
Lecture 2: Hardware

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao University

CS10014 Computer Organization



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● CS 61C at UC Berkeley 

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● EEC 170 at University of UC Davis

● https://www.ece.ucdavis.edu/~soheil/private/EEC170/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://www.ece.ucdavis.edu/~soheil/private/EEC170/eec170-5-2.pdf


Outline

● Binary Arithmetic

● Adder

● Subtraction

● Multiplier

● Division

3



Central Processing Unit (CPU)

4

● Inside a CPU
● Datapath: performs computation 

● Includes registers, ALUs …

● Control: determines which computation is 

performed

● Routes data through datapath

● Fetch: get insn, translate opcode

into control

● Fetch->Decode->Execute “cycle”



Arithmetic Logic Unit (ALU)

5

● The ALU is used to compute the result of R-type 

instructions (ADD, SUB, ADDI, AND, OR)

When S = 00, R = A + B

When S = 01, R = A – B

When S = 10, R = A & B

When S = 11, R = A | B



Arithmetic Logic Unit (ALU)

6

● The ALU is used to compute 

the result of R-type instructions 

(ADD, SUB, ADDI, AND, OR)
● A 32-bit bitwise AND unit

● A 32-bit bitwise OR unit

● A 32-bit ADD/SUBTRACT unit

with a control line

● The logic to output carry

● Overflow

● Zero

● Negative



Binary Arithmetic

7

● Computers represent integers in binary (base2)
● 3 = 112, 4 = 1002, 5 = 1012, 30 = 111102

● Addition take place as usual (carry the 1, etc.)



Binary Arithmetic

8

● In hardware, integers have fixed width
● N bits: 16, 32, or 64

● LSB is 20, MSB is 2N-1

● Range: 0 to 2N-1



Binary Arithmetic

9

● What about negative integers in binary numbers
● Unsigned plus one bit for sign

● 10 = 000001010, -10 = 100001010

● Range: -(2N-1-1) to 2N-1-1

● Option II: two’s complement (2C)

● Leading 0s mean positive number, leading 1s negative

● 10 = 00001010, -10 = 11110110

● + One representation for 0 (all zeros)

● + Easy addition

● Range: -(2N-1) to 2N-1-1



Binary Arithmetic

● Sign Magnitude Representation
● The Most Significant bit of the number if a sign bit

● The remaining bit represents the magnitude of the number in a 

binary form

● Example: 8-bit sign-magnitude form

10

0 0  1  0  0  0  1  0
MSB Magnitude

+34 = 0 0  1  0  0  0  1  0

-34 = 1 0  1  0  0  0  1  0



Binary Arithmetic

● 1’s Complement Representation
● The representation of the negative number is different from the 

positive number representation

● Example: The represent -34 in 1’s complement form

11

+34 = 0 0  1  0  0  0  1  0

-34 = 1 1  0  1  1  1  0  1

Invert all 1s in 

that number by 

0s and 0s by 1s



Binary Arithmetic

● 2’s Complement Representation
● The representation of the positive number as the 1’s 

complement form

● Translate negative number from 1’s complement to 2’s 

complement form
● Write the number corresponding to +34

● Find 1’s complement of +34

● Add 1 to the 1’s complement number

12



Binary Arithmetic

● 2’s Complement Representation
● Translate negative number from 1’s complement to 2’s 

complement form

● Write the number corresponding to +34

● Find 1’s complement of +34

● Add 1 to the 1’s complement number

13



Takeaway Questions

● What is the 2C representation in the following numbers?
● -1

● 1

● 0

14



Takeaway Questions

● Still more on 2C
● Trick to negating a number quickly: -B = B’ + 1

● -(1) = (0001)’ + 1 = 1110 + 1 = 1111 = -1

● -(-1) = (1111)’ + 1 = 0000 + 1 = 0001 = 1

● -(0) = (0000)’ + 1 = 1111 + 1 = 0000 = 0

15



Understanding of overflow

16

1   0   1   1       7(DEC)

+  0   1   1   1      11(DEC)

1  0  0   1   0      19(DEC)

Overflow -> 19 is out of the range 

of the 4-bit value representation 

(0-15)

● Carry indicates overflow



Overflow in Signed numbers (2C)

17

-23 22 21 20
The range of 4-bits signed number

-2n-1 <-> (2n-1 - 1) ==> -8 <-> 7

1   0   0   1       -7(DEC)

+  1   1   0   1       -3(DEC)

1  0  1   1   0      -10(DEC)

Overflow !

Sign



Overflow in Signed numbers (2C)

18

-23 22 21 20
The range of 4-bits signed number

-2n-1 <-> (2n-1 - 1) ==> -8 <-> 7

0   1   1   1        7(DEC)

+  0   0   0   1        1(DEC)

1   0   0   0        -8(DEC)

Overflow !

Sign



Overflow in Signed numbers (2C)

19

-23 22 21 20
The range of 4-bits signed number

-2n-1 <-> (2n-1 - 1) ==> -8 <-> 7

0   1   1   1        7(DEC)

+  0   0   0   1        1(DEC)

1   0   0   0        -8(DEC)

Overflow ! How to fix this problem?



Overflow in Signed numbers (2C)

20

-24 23 22 21 20 The range of 5-bits signed number

-2n-1 <-> (2n-1 - 1) ==> -16 <-> 15

0   0   1   1   1        7(DEC)

+ 0   0   0   0   1        1(DEC)

0   1   0   0   0        8(DEC)

Extend 4-bit value to 5 bits to hold 

the correct result

Sign



What is sign extension?

● Sign-extension
● Copying the sign bit of the un-extended value to all bits on the 

left side of the larger-size value

● SEXT instruction widens the data while maintaining its sign and 

value.

● e.g. widen the data while maintaining its sign and value

● Unsigned number, converts positive values, provided the sign bit 

is zero

21

01001000 <- 8-bit value of 72 

00000000 01001000 <- extended to 16-bit value 

00000000 00000000 00000000 01001000 <- extended 32-bit value 



What is sign extension?

● 8-bit encoding of decimal signed number -56 can be 

sign-extended as follows:

22

00111000 <- 8-bit value of 56

11000111 <- 8-bit value of -56 (1’s complement)

11001000 <- 8-bit value of -56 (2’s complement)

11111111 11001000 <- extended to 16-bit value 

11111111 11111111 11111111 11001000 <- extended 32-bit value

Sign



Binary Addition

● Repeat N times
● Add least significant bits and any overflow from previous add

● Carry the overflow to next addition

● Shift two addends and sum one bit to the right

● Sum of two N-bit numbers can yield an N+1 bit number
● - More steps (smaller base)

● + Each one is simple (adding just 1 and 0)

● So simple, then we can do it in hardware

23



The Half Adder

● How to add two binary integers in hardware?

● Start with adding two bits
● S = A^B

● CO (Carry out) = AB

● This is called a half adder

24



The Full Adder

● The full adder
● S = C’A’B+C’AB’ + CA’B’ + CAB = C^A^B

● CO = C’AB+CA’B+CAB’+CAB = CA + CB + AB

25



Ripple-Carry Adder (RCA)

● N-bit ripple-carry adder (RCA)
● N 1-bit full adders (FA) “chained” together

● As the carry ci needs to be passed on through all lower bits to 

compute the sums for the higher bits

26

FA FA FA FA



Ripple-Carry Adder (RCA)

● Gate delay of FA

● Ci+1 = xiyi + xici+yici (2 gate delays)

● Si = x’iy’ici +x’iyic’i+xiy’ic’i+xiyici (3 gate delays)
27



Ripple-Carry Adder (RCA)

● Gate delay of RCA

● The total gate delays of n-bit sum of RCA is 2(n-1)+3
● When n = 64, there will be 129 gate delays
● When n = 16, there will be 33 gate delays

28



Carry-Select Adder (CSA)

● Consists of RCAs and a multiplexer
● Compute the (n + 1)-bit sum of two n-bit numbers

● Simple but fast, having a gate level depth of O(sqrt(n))

29



Carry-Select Adder (CSA)

● Multi-Segment CSA
● Example: 5, 5, 6 bit = 16 bit

● Hardware cost

● Compute each segment

with 0 and 1 carry-in

● Serial mux chain

● Delay

● 5-bit adder (10) +

Two muxes (4) = 14

30



Carry-Select Adder (CSA)

● What is CSA delay (two segment)?
● d(CO15) = MAX (d(CO15-8), d(CO7-0)) + 2

● d(CO15) = MAX(2*8, 2*8) + 2 = 18

● In general: 2*(N/2) + 2 = N + 2 (vs about 2N for RCA)

● What if we cut adder into 4 equal pieces?
● d(CO15) = MAX(d(CO15-12), d(CO11-0)) + 2

● d(CO15) = MAX(2*4, MAX(d(CO11-8),d(CO7-0)) + 2) + 2

● d(CO15) = MAX(2*4, MAX(2*4, MAX(d(CO7-4), d(CO3-0))+2)+2)+2

● d(CO15) = MAX(2*4, MAX(2*4, MAX(2*4, 2*4)+2)+2)+2

● d(CO15) = 2*4 + 3*2 = 14

● N-bit adder in M equal pieces: 2*(N/M) + (M-1)*2
31



Takeaway Questions

● What is the delay of a 16-bit CSA adder with 8 parts?
● (A) 16

● (B) 18

● (C) 20

● (D) 32

32



Carry Lookahead Adder (CLA)

● Let’s look at the single-bit carry-out function
● CO = AB+AC+BC = (AB)+(A+B)C

● (AB): Generates carry-out regardless of incoming C -> rename to G
● Generate function: gi = xi ● yi

● If gi = 1, the ith bit generate a carry, ci = 1

● (A+B): Propagates incoming C -> rename to P
● Propagate function: pi = xi + yi

● pi is true when Ai or Bi is 1 => pi = Ai + Bi

● COi+1 = Gi+PiCi

33



Carry Lookahead Adder (CLA)

● The CLA requires
● AND and OR gates with many

inputs as n + 1 (for Cn)

○ Both gi and pi can be

generated for

all n-bits in constant time

(1 gate delay)

34



Carry Lookahead Adder (CLA)

● Infinite Hardware CLA
● Can expand C1…N in terms of G’s, P’s, and C0
● Example C16

● C16 = G15+P15C15

● C16 = G15+P15(G14+P14C14)
● C16 = G15+P15G14+…+P15P14…P2P1G0 + P15P14…P2P1P0C0

● A CLA
● Generates ci has logic in two gate delay after gi and pi are 

available
● Generates Si has logic in three gate delay after gi and pi are 

available
● Example: the total gate delay of a 4-bit CLA is 6 (= 1 + 2 + 3)

35



Carry Lookahead Adder (CLA)

● Is there a compromise?
● Reasonable number of small gates?

● Sublinear (doesn’t have to be constant) latency?

● Multi-level CLA exploits hierarchy to achieve this

● Example, we pack n = 4 bits as a block with carry lookahead

● Still use ripple carry between the blocks (C4, C8, C12, C16)

36



Carry Lookahead Adder (CLA)

● Multi-level CLA
● There are n/4 blocks in an n-bit adder, the total gate delays is

● Example: When n = 64, the number of gate delays is 36

37



Carry Lookahead Adder (CLA)

● Two-Level CLA
● The second-level generate and propagate functions

● Pi = P4i+3P4i+2P4i+1P4i

● If all four bits in a block propagate, the block propagates a carry

● Gi= g4i+3 + p4i+3g4i+2+p4i+3p4i+2g4i+1+p4i+3p4i+2p4i+1g4i

● If at least one of the four bits generates carry and it can be 

propagated to the MSB, the block generates a carry

38



Carry Lookahead Adder (CLA)

● Two-Level CLA
● The second-level generate and propagate functions

● C4 can be generated in constant time (independent of n)

● C4 = (g3+p3g2+p3p2g1+p3p2p1g0)+(p3p2p1p0)C0 = G0+P0C0

● C8 = G1 + P1C4, C12 = G2 + P2C8, C16 = P3C12

● Combine four blocks of 4-bit CLA as a super block

● We get a 16-bit adder with two levels of carry-lookahead logic

39



Carry Lookahead Adder (CLA)

● Two-Level CLA
● There are n/16 super blocks in a n-bit adder

● The total gate delays can be found as

● When n = 64, the number of gate delays is 14
40



Carry Lookahead Adder (CLA)

● The third level of CLA
● With the carries C16, C32, C48, C64 generated simultaneously by the 

third-level carry-look ahead logic

● When n = 64, the number of gate delays is 10
41



Subtraction

● Sign/magnitude subtraction is reverse addition
● 2C subtraction is addition

● How to subtract using an adder?
● sub A  B = add A   -B

● Negate B before adding (fast negation trick: -B = B’ + 1)

42



Shift and Rotation
● Left/right shifts are useful

● Fast multiplication/division by small constants

● Bit manipulation: extracting and setting individual bits in words

● Right shifts
● Can be logical (shift in 0s) or arithmetic (shift in copies of MSB)

● srl 110011, 2 = 001100

● sra 110011, 2 = 111100

● Caveat: for negative numbers, sra is not equal to division by 2

43



A Simple Shifter

● The simplest 16-bit shifter: can only shift left by 1
● Implement using wires (no logics)

● Logical shift operators <<    >>
● Performs zero-extension for >>

● wire [15:0] a = b << c[3:0];

● Arithmetic shift operator >>>
● Performs sign-extension

● Require a signed wire input

● wire signed [15:0] b;

● wire [15:0] a = b >>> c[3:0];

44



Multiplication

● How humans multiply
● We first generate all partial product terms

45

1010

x   1101

=========

1010

<- Multiplicand

<- Multiplier

<- Partial Product

1010

x   1101

=========

1010

0000 <- Partial Product



Multiplication

● How humans multiply
● We first generate all partial product terms

46

1010

x   1101

=========

1010

0000

1010

<- Multiplicand

<- Multiplier

<- Partial Product

1010

x   1101

=========

1010

0000

1010

1010 <- Partial Product



Multiplication

● Then add column by column, right to left

47

1010

x   1101

=========

1010

0000

1010

1010

==========

10<- Product

1010

x   1101

=========

1010

0000

1010

1010

==========

0 <- Product



Multiplication

● Sometimes with one or more carry digits

48

1010

x   1101

=========

1010

0000

1010

1010

==========

10000010<- Product

1010

x   1101

=========

1010

0000

1010

1010

==========

0010 <- Product

1Carry-> 1111



Multiplication

● Human method not best for computers
● Each partial product must be stored -> extra hardware

● Columns vary in size -> complexity

● Multiple-digit carries -> complexity

● Need a simpler method for low-cost multipliers

49



Multiplication

● Shift & Add Multiply

50

1010

x   1101

=========

00000000

00001010

<- Multiplicand

<- Multiplier

<- Old Product

<- New Product

1010

x   1101

=========

00001010

00001010

<- Multiplicand

<- Multiplier

<- Old Product

<- New Product

Left shift multiplicand



Multiplication

● Shift & Add Multiply

51

1010

x   1101

=========

00001010

00110010

<- Multiplicand

<- Multiplier

<- Old Product

<- New Product

1010

x   1101

=========

00110010

10000010

<- Multiplicand

<- Multiplier

<- Old Product

<- New Product

Left shift multiplicandLeft shift multiplicand



Multiplication

● Shift & Add Multiply
● Computer multiply also shifts multiplier right so current multiplier 

bit is at a fixed position, the least significant bit (LSB)

52



Multiplication

● Shift & Add Multiply

53

1010

x   1101

=========

00000000

00001010

<- Multiplicand

<- Multiplier

<- Old Product

<- New Product

1010

x   110

=========

00001010

00001010

<- Multiplicand

<- Multiplier

<- Old Product

<- New Product



Multiplication

● Shift & Add Multiply

54

1010

x   11

=========

00001010

00110010

<- Multiplicand

<- Multiplier

<- Old Product

<- New Product

1010

x   1

=========

00110010

10000010

<- Multiplicand

<- Multiplier

<- Old Product

<- New Product



Multiplication

● Shift & Add Multiply
● Shift & Add Multiply in C programming

55

int product = 0;

for (int i = 0; I < 32; i++)

if ((multiplier >> i % 2) == 1)

product = product + multiplicand << i;



Multiplication

● Simple Shift & Add Multiply Hardware
● Multiplier LSB is write enable for product latch

56

Multiplier

0001010 1101

8-bit ALU

00000000

Multiplicand

Product

WE

00010100 0110

8-bit ALU

00001010

Multiplicand Multiplier

Product

WE



Multiplication

● Simple Shift & Add Multiply Hardware
● Multiplier LSB is write enable for product latch

57

00101000 0011

8-bit ALU

00001010

Multiplicand Multiplier

Product

WE

01010000 0001

8-bit ALU

00110010

Multiplicand Multiplier

Product

WE



Multiplication

● Simple Shift & Add Multiply Hardware
● Multiplier LSB is write enable for product latch

58

10100000 0000

8-bit ALU

10000010

Multiplicand Multiplier

Product

WE



Multiplication

● This simple shift & add hardware
● Only N significant bits are being summed each cycle, but we are 

using a 2N-bit adder, a waste

● Each cycle, one new bit of the product is resolved, while one old 

bit of the multiplier is discarded

● Simple multiply shifts Multiplicand left and keep product stationary

59



Multiplication

● Refined shift & add hardware
● ALU input is accept/not accept based on WE

● When WE = 0, shift but no ALU input

60

1010

4-bit ALU

00001101

Multiplicand

Product/

Multiplier

WE

5

1010

4-bit ALU

01010110

Multiplicand

Product/

Multiplier

WE

5



Multiplication

● Refined shift & add hardware
● ALU input is accept/not accept based on WE

61

1010

4-bit ALU

00101011

Multiplicand

Product/

Multiplier

WE

5

1010

4-bit ALU

01100101

Multiplicand

Product/

Multiplier

WE

5



Multiplication

● Refined shift & add hardware
● Final Result: 10 x 13 = 130

62

1010

4-bit ALU

10000010

Multiplicand

Product

WE

5



Signed Multiplication

● Shift & Add Multiply only works for positive numbers

● To include negative numbers must:
● Save XOR of sign bits to get product sign bit

● Convert multiplier/multiplicand to positive

● Do shift and add algorithm

● Negate result if product sign bit is 1

63



Signed Multiplication

● Booth’s algorithm
● Handle positive/negative number uniformly

● E.g. 011102 (1410) = 100002 (1610) – 000102 (210)

= 100002          – 000102

● Convert string of 1s into leading +1 and a trialing -1

64



Signed Multiplication

● Booth’s algorithm
● Identify leading +1s and trailing -1s in multiplier bit position I by 

looking at multiplier bit i and bit i-1

● Example

● 110 = 00010 => 1

● 110 = 00010 => 11

● 110 = 00010 => 011

● 110 = 00010 => 0011

● 110 = 2 – 1 = 1

65

i i-1

-1 for 1 0

+1 for 0 1

0 for 0 0

0 for 1 1



Signed Multiplication

● Booth’s algorithm
● Identify leading +1s and trailing -1s in multiplier bit position I by 

looking at multiplier bit i and bit i-1

● Example

● -110 = 11110 => 1

● -110 = 11110 => 01

● -110 = 11110 => 001

● -110 = 11110 => 0001

● -110 = -1

66

i i-1

-1 for 1 0

+1 for 0 1

0 for 0 0

0 for 1 1



Signed Multiplication

● Booth’s algorithm
● Identify leading +1s and trailing -1s in multiplier bit position I by 

looking at multiplier bit i and bit i-1

● Example

● -610 = 10100 => 0

● -610 = 10100 => 10

● -610 = 10100 => 110

● -610 = 10100 => 1110

● -610 = -8+4-2 = -6

67

i i-1

-1 for 1 0

+1 for 0 1

0 for 0 0

0 for 1 1



Booth’s Algorithm Hardware

● Use ALU to ADD or SUB based on the trailing -1s, leading 

1s from the Multiplier

68

1010

4-bit ALU

00001101

Multiplicand

Product/

Multiplier

WE

5

0

1010

4-bit ALU

00110110

Multiplicand

Product/

Multiplier

WE

5

1



Booth’s Algorithm Hardware

● Use ALU to ADD or SUB based on the trailing -1s, leading 

1s from the Multiplier

69

1010

4-bit ALU

11101011

Multiplicand

Product/

Multiplier

WE

5

0

1010

4-bit ALU

00100101

Multiplicand

Product/

Multiplier

WE

5

1



Booth’s Algorithm Hardware

● Final Result: -6 x -3 = 18

70

1010

4-bit ALU

00010010

Multiplicand

Product/

Multiplier

WE

5

1



Wallace Tree Multiplier

71

• Partial products produced 

sequentially (slow)

1010

x   1101

=========

1010

0000

1010

1010 Partial Products

• Partial products produced 

using array of AND gates (fast)

Partial Products

Multiplicand

Multiplier
Multiplier Multiplicand

1 1 0 1 1  0   1  0



Wallace Tree Multiplier

● Wallace Tree Reducers
● Full adder cells used to reduce column segment of height 3 to row 

of width 2

● Sum and carry out

● Half adders used selectively for height-3 column that does not 

need full reduction

72

Full Adder Half Adder



Wallace Tree Multiplier

● Wallace Tree: 4 x 4 example

73

Stage 1



Wallace Tree Multiplier

● Wallace Tree: 4 x 4 example

74

Stage 1

Stage 2



Wallace Tree Multiplier

● Wallace Tree: 4 x 4 example

75

Stage 1

Stage 2

6-bit adder



Wallace Tree Multiplier

76

Stage 1

Stage 2

6-bit adder

Result



Wallace Tree Multiplier

● Wallace tree fast multiply
● column height is reduced by about 2/3 during each level

● For NxN multiply, an estimate for number of levels

● 2 levels for N = 4

● 4 levels for N = 8

● 7 levels for N = 32

77

N x (2/3)x = 2, (2/3)x = 2/N, xlog2(2/3) = log2(2/N),

x = log2(2/N) / log2(2/3), x = (log(2) – log(N)) / -0.6, 

x = -1.7 x (1 – log2(N))



Division

● Consider a long division example

78

700678910123410

000567810

7006

-6170
8367

-7404

…

13710

Divisor
Quotient

Dividend

Partial Remainder

Remainder



Division

● Human Division
● 1. Bring down next digit to partial remainder

● 2. Compare divisor and partial remainder

● If partial remainder < divisor: put 0 digit in quotient, goto 1

● 3. Estimate Quotient digit

● 4. Multiply divisor by estimated digit

● 5. Subtract from partial remainder

● IF result is negative, erase work, decrement estimated digit, 

goto 4

● IF result > divisor, erase work, increment estimated digit, goto 4

● ELSE put estimated digit in quotient, goto 1
79



Division

● Simple hardware divider
● Use ALU to subtract/add shift divisor from remainder

● Conditionally add to ‘erase’ work after subtract

80

00100000 0000

8-bit ALU

00000111

Divisor Quotient

Control

Test

Remainder
Write

ADD/SUB

Shift right

Shift left



Division

● Simple division algorithm

81

Start

1. Subtract divisor register from remainder 

register, place result in remainder register

Test 

Remainder
Remainder < 0Remainder >= 0



Division

● Simple division algorithm

82

2a. Shift quotient register to 

left, set new rightmost bit to 1

2a. Restore original value by 

adding divisor register to remainder 

register, place sum in remainder 

register. Shift quotient register to 

left, set new rightmost bit to 0

3. Shift divisor register right 1 

bit



Division

● Simple division algorithm

83

3. Shift divisor register right 1 

bit

32nd

iteration?

No: < 32 iterations

Done



Division

● Improved hardware divider
● Divider, ALU are reduced in half

● Remainder shifts left, divider fixed

● Remainder/Quotient share register

84

0010

4-bit ALU

00000111

Divisor

Control

TestRemainder/Quotient

Write

ADD/SUB

Shift



Division

● Signed division
● Sign of quotient is XOR of signs of dividend and divisor

● Sign of remainder matches sign of dividend

● 122 / 3 = 40 remainder 2

● -122 / -3 = 40 remainder -2

● -122 / 3 = -40 remainder -2

● 122 / -3 = -40 remainder 2

85



Division

● Fast division
● So far all ALU operations can be done in log2N time units

● Carry Look-Ahead Adder: 1 clock cycle

● Wallace Tree Multiplier: 2 clock cycles

● Barrel Shifter: 1 clock cycle

● Best division algorithms take N time units (slow)

● Resolve 4 bits per iteration rather than 1, and iterations are 

complex

86


