
Lecture 4: ISA II

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao University

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● CSCE 513 at University of South Carolina

● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://passlab.github.io/CSCE513/

Outline

● Function call

● Recursive Function

● Machine Language

○ Instruction types and formats

○ Interpreting machine code

○ Addressing modes

3

The Program Memory Layout

● A stored-program

● Stores both data and code on memory

● The code space is a memory space

● stores program codes (the lowest address)

● The static data space is a memory space

● Store the program static data (global

variables)

● The heap space is a memory space

● Managed by the memory allocation library (malloc())

4

The Program Memory Layout

● A stored-program

● The stack space is a memory space

● Stores the program stack

● Usually placed at the end (high

addresses) of the memory

5

Program Stack

6

● Active routine is a routine (function)

● Was invoked but didn’t return yet

● For example:

● The routine fun is invoked by the

bar routine, which also becomes

active

● The routine bar is invoked by

the routine main

● Initially, the main routine is active

Program Stack

7

● The set of active routines increases

● Whenever a routine is invoked

● The set of active routines decreases

○ Whenever a routine returns

● The most natural data structure to keep track of active routines is a

stack

Program Stack

8

● The program stack
● A stack data structure that stores information belonging to

active routines

● Local variables, parameters, and return addresses

● The program stack is stored in the main memory

● Whenever a routine is invoked

● Push the information belonging to the routine on the top of

the stack, which causes it to grow

● When a routine returns

● Drop the contents at the top of the stack

Program Stack

9

● The stack pointer

● A pointer to the top of the stack

● Stores the address of the top of the stack

● Growing or shrinking the stack is performed by adjusting the

stack pointer

● In RISC-V, the stack pointer is stored by register sp

Program Stack

10

● The stack pointer

● How to push the contents of register a0 into stack

● First, the stack pointer is decreased to allocate space (4

bytes)

● The contents of register a0 (4 bytes) are stored on the top

of the program stack using the sw instruction

addi sp, sp, -4 # allocate stack space

sw a0, 0(sp) # store data into stack

Program Stack

● Grows down (from higher to lower memory addresses)

● Stack pointer: sp points to top of the stack

11

Program Stack

12

● The stack pointer

● How to pop a value from the top of the stack into register a0?

● First, the value on the top of the program stack is loaded

into register a0 (4 bytes) using the lw instruction

● Second, the stack pointer is increased to deallocate the

space (4 bytes)

lw a0, 0(sp) # retrieve data from stack

addi sp, sp, 4 # deallocate space

Function Calls

● Caller: calling function (in this case, main)

● Callee: called function (in this case, sum)

13

Function Calls

● Caller:
● Pass arguments to callee

● Jumps to callee

● Callee:
● Performs the function

● Returns result to caller

● Returns to point of caller

● Must not overwrite registers or memory needed by caller

14

RISC-V Function Conventions

● Call Function: jump and link (jal)

● Return from function: jump register (jr ra)

● Arguments: a0 – a7

● Return value: a0

15

Function Calls

16

Function Calls

17

Function Calls

● Preferred instruction:
● jal simple – a pseudo-instruction for jal ra, simple

● Pseudo-instructions are not actual RISC-V instructions but they are

often simpler for the programmer

● They are converted to real RISC-V instructions by the assembler
18

Passing Parameters to Routines

19

● Passing parameters

● Before invoking a routine,

the caller must set the

parameters

● Place parameters a-h on

register a[0-7]

● The 9th and 10 th

parameters are pushed

into the stack

Passing Parameters to Routines

20

● Passing parameters

● The sum10 was invoked

must retrieve parameters

from registers and stack

● The 9th and 10th parameters

from the stack into register

t1 and t2

● The caller routine must pop

the values from the stack

Returning Values from Routines

21

● Passing parameters

● Parameter v is passed into

register a0

● How to invoke the pow2

routine to compute the

square of 32

C Code
int pow2 (int v)

{

return v*v;

}

RISC-V Assembly Code
Pow2:

mul a0,a0,a0 #a0:= a0 * a0

ret # returnRISC-V Assembly Code
main:

li a0,32 #set the parameter with value 32

jal pow2 # invoke pow2

ret # return

Returning Values from Routines

22

● Reference parameters
● A reference is a memory address

● The information passed into or

out of the routine must be located

in the memory

C Code
int inc (int* v)

{

*v = *v + 1;

}

RISC-V Assembly Code
inc:

lw a1,(a0) #a1 := *v

addi a1, a1, 1 #a1:= a1+1

sw a1, (a0) #*v:= a1

ret

RISC-V Assembly Code
.data

y: .skip 4

.text

Main:

la a0,y #set the parameter with address of y

jal inc #a1:= a1+1

ret

Input Arguments & Return Value

23

Input Arguments & Return Value

24

Input Arguments & Return Value

● diffofsums overwrote 3 registers: t0, t1, s3

● diffofsums can use the stack to temporarily store registers

25

Storing Register Values on the Stack

26

The Stack During diffofsums Call

27

Register Saving Conventions

28

Storing Saved Registers on the Stack

29

Optimized diffofsums

30

Non-Leaf Function Calls

31

Function Call Summary

32

Recursive Functions

33

Recursive Functions

34

Recursive Functions

35

Recursive Functions

36

Machine Language

● Binary representation of instructions

● Computers only understand 1’s and 0’s

● 4 Types of Instruction Formats
● R-Type

● I-Type

● S/B-Type

● U/J-Type

37

R-Type

● Register-type

● 3 register operands:
● rs1, rs2: source registers

● rd: destination register

● Other fields:

● op: the operation code or opcode

● Funct7, func3:

● The function (7 bits and 3-bits, respectively)

● With opcode, tells computer what operation to perform

38

R-Type

39

R-Type

40

I-Type

41

● Immediate-type

● 3 register operands:
● rs1: register source operand

● rd: register destination operand

● imm: 12-bit two’s complement immediate

● Other fields:

● op: the operation code or opcode

● Funct3:

● The function (3-bit function code)

● With opcode, tells computer what operation to perform

I-Type

42

S-Type

43

● Store-type

● 3 register operands:
● rs1: base register

● rs2: value to be stored to memory

● imm: 12-bit two’s complement immediate

● Other fields:

● op: the operation code or opcode

● Funct3:

● The function (3-bit function code)

● With opcode, tells computer what operation to perform

S-Type

44

B-Type

45

● Branch-type

● 3 register operands:
● rs1: register source 1

● rs2: register source 2

● imm: 12-bit two’s complement immediate - address offset

● Other fields:

● op: the operation code or opcode

● Funct3:

● The function (3-bit function code)

● With opcode, tells computer what operation to perform

B-Type

46

● The 12-bit immediate encodes where to branch (relative

to the branch instruction)

B-Type

47

U-Type

48

● Upper-immediate Type

● Used for load upper immediate (lui)

● 2 operands
● rd: destination register

● Imm31:12: upper 20 bits of 1 32-bit immediate

● Other fields:

● op: the operation code or opcode – tells computer what operation

to perform

U-Type

49

J-Type

50

● Jump Type

● Used for jump-and-link (jal)

● 2 operands
● rd: destination register

● Imm20, 10:1, 11, 19:12: 20 bits (20:1) of 21-bit immediate

● Other fields:

● op: the operation code or opcode – tells computer what operation

to perform

J-Type

51

J-Type

52

Unraveling the web of lies: jr

53

• jr ra is not a real RISC-V instruction.

• It is a pseudoinstruction for jalr x0, ra, 0

• jalr is not a J-type instruction.

jalr

54

• jalr is an I-type instruction.

• It writes PC+4 to rd and jumps to rs1+imm.

• Example:

• In this case, rd = s2, rs1 = s7, imm = 0x7BC

Review: Instruction Formats

55

Constants/Immediates

56

• lw and sw use constants or immediates

• immediately available from instruction

• 12-bit two’s complement number

• addi: add immediate

• Subtract immediate (subi) necessary?

Constants/Immediates

57

Immediate Encodings

58

• Immediate bits mostly occupy consistent instruction bits.

• Sign bit of signed immediate is in msb of instruction.

• Recall that rs2 of R-type can encode immediate shift amount

Instruction Fields & Formats

59

Interpreting Machine Code

60

• Write in binary

• Start with op (& funct3): tells how to parse rest

• Extract fields

• op, funct3, and funct7 fields to tell operation

• Ex: 0x41FE83B3 and 0xFDA58393

Interpreting Machine Code

61

• Write in binary

• Start with op (& funct3): tells how to parse rest

• Extract fields

• op, funct3, and funct7 fields to tell operation

• Ex: 0x41FE83B3 and 0xFDA58393

Interpreting Machine Code

62

• Write in binary

• Start with op (& funct3): tells how to parse rest

• Extract fields

• op, funct3, and funct7 fields to tell operation

• Ex: 0x41FE83B3 and 0xFDA58393

Power of the Stored Program

63

• 32-bit instructions & data stored in memory

• Sequence of instructions: only difference between two
applications

• To run a new program:
– No rewiring required

– Simply store new program in memory

• Program Execution:
– Processor fetches (reads) instructions from memory in

sequence

– Processor performs the specified operation

The Stored Program

64

Program Counter
(PC): a special
register that keeps
track of the
memory address of
the next instruction
to be executed in a
program

addi s2, t1, -14

Machine CodeAssembly Code

add s2, s3, s4

sub t0, t1, t2

lw t2, -6(s3)

0x01498933

0x407302B3

0xFF230913

0xFFA9A383

Address Instructions

0000083C F F A 9 A 3 8 3

F F 2 3 0 9 1 3

4 0 7 3 0 2 B 3

0 1 4 9 8 9 3 3

00000838

00000834

00000830

Stored Program

Main Memory

PC

Addressing Modes

65

● How do we address the operands?

○ Register Only

○ Immediate

○ Base Addressing

○ PC-Relative

○ Pseudo Direct

Addressing Modes

66

Register Only

● Operands found in registers

○ Example: add s0, t2, t3

○ Example: sub t6, s1, s0

Immediate

● 12-bit signed immediate used as an operand

○ Example: addi s4, t5, -73

○ Example: ori t3, t7, 0xFF

Addressing Modes

67

Base Addressing

● Loads and Stores

● Address of operand is:

base address + immediate

○ Example: lw s4, 72(zero)

■ address = 0 + 72

○ Example: sw t2, -25(t1)

■ address = t1 - 25

Addressing Modes

68

● PC-Relative Addressing: branches and jal

2908/4 = 727

How to Compile & Run a Program

69

What is Stored in Memory?

70

• Instructions (also called text)

• Data

– Global/static: allocated before program begins

– Dynamic: allocated within program

• How big is memory?

– At most 232 = 4 gigabytes (4 GB)

– From address 0x00000000 to 0xFFFFFFFF

Example RISC-V Memory Map

71

SegmentAddress

sp

0x00008000

0x00000000

Operating

System & I/O

Stack

Heap

Text

Exception

Handlers

Dynamic Data

0xFFFFFFFC

Global Data

0x7FFFFFFC

0x80000000

gp

0x10000800

pc

0x10000000

0x100007FC

Example Program: RISC-V Assembly

72

Example Program: Symbol Table

73

Example Program: Executable

74

Example Program: In Memory

75

Odds & Ends

76

• Pseudoinstructions

• Signed and unsigned instructions

• Floating point instructions

Pseudoinstructions

77

Signed & Unsigned Instructions

78

• Multiplication and division

• Set less than

• Loads

Multiplication & Division

79

• Signed: multh, div

• Unsigned: multhu, multhsu, divu

Set Less Than

80

• Signed: slt, slti

• Unsigned: sltu, sltiu

● Note: sltiu sign-extends the immediate before

comparing it to the register

Loads

81

• Signed:

– Sign-extends to create 32-bit value to load into register

– Load halfword: lh

– Load byte: lb

• Unsigned:

– Zero-extends to create 32-bit value

– Load halfword unsigned: lhu

– Load byte: lbu

Floating Point Operations

82

• RISC-V offers three floating point extensions:

• RVF: single-precision (32-bit)

• RVD: double-precision (64-bit)

• RVQ: quad-precision (128-bit)

Floating Point Registers

83

• 32 Floating point registers

• Width is highest precision – for example, if RVQ is

implemented, registers are 128 bits wide

• When multiple floating point extensions are implemented,

the lower-precision values occupy the lower bits of the

register

Floating Point Registers

84

Floating Point Instructions

85

• Append .s (single), .d (double), .q (quad) for precision.

add.s, add.d, and add.q

• Arithmetic operations:

fadd, fsub, fdiv, fsqrt, fmin, fmax, multiply-add (fmadd,

fmsub, fnmadd, fnmsub)

Floating Point Instructions

86

• Other instructions

Floating Point Instructions

87

• Use R-, I-, and S-type formats

• Introduce another format for multiply-add instructions that

have 4 register operands: R4-type

Conclusion

● Function call

● Recursive Function

● Machine Language

○ Instruction types and formats

○ Interpreting machine code

○ Addressing modes

88

