● Memory holds both instructions and data in one

contiguous 32-bit memory space

● The processor will use two “separate” memories

● IMEM: A read-only memory for fetching instruction

● DMEM: A memory for loading (read) and storing (write) data 

words

● Because IMEM is read-only, it always behaves like a combinational 

block

● If addr valid, then instr valid after access time
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Single-Cycle RISC-V Processor

● Task: “Execute an instruction”
● All necessary operations starting

with fetching the instruction

● Problem:

● A single “monolithic’ block would be bulky and inefficient

● Solution:

● Break up the process into stages, then connect the stages to 

create the whole datapath

● Smaller stages are easier to design!

● Modularity: Easy to optimize one stage without touching the 

others
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RISC-V Single Cycle Processor

● The CPU comprises two types of circuit
● One-instruction-per-cycle

● One every tick of the clock, the

computer executes one instruction

● At the rising clock edge

● All the state elements are

updated with the combinational

logic outputs

● Execution moves to the next

clock cycle
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Single-Cycle RISC-V Processor

● The single-cycle processor
● All stages of one RV32I instruction execute within the same clock 

cycle
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Single-Cycle RISC-V Processor

● The control logic selects “needed” datapath lines based 

on the instruction
● MUX selector

● ALU op selector

● Write Enable …
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Single-Cycle RISC-V Datapath
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Single-Cycle RISC-V Processor
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Single-Cycle RISC-V Processor
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● Datapath: start with lw instruction

● Example:



Single-Cycle Datapath: lw fetch
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Single-Cycle Datapath: lw Reg Read
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Single-Cycle Datapath: lw Immediate
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Single-Cycle Datapath: lw Address
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Single-Cycle Datapath: LDR Mem Read
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Single-Cycle Datapath: PC Increment
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Single-Cycle Datapath: SW
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Single-Cycle Datapath: Data-Processing
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Single-Cycle Datapath: Immediate
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Single-Cycle Datapath: R-Type
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Single-Cycle Datapath: R-Type
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Single-Cycle Datapath: immExt
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Review: ALU
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Review: ALU
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Single-Cycle Datapath: beq
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Single-Cycle Control
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Control Unit: Main Decoder
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Single-Cycle Control: ALU Decoder
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Example: or
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Extended Functionality: addi

71



Extended Functionality: addi
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Extended Functionality: jal
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Single-Cycle Datapath: ImmExt
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Extended Functionality: jal
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Extended Functionality: jal
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Processor Performance
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Single-Cycle Performance
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Single-Cycle Performance
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Single-Cycle Performance Example
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Single-Cycle Performance Example
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Single-Cycle Performance Example
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Conclusion

● ALU

● State Element

● Single-Cycle CPU

● Design the Datapath 
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