
Lecture 3: ISA I

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao University

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● E85 at HMC

● https://pages.hmc.edu/harris/class/e85/old/fall21/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://pages.hmc.edu/harris/class/e85/old/fall21/

Outline

● Introduction

○ Instruction Set Architecture (ISA)

● RISC-V Assembly Language

○ Instructions

○ Register Set

○ Memory

○ Programming constructs

3

Introduction

4

● Architecture:
● Programmer’s view of computer

● Defined by instructions & operand locations

● Microarchitecture:
● How to implement an architecture in hardware

(See single-cycle CPU lecture)

Assembly Language

5

● Instructions:
● Commands in a computer’s language

● Assembly language: human-readable format of instructions

● Machine language: computer-readable format (1’s and 0’s)

● RISC-V architecture:
● First open-source computer architecture

● RISC-V ISA manual

● https://riscv.org/specifications/isa-spec-pdf/

https://riscv.org/specifications/isa-spec-pdf/

RISC-V 32-bit ISA

6

● RISC-V Base ISAs:

Name Description

RV32I 32-bit integer instruction set

RV32E 32-bit integer instruction set for embedded microprocessors

RV64I 64-bit integer instruction set

RV128I 128-bit integer instruction set

RISC-V 32-bit ISA

7

● RISC-V Extensions:

Suffix Description

M Standard extension for integer multiplication and division

A Standard extension for atomic instruction

F Standard extension for single-precision Floating Point

D Standard extension for double-precision Floating Point

C Standard extension for compressed instructions

B Standard extension for bit manipulation

P/V Standard extension for packed-SIMD/vector instructions

RISC-V 32-bit ISA

8

● RISC-V 32-bit ISAs:
● It supports 32-bit address spaces

● It contains thirty-three 32-bit registers

● It represents signed integer values in two’s complement

● It contains integer computational/loads/stores instructions, and

control-flow instructions

● It contains instructions to multiply and divide values held in the

integer registers (M extension)

Instructions: Addition

9

● RISC-V assembly code
● add: mnemonic indicates operation to perform

● b, c: source operands (on which the operation is performed)

● a: destination operand (to which the result is written)

Instructions: Subtraction

10

● RISC-V assembly code
● sub: mnemonic

● b, c: source operands

● a: destination operand

Multiple Instructions

11

● More complex code is handled by multiple RISC-V

instructions

RISC vs CISC

12

● Make the common case fast
● RISC-V includes only simple, commonly used instructions

● Hardware to decode and execute instructions can be simple,

small, and fast

● More complex instructions performed using multiple simple

instructions

● RISC-V is a reduced instruction set computer (RISC) with a

small number of simple instructions.

● Other architectures, such as Intel’s x86, are complex instruction

set computers (CISC)

Operands

13

● Operand location: physical location in computer
● Registers

● Memory

● Constants (also called immediates)

Operands: Registers

14

● RISC-V has 32 32-bit registers

● Registers are faster than memory

● RISC-V called “32-bit architecture” because it operates

on 32-bit data
● RISC-V also has 64-bit spec.

● RISC-V includes only a small number register
● Smaller is faster

RISC-V Register Set

15

Operands: Registers

16

● Registers:
● Can use either name (i.e., ra, zero) or x0, x1, etc.

● Using name is preferred

● Registers used for specific purposes:
● Zero always holds the constant value 0

● The remaining registers (x1-x31) are general purpose register

and can be used interchangeably

● The saved registers, s0-s11, used to hold variables

● The temporary registers, t0-t6, used to hold intermediate

values during a larger computation

Instructions with Registers

17

● Revisit add instruction # indicates a single-line comment

Operands: Memory

18

● Too much data to fit in only 32 registers

● Store more data in memory

● Memory is large, but slow

● Commonly used variables kept in registers

Operands: Memory

19

● RV32I native datatypes and their respective sizes in bytes

RV32I native data type name Size in bytes

Byte 1

Unsigned byte 1

Halfword 2

Unsigned halfword 2

Word 4

Unsigned word 4

Memory

20

● RISC-V is a Load/Store architecture
● Requires values to be loaded/stored explicitly from/to memory

before operating on them

● Requires the data to be first retrieved from memory into a

register by executing a load instruction

● First, we’ll discuss word-addressable memory

● Then, we will discuss byte-addressable memory

RISC-V is byte-addressable
lw a5, 0(a0)

add a6, a5, a5

sw a6, 0(a0)

Word-Addressable Memory

21

● Each 32-bit data word has a unique address
● 1 word = 4 bytes

1 byte

(8 bits)

Reading Word-Addressable Memory

22

● Memory read called load

● Mnemonic: load word (lw)

● Format:

● Address calculation
● Add offset (5) to the base address (s0)

● Address = (s0 + 5)

● Destination register (rd)
● t1 holds the value at address (s0 + 5)

● Any register may be used as based address

Reading Word-Addressable Memory

23

● Example:
● read a word of data at memory address 1 into s3

● Address = (0 + 1) = 1

● S3 = 0xF2F1AC07 after load

Writing Word-Addressable Memory

24

● Memory write are called store

● Mnemonic: store word (sw)

● Format similar to load

Writing Word-Addressable Memory

25

● Example:
● Write (store) the value in t4 into memory address 7

● t4 = 0x12345678

● Add the base address (zero) to the offset (0x7)

● Address: (0 + 0x7) = 7

● Offset can be written in decimal (default) or hexadecimal

12345678 Word 7

Byte-Addressable Memory

26

● Byte addressable memory
● Each memory location stores a single byte and is associated

with a unique address

Addresses Memory

locations

1 byte

Byte-Addressable Memory

27

● Each data byte has unique address
● Load/store words or single bytes:

● load byte (lb) and store byte (sb)

● 32-bit word = 4 bytes, so word address increments by 4

MSB has an

address of

base + 3 = 7

Reading Byte-Addressable Memory

28

● The address of a memory word must be multiplied by 4
● Load a word of data at memory address 8 into s3

● s3 holds the value 0x1EE2842 after load

Writing Byte-Addressable Memory

29

● Example
● Store the value held in t7 into memory address 0x10 (16)

● If t7 holds the value 0xAABBCCDD, then after the sw completes,

word 4 (at address 0x10) in memory will contain that value

Big-Endian & Little-Endian

30

● Little-endian
● Byte numbers start at the little (least significant) end

● Big-endian
● Byte numbers start at the big (most significant) end

● Word address is the same for big- or little-endian

Big-Endian & Little-Endian Example

31

● Suppose t0 initially contains 0x23456789
● After following code runs on big-endian system, what value is

s0?

● In a little-endian system?

Big-Endian & Little-Endian Example

32

● Big-endian
● s0 = 0x00000045

● Little-endian (RISC-V)
● s0 = 0x00000067

Loading and Storing Bytes

● RISC-V has byte data transfers:
● Load byte: lb

● Store byte: sb

● For example
● addi x11, x0, 0x3f5

sw x11, 0(x5)

lb x12, 1(x5)

● What is the value in x12?

● Note that 0x3f5 (HEX) =

0011 1111 0101(BIN)

33
3 f 5

0x3f5 = 1013(DEC)

Takeaway Questions

34

● What is the value of RISC-V Register 1 (x1 = x0 + x0)?
● (A) 1

● (B) 0

● (C) 2

● What are advantages of the RISC instructions?
● (A) Reducing the complexity of the processor

● (B) Decreasing the number of executed instructions

● (C) Simplify the compiler design

Takeaway Questions

35

● What is the value in x12?
● (A) 0x8

● (B) 0xf8

● (C) 0xfffffff8

addi x11, x0, 0x8f5

sw x11, 0(x5)

lb x12, 1(x5)

Takeaway Questions

36

● What is the value in x12?
● (A) 0x8

● (B) 0xf8

● (C) 0xfffffff8

addi x11, x0, 0x8f5

sw x11, 0(x5)

lb x12. 1(x5)

0x8f5 <=> 1000 1111 0101 (2’ complement) <=> -779(DEC)

1000 1111 0101 (2’complement) -> -779

1000 1111 0100 (1’ complement)

0111 0000 1011 (unsigned 779)

Sign

Takeaway Questions

37

● What is the value in x12?
● (A) 0x8

● (B) 0xf8

● (C) 0xfffffff8

addi x11, x0, 0x8f5

sw x11, 0(x5)

lb x12. 1(x5)

0x8f5 <=> 1000 1111 0101 (2’ complement) <=> -779(DEC)

1111 1111 1111 1111 1111 1000 1111 0101 (Signed extend

0x8f5 to 32-bits) => 0xfffff8f5

Sign

Takeaway Questions

38

● What is the value in x12?
● (A) 0x8

● (B) 0xf8

● (C) 0xfffffff8

addi x11, x0, 0x8f5

sw x11, 0(x5)

lb x12. 1(x5)

• addi x11, x0, 0x8f5

• The immediate got sign extended, x11 is 0xfffff8f5 because

x11 is signed 32-bit register

• sw x11, 0(x5)

• the value of x11 is copied to x5 = 0xfffff8f5

Takeaway Questions

39

● What is the value in x12?
● (A) 0x8

● (B) 0xf8

● (C) 0xfffffff8

addi x11, x0, 0x8f5

sw x11, 0(x5)

lb x12, 1(x5)

• lb x12, 1(x5)

• Load byte sign extend to the register

• 0(x5) = 0xf5

• 1(x5) = 0xfffffff8

Programming

40

• High-level constructs
• Loops, conditional statements

• First, introduce:
• Logical operations

• Shifty instructions

• Generating constants

• Multiplication

Logical Instructions

41

• and, or, xor
• and: useful for masking bits

• Masking all but the least significant byte of a value:
0xF234012F AND 0x000000FF = 0x0000002F

• or: useful for combining bit fields

• Combine 0xF2340000 with 0x000012BC
0xF2340000 OR 0x000012BC = 0xF23412BC

• xor: useful for inventing bits:

• A xor -1 = NOT A (remember that -1 = 0xFFFFFFFF)

Logical Instructions Example

42

Logical Instructions Example

43

1484 =

010111001100

-1484 =

1’s complement

101000110011

2’s complement

101000110100

Shift Instructions

44

• Logical shift
• Correspond to (left-shift)

multiplication by 2, (right-shift)
integer division by 2.

• sll: shift left logical
• Example: sll t0, t1, t2 # t0 = t1 << t2

• srl: shift right logical
• Example: srl t0, t1, t2 # t0 = t1 >> t2

and a0, a2, a6 # a0:= a2 & a6

slli a1, s3, 2 # a1:= a3 << 2

sub a4, a5, a6 # a4:= a5 – a6

Shift Instructions

45

• Arithmetic shift
• The sign is the leftmost bit, then arithmetic shift preserves the

sign (this is called sign extension).

• sra: shift right arithmetic
• Example: sra t0, t1, t2 # t0 = t1 >>> t2

Immediate Shift Instructions

46

• Shift amount is an immediate between 0 to 31

• slli: shift left logical immediate
• Example: slli t0, t1, 23 # t0 = t1 << 23

• srli: shift right logical immediate
• Example: srli t0, t1, 18 # t0 = t1 >> 18

• srai: shift right arithmetic immediate
• Example: srai t0, t1, 5 # t0 = t1 >>> 5

Generating Constants

47

• 12-bit signed constants using addi:

• Any immediate that needs more than 12 bits cannot use this
method

Generating 32-bit Constants

48

• Use load upper immediate (lui) and addi:
• lui: puts an immediate in the upper 20 bits of destination

register, 0’s in lower 12 bits

• Remember that addi sign-extends its 12-bit immediate

Generating 32-bit Constants

49

• If bit 11 of 32-bit constant is 1, increment upper 20 bits
by 1 in lui
• if the MSB of the 12-bit constant (i.e. bit 11) is a 1, the constant

is then sign extended.

-341 = 0xEAB =

1110 1010 1011

bit 11 of 32-bit

0xFFFFF = -1

Signed extension

RISC-V: Pseudo-instruction

50

• Load immediate 32-bit word is tedious

• Pseudo-instruction
• Assembler program translate “Load immediate” instruction “li” to

two real RISC-V instructions: “lui” and “addi’

RISC-V: Pseudo-instruction

51

• There is no instruction to load a register with a constant
value
• To load s0 with the small constant 6, we use the instruction

• addi s0, zero, 6

• To load s0 with a large constant 0xFEDC8EAB

• lui s0, 0xFEDC9

• addi s0, s0, 0xEAB

• To load a register with a constant of any size constant (up to 32
bits)

• li s0, 6

• li s0, 0xFEDC9

RISC-V: Addressing Modes

52

• How do we address the operands?
• Register only

• Immediate

• Base addressing

• PC-relative

RISC-V: Base + Offset Addressing

53

• Base Addressing
• Loads and Stores

• Base address + immediate

• lw s4, 72(zero) # address = 0 + 72

• sw t2, -25(t1) #address = t1 - 25

• In C++, we call this a pointer – it points to the place where the
operand is stored

• An offset value must be a 12-bit 2’s complement immediate
constant

RISC-V: PC-relative Addressing

54

• PC-Relative Addressing: branch and jal

• The operand is derived from the Program Counter (PC) value by
adding a 13-bit 2’s complement offset

• The label is (0xEB0-0x354) = 0xB5C (2908) instructions before bne

• This type of addressing is ONLY used by the branch and jump
instructions

Multiplication

55

• 32 x 32 multiplication, 64-bit result

• mul s0, s1, s2
• s0 = lower 32 bits of result

• mulh s0, s1, s2
• s0 = upper 32 bits of result, treats operands as signed

• mulhu s0, s1, s2
• s0 = upper 32 bits of result, treats operand as unsigned

• mulhsu s0, s1, s2
• s0 = upper 32 bits of result, treats s1 as signed, s2 as unsigned

Division

56

• 32 x 32 division, 32-bit quotient, remainder
• div s1, s2, s3 # s1 = s2/s3

• divu s1, s2, s3 # unsigned division

Control-flow Instructions

57

• if statements

• if/else statements

• while loops

• for loops

Branching

58

• Conditional branches
• branch if equal (beq)

• branch if not equal (bne)

• branch if less than (blt/bltu)

• branch if greater than or equal to (bge/bgeu)

• Unconditional branches
• jump (j)

• jump register (jr)

• jump and link (jal)

• jump and link register (jalr)

Conditional Branching (beq)

59

● Label indicates instruction location. They can’t be reserved words
and must be followed by colon (:)

The Branch Not Taken (bne)

60

Other Conditional Branches

61

• Branch if less than (blt/bltu)

• Branch if great than (bge/bgeu)

Unconditional Branching (j)

62

If Statement

63

If/Else Statement

64

While loops

65

For loops

66

• for (initialization; condition; loop operation)
• Statement

• Initialization: executes before the loop begins

• Condition: is tested at the beginning of each iteration

• Loop operation: Executes at the end of each iteration

• Statement: executes each time the condition is met

For loops

67

Less Than Comparison

68

Arrays

69

• Access large amounts of similar data

• Index: access each element

• Size: number of elements

Arrays

70

• 5-element array
• Base address = 0x12348000 (address of first element, array[0])

• First step in access an array: load base address into a register

Accessing Arrays

71

Accessing Using For Loops

72

Accessing Using For Loops

73

ori:

Description:

Performs bitwise

OR on register rs1

and the sign-

extended 12-bit

immediate and

place the result in rd

Implementation:

x[rd] = x[rs1] |

sext(immediate)

Unconditional Branching (j)

74

● j (jump)

○ Perform an unconditional jump to a specified memory address.

○ Used for implementing loops, conditional statements

Unconditional Branching (jal)

75

● jal (jump and link)

○ performs an unconditional jump like "j," but it additionally stores

the return address in a register

○ commonly used for implementing procedure calls and function

returns

allows a subroutine to jump to a target address and then return

back to the original caller by using the stored return address.

Unconditional Branching (jr)

76

• jr (jump register)
• Used to perform an unconditional jump to an address specified

in a register

• used for implementing function returns when the return address
is stored in a register.

Unconditional Branching (jalr)

77

● jalr (jump and link register)

○ combines the functionalities of "jal" and "jr.“

○ performs an unconditional jump to an address specified in a

register and stores the return address in another register.

○ used for function returns when the return address is stored in a

register

Inequalities in RISC-V

● General programs need to test “<” and “>” as well

● Create a RISC-V Inequality instruction
● Set on Less Than

● Syntax: slt reg1, reg2, reg3

● Meaning: reg1 = (reg2 < reg3)

78

Inequalities in RISC-V

● For example
● if (g < h) goto Less; #g:$s0, h:$s1

● RISC-V code

● Branch if $t0 != 0 -> (g < h)

● Register $0/$x0 always contains the value 0, so “bne” and “beq”

often use it for comparison after an “slt” instruction

● A slt -> bne pair means if (… < …) goto… 79

RISC-V Assembly Code Example

80

● Search for the max value on an array

RISC-V Assembly Code Example

81

Takeaway Questions

82

What is ???

Takeaway Questions

83

● What C code properly fills in the following blank?
● (A) j >= 2 && j < i

● (B) j < 2 || j < i

● (C) j < 2 && j >=i

Takeaway Questions

84

● What C code properly fills in the following blank?
● (A) j >= 2 && j < i

● (B) j < 2 || j < i

● (C) j < 2 && j >=i

Takeaway Questions

● Final compiled RISC-V assembly code:

● What is Original C codes of above assembly codes?

85

Takeaway Questions

● Final compiled RISC-V assembly code:

● What is Original C codes of above assembly codes?

86

Conclusion

● Introduction

○ Instruction Set Architecture (ISA)

● RISC-V Assembly Language

○ Instructions

○ Register Set

○ Memory

○ Programming constructs

87

