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Outline

● Function call

● Recursive Function

● Machine Language

○ Instruction types and formats

○ Interpreting machine code

○ Addressing modes

3



The Program Memory Layout

● A stored-program

● Stores both data and code on memory

● The code space is a memory space

● stores program codes (the lowest address)

● The static data space is a memory space

● Store the program static data (global 

variables)

● The heap space is a memory space

● Managed by the memory allocation library (malloc())
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The Program Memory Layout

● A stored-program

● The stack space is a memory space

● Stores the program stack

● Usually placed at the end (high 

addresses) of the memory
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Program Stack
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● Active routine is a routine (function)

● Was invoked but didn’t return yet

● For example:

● The routine fun is invoked by the

bar routine, which also becomes

active

● The routine bar is invoked by 

the routine main

● Initially, the main routine is active



Program Stack
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● The set of active routines increases

● Whenever a routine is invoked

● The set of active routines decreases

○ Whenever a routine returns

● The most natural data structure to keep track of active routines is a 

stack



Program Stack
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● The program stack
● A stack data structure that stores information belonging to 

active routines

● Local variables, parameters, and return addresses

● The program stack is stored in the main memory

● Whenever a routine is invoked

● Push the information belonging to the routine on the top of 

the stack, which causes it to grow

● When a routine returns

● Drop the contents at the top of the stack



Program Stack
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● The stack pointer

● A pointer to the top of the stack

● Stores the address of the top of the stack

● Growing or shrinking the stack is performed by adjusting the 

stack pointer

● In RISC-V, the stack pointer is stored by register sp



Program Stack
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● The stack pointer

● How to push the contents of register a0 into stack

● First, the stack pointer is decreased to allocate space (4 

bytes)

● The contents of register a0 (4 bytes) are stored on the top 

of the program stack using the sw instruction

addi sp, sp, -4   # allocate stack space

sw a0, 0(sp)    # store data into stack



Program Stack

● Grows down (from higher to lower memory addresses)

● Stack pointer: sp points to top of the stack
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Program Stack
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● The stack pointer

● How to pop a value from the top of the stack into register a0?

● First, the value on the top of the program stack is loaded 

into register a0 (4 bytes) using the lw instruction

● Second, the stack pointer is increased to deallocate the 

space (4 bytes)

lw a0, 0(sp)    # retrieve data from stack

addi sp, sp, 4    # deallocate space



Function Calls

● Caller: calling function (in this case, main)

● Callee: called function (in this case, sum)
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Function Calls

● Caller:
● Pass arguments to callee

● Jumps to callee

● Callee:
● Performs the function

● Returns result to caller

● Returns to point of caller

● Must not overwrite registers or memory needed by caller
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RISC-V Function Conventions

● Call Function: jump and link (jal)

● Return from function: jump register (jr ra)

● Arguments: a0 – a7

● Return value: a0

15



Function Calls
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Function Calls
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Function Calls

● Preferred instruction:
● jal simple – a pseudo-instruction for jal ra, simple

● Pseudo-instructions are not actual RISC-V instructions but they are 

often simpler for the programmer

● They are converted to real RISC-V instructions by the assembler
18



Passing Parameters to Routines
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● Passing parameters

● Before invoking a routine, 

the caller must set the 

parameters

● Place parameters a-h on

register a[0-7]

● The 9th and 10 th

parameters are pushed

into the stack



Passing Parameters to Routines
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● Passing parameters

● The sum10 was invoked

must retrieve parameters

from registers and stack

● The 9th and 10th parameters

from the stack into register

t1 and t2

● The caller routine must pop

the values from the stack



Returning Values from Routines
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● Passing parameters

● Parameter v is passed into

register a0

● How to invoke the pow2

routine to compute the

square of 32

C Code
int pow2 (int v)

{

return v*v;

}

RISC-V Assembly Code
Pow2:

mul a0,a0,a0 #a0:= a0 * a0

ret           # returnRISC-V Assembly Code
main:

li  a0,32 #set the parameter with value 32

jal pow2  # invoke pow2

ret       # return



Returning Values from Routines
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● Reference parameters
● A reference is a memory address

● The information passed into or

out of the routine must be located

in the memory

C Code
int inc (int* v)

{

*v = *v + 1;

}

RISC-V Assembly Code
inc:

lw a1,(a0)   #a1 := *v

addi a1, a1, 1 #a1:= a1+1

sw a1, (a0)  #*v:= a1

ret

RISC-V Assembly Code
.data

y: .skip 4

.text

Main:

la  a0,y   #set the parameter with address of y

jal inc #a1:= a1+1

ret



Input Arguments & Return Value
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Input Arguments & Return Value
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Input Arguments & Return Value

● diffofsums overwrote 3 registers: t0, t1, s3

● diffofsums can use the stack to temporarily store registers
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Storing Register Values on the Stack
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The Stack During diffofsums Call
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Register Saving Conventions

28



Storing Saved Registers on the Stack
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Optimized diffofsums
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Non-Leaf Function Calls
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Function Call Summary
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Recursive Functions
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Recursive Functions
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Recursive Functions
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Recursive Functions
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Machine Language

● Binary representation of instructions

● Computers only understand 1’s and 0’s

● 4 Types of Instruction Formats
● R-Type

● I-Type

● S/B-Type

● U/J-Type
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R-Type

● Register-type

● 3 register operands:
● rs1, rs2: source registers

● rd:          destination register

● Other fields:

● op: the operation code or opcode

● Funct7, func3:

● The function (7 bits and 3-bits, respectively)

● With opcode, tells computer what operation to perform
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R-Type
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R-Type
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I-Type
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● Immediate-type

● 3 register operands:
● rs1: register source operand

● rd:         register destination operand

● imm: 12-bit two’s complement immediate

● Other fields:

● op: the operation code or opcode

● Funct3:

● The function (3-bit function code)

● With opcode, tells computer what operation to perform



I-Type
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S-Type

43

● Store-type

● 3 register operands:
● rs1: base register

● rs2:       value to be stored to memory

● imm: 12-bit two’s complement immediate

● Other fields:

● op: the operation code or opcode

● Funct3:

● The function (3-bit function code)

● With opcode, tells computer what operation to perform



S-Type
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B-Type
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● Branch-type

● 3 register operands:
● rs1: register source 1

● rs2:       register source 2

● imm: 12-bit two’s complement immediate - address offset

● Other fields:

● op: the operation code or opcode

● Funct3:

● The function (3-bit function code)

● With opcode, tells computer what operation to perform



B-Type
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● The 12-bit immediate encodes where to branch (relative 

to the branch instruction)



B-Type
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U-Type

48

● Upper-immediate Type

● Used for load upper immediate (lui)

● 2 operands
● rd: destination register

● Imm31:12: upper 20 bits of 1 32-bit immediate

● Other fields:

● op: the operation code or opcode – tells computer what operation 

to perform



U-Type
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J-Type
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● Jump Type

● Used for jump-and-link (jal)

● 2 operands
● rd: destination register

● Imm20, 10:1, 11, 19:12: 20 bits (20:1) of 21-bit immediate

● Other fields:

● op: the operation code or opcode – tells computer what operation 

to perform



J-Type

51



J-Type
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Unraveling the web of lies: jr
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• jr ra is not a real RISC-V instruction.

• It is a pseudoinstruction for jalr x0, ra, 0

• jalr is not a J-type instruction.



jalr
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• jalr is an I-type instruction.

• It writes PC+4 to rd and jumps to rs1+imm.

• Example:

• In this case, rd = s2, rs1 = s7, imm = 0x7BC



Review: Instruction Formats
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Constants/Immediates
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• lw and sw use constants or immediates

• immediately available from instruction

• 12-bit two’s complement number

• addi: add immediate

• Subtract immediate (subi) necessary?



Constants/Immediates
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Immediate Encodings
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• Immediate bits mostly occupy consistent instruction bits.

• Sign bit of signed immediate is in msb of instruction.

• Recall that rs2 of R-type can encode immediate shift amount



Instruction Fields & Formats
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Interpreting Machine Code
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• Write in binary

• Start with op (& funct3): tells how to parse rest

• Extract fields

• op, funct3, and funct7 fields to tell operation

• Ex: 0x41FE83B3 and 0xFDA58393



Interpreting Machine Code
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• Write in binary

• Start with op (& funct3): tells how to parse rest

• Extract fields

• op, funct3, and funct7 fields to tell operation

• Ex: 0x41FE83B3 and 0xFDA58393



Interpreting Machine Code
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• Write in binary

• Start with op (& funct3): tells how to parse rest

• Extract fields

• op, funct3, and funct7 fields to tell operation

• Ex: 0x41FE83B3 and 0xFDA58393



Power of the Stored Program
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• 32-bit instructions & data stored in memory

• Sequence of instructions: only difference between two 
applications

• To run a new program:
– No rewiring required

– Simply store new program in memory

• Program Execution:
– Processor fetches (reads) instructions from memory in 

sequence

– Processor performs the specified operation



The Stored Program
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Program Counter 
(PC): a special 
register that keeps 
track of the 
memory address of 
the next instruction 
to be executed in a 
program

addi s2, t1, -14

Machine CodeAssembly Code

add  s2, s3, s4

sub  t0, t1, t2

lw   t2, -6(s3)

0x01498933

0x407302B3

0xFF230913

0xFFA9A383

Address Instructions

0000083C F F A 9 A 3 8 3

F F 2 3 0 9 1 3

4 0 7 3 0 2 B 3

0 1 4 9 8 9 3 3

00000838

00000834

00000830

Stored Program

Main Memory

PC



Addressing Modes
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● How do we address the operands?

○ Register Only

○ Immediate

○ Base Addressing

○ PC-Relative

○ Pseudo Direct



Addressing Modes
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Register Only

● Operands found in registers

○ Example: add s0, t2, t3

○ Example: sub t6, s1, s0

Immediate

● 12-bit signed immediate used as an operand

○ Example: addi s4, t5, -73

○ Example: ori t3, t7, 0xFF



Addressing Modes
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Base Addressing

● Loads and Stores

● Address of operand is:

base address + immediate

○ Example: lw s4, 72(zero)

■ address = 0 + 72

○ Example: sw t2, -25(t1)

■ address =    t1 - 25



Addressing Modes
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● PC-Relative Addressing: branches and jal

2908/4 = 727



How to Compile & Run a Program
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What is Stored in Memory?
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• Instructions (also called text)

• Data

– Global/static: allocated before program begins

– Dynamic: allocated within program

• How big is memory?

– At most 232 = 4 gigabytes (4 GB)

– From address 0x00000000 to 0xFFFFFFFF



Example RISC-V Memory Map
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SegmentAddress

sp

0x00008000

0x00000000

Operating 

System & I/O

Stack

Heap

Text

Exception

Handlers

Dynamic Data

0xFFFFFFFC

Global Data

0x7FFFFFFC

0x80000000

gp

0x10000800

pc

0x10000000

0x100007FC



Example Program: RISC-V Assembly
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Example Program: Symbol Table
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Example Program: Executable

74



Example Program: In Memory
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Odds & Ends
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• Pseudoinstructions

• Signed and unsigned instructions

• Floating point instructions



Pseudoinstructions
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Signed & Unsigned Instructions
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• Multiplication and division

• Set less than

• Loads



Multiplication & Division
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• Signed: multh, div

• Unsigned: multhu, multhsu, divu



Set Less Than
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• Signed: slt, slti

• Unsigned: sltu, sltiu

● Note: sltiu sign-extends the immediate before 

comparing it to the register



Loads
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• Signed:

– Sign-extends to create 32-bit value to load into register

– Load halfword: lh

– Load byte: lb

• Unsigned:

– Zero-extends to create 32-bit value

– Load halfword unsigned: lhu

– Load byte: lbu



Floating Point Operations
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• RISC-V offers three floating point extensions:

• RVF: single-precision (32-bit)

• RVD: double-precision (64-bit)

• RVQ: quad-precision (128-bit)



Floating Point Registers
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• 32 Floating point registers

• Width is highest precision – for example, if RVQ is

implemented, registers are 128 bits wide

• When multiple floating point extensions are implemented,

the lower-precision values occupy the lower bits of the

register



Floating Point Registers
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Floating Point Instructions
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• Append .s (single), .d (double), .q (quad) for precision.

add.s, add.d, and add.q

• Arithmetic operations:

fadd, fsub, fdiv, fsqrt, fmin, fmax, multiply-add (fmadd,

fmsub, fnmadd, fnmsub)



Floating Point Instructions
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• Other instructions



Floating Point Instructions
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• Use R-, I-, and S-type formats

• Introduce another format for multiply-add instructions that

have 4 register operands: R4-type



Conclusion

● Function call

● Recursive Function

● Machine Language

○ Instruction types and formats

○ Interpreting machine code

○ Addressing modes
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