

Lecture 2: Hardware

CS10014 Computer Organization

Tsung Tai Yeh Department of Computer Science National Yang Ming Chiao University

Acknowledgements and Disclaimer

- Slides were developed in the reference with
 - CS 61C at UC Berkeley
 - https://inst.eecs.berkeley.edu/~cs61c/sp23/
 - CS 252 at UC Berkeley
 - <u>https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/</u>
 - EEC 170 at University of UC Davis
 - https://www.ece.ucdavis.edu/~soheil/private/EEC170/

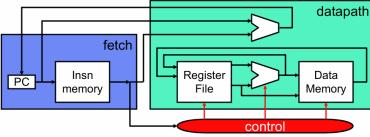
Outline

- Binary Arithmetic
- Adder
- Subtraction
- Multiplier
- Division

Central Processing Unit (CPU)

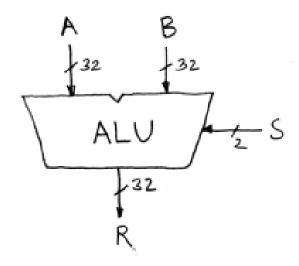
- Inside a CPU
 - Datapath: performs computation
 - Includes registers, ALUs ...
 - Control: determines which computation is performed
 - Routes data through datapath
 - Fetch: get insn, translate opcode into control
 - Fetch->Decode->Execute "cycle"

App Sys	te	App em soft	w	App are
Mem		CPU		I/O



Arithmetic Logic Unit (ALU)

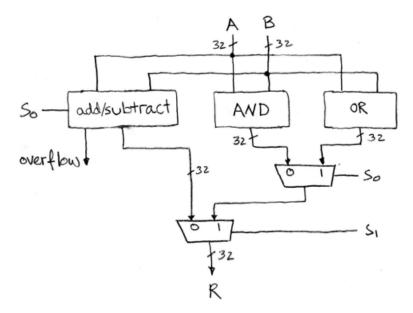
• The ALU is used to compute the result of R-type instructions (ADD, SUB, ADDI, AND, OR)



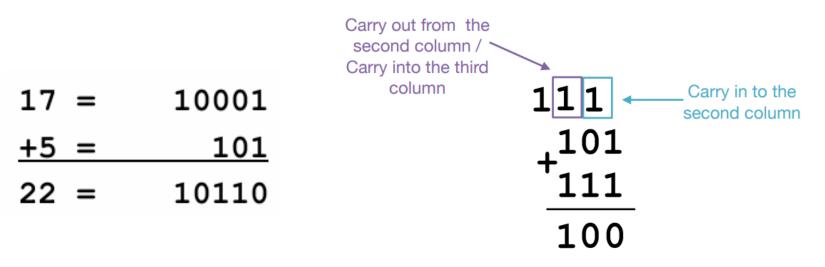
When
$$S = 00$$
, $R = A + B$
When $S = 01$, $R = A - B$
When $S = 10$, $R = A \& B$
When $S = 11$, $R = A | B$

Arithmetic Logic Unit (ALU)

- The ALU is used to compute the result of R-type instructions (ADD, SUB, ADDI, AND, OR)
 - A 32-bit bitwise AND unit
 - A 32-bit bitwise OR unit
 - A 32-bit ADD/SUBTRACT unit with a control line
 - The logic to output carry
 - Overflow
 - Zero
 - Negative



- Computers represent integers in binary (base2)
 3 = 11₂, 4 = 100₂, 5 = 101₂, 30 = 11110₂
- Addition take place as usual (carry the 1, etc.)



- In hardware, integers have fixed width
 - N bits: 16, 32, or 64
 - LSB is 2⁰, MSB is 2^{N-1}
 - Range: 0 to 2^N-1

- What about negative integers in binary numbers
 - Unsigned plus one bit for sign
 - 10 = 000001010, -10 = 100001010
 - Range: -(2^{N-1}-1) to 2^{N-1}-1
 - Option II: two's complement (2C)
 - Leading 0s mean positive number, leading 1s negative
 - 10 = 00001010, -10 = **1111**0110
 - + One representation for 0 (all zeros)
 - + Easy addition
 - Range: -(2^{N-1}) to 2^{N-1}-1

- Sign Magnitude Representation
 - The Most Significant bit of the number if a sign bit
 - The remaining bit represents the magnitude of the number in a binary form

 MSB
 Magnitude

 0
 0
 1
 0
 0
 1
 0

• Example: 8-bit sign-magnitude form +34 = 0 0 1 0 0 0 1 0

 $-34 = 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0$

- 1's Complement Representation
 - The representation of the negative number is different from the positive number representation
 - Example: The represent -34 in 1's complement form

Invert all 1s in that number by 0s and 0s by 1s

- 2's Complement Representation
 - The representation of the positive number as the 1's complement form
- Translate negative number from 1's complement to 2's complement form
 - Write the number corresponding to +34
 - Find 1's complement of +34
 - Add 1 to the 1's complement number

- 2's Complement Representation
 - Translate negative number from 1's complement to 2's complement form
 - Write the number corresponding to +34
 - Find 1's complement of +34
 - Add 1 to the 1's complement number

```
+34 = 0 0 1 0 0 0 1 0
\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
1 1 0 1 1 1 0 1 (1's complement of + 34)
+ 1
-34 = 1 1 0 1 1 1 1 0 (2's complement of + 34)
```


Takeaway Questions

- What is the 2C representation in the following numbers?
 - -1
 - 1
 - 0

Takeaway Questions

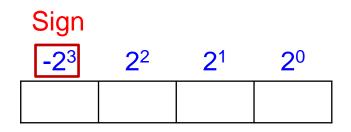
- Still more on 2C
 - Trick to negating a number quickly: -B = B' + 1
 - -(1) = (0001)' + 1 = 1110 + 1 = 1111 = -1
 - -(-1) = (1111)' + 1 = 0000 + 1 = 0001 = 1
 - -(0) = (0000)' + 1 = 1111 + 1 = 0000 = 0

Understanding of overflow

• Carry indicates overflow

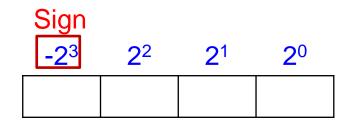
Overflow -> 19 is out of the range of the 4-bit value representation (0-15)

А	В	С	D	Unsigned
0	0	0	ò	0
0	0000	1	ò	2
0000000	0	0000	01010	3 4
0	1	0 1	1	1 2 3 4 5 6
0	1	1	1	7
	00	00	0 1	8 9
1	0	1	0	10
1	1	0	ò	12
	1	0	0	13 14
1	1	1	1	15



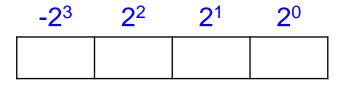
The range of 4-bits signed number $-2^{n-1} <-> (2^{n-1} - 1) ==> -8 <-> 7$

1 0 0 1 -7(DEC) + 1 1 0 1 -3(DEC) 1 0 1 1 0 -10(DEC) Overflow !

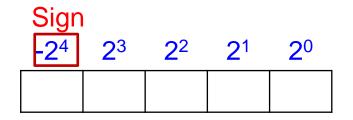


The range of 4-bits signed number $-2^{n-1} <-> (2^{n-1} - 1) ==> -8 <-> 7$

0 1 1 1 7(DEC) + 0 0 0 1 1(DEC) 1 0 0 0 -8(DEC) Overflow !



The range of 4-bits signed number $-2^{n-1} <-> (2^{n-1} - 1) ==> -8 <-> 7$



The range of 5-bits signed number $-2^{n-1} <-> (2^{n-1} - 1) ==> -16 <-> 15$

0 0 1 1 1 7(DEC) +0 0 0 0 1 1(DEC) 0 1 0 0 0 8(DEC)

Extend 4-bit value to 5 bits to hold the correct result

What is sign extension?

- Sign-extension
 - Copying the sign bit of the un-extended value to all bits on the left side of the larger-size value
 - **SEXT** instruction widens the data while maintaining its sign and value.
 - e.g. widen the data while maintaining its sign and value
 - Unsigned number, converts positive values, provided the sign bit is zero

01001000 <- 8-bit value of 72 00000000 01001000 <- extended to 16-bit value 00000000 00000000 0000000 01001000 <- extended 32-bit value

What is sign extension?

• 8-bit encoding of decimal signed number -56 can be sign-extended as follows:

Binary Addition

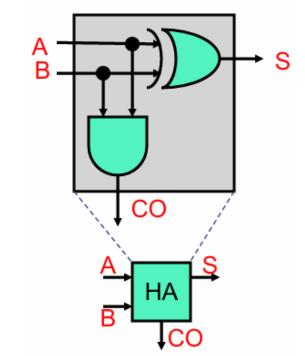
- Repeat N times
 - Add least significant bits and any overflow from previous add
 - Carry the overflow to next addition
 - Shift two addends and sum one bit to the right
- Sum of two N-bit numbers can yield an N+1 bit number
 - More steps (smaller base)
 - + Each one is simple (adding just 1 and 0)
 - So simple, then we can do it in hardware

1		111111
43	=	00101011
+29	=	00011101
72	=	01001000

The Half Adder

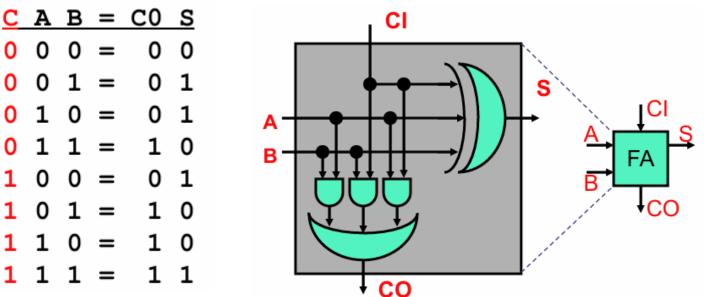
- How to add two binary integers in hardware?
- Start with adding two bits
 - S = A^B
 - CO (Carry out) = AB
 - This is called a half adder

A	в	=	C0	s
0	0	=	0	0
0	1	=	0	1
1	0	=	0	1
1	1	=	1	0



The Full Adder

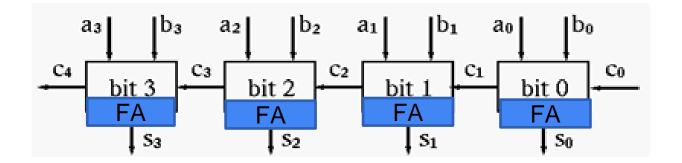
- The full adder
 - $S = C'A'B+C'AB' + CA'B' + CAB = C^AB$
 - CO = C'AB+CA'B+CAB'+CAB = CA + CB + AB



National Yang Ming Chiao Tung University Computer Architecture & System Lab

Ripple-Carry Adder (RCA)

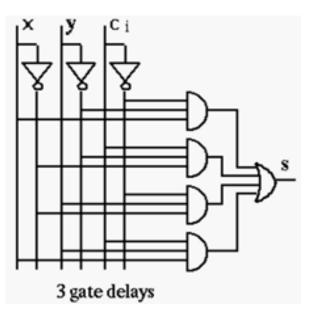
- N-bit ripple-carry adder (RCA)
 - N 1-bit full adders (FA) "chained" together
 - As the carry c_i needs to be passed on through all lower bits to compute the sums for the higher bits



Ripple-Carry Adder (RCA)

• Gate delay of FA

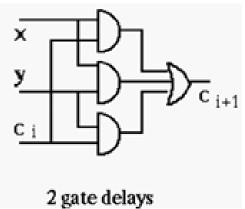


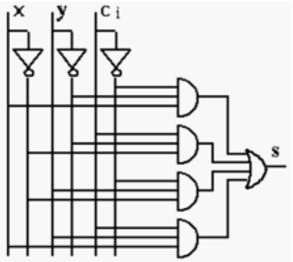


- $C_i+1 = x_iy_i + x_ic_i+y_ic_i$ (2 gate delays)
- $S_i = x'_i y'_i c_i + x'_i y_i c'_i + x_i y'_i c'_i + x_i y_i c_i$ (3 gate delays)

Ripple-Carry Adder (RCA)

• Gate delay of RCA

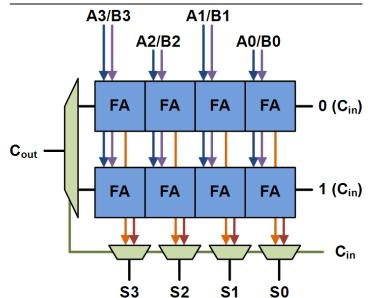




- 3 gate delays
- The total gate delays of n-bit sum of RCA is 2(n-1)+3
 - When n = 64, there will be 129 gate delays
 - When n = 16, there will be 33 gate delays

Carry-Select Adder (CSA)

- Consists of RCAs and a multiplexer
 - Compute the (n + 1)-bit sum of two n-bit numbers
 - Simple but fast, having a gate level depth of O(sqrt(n))

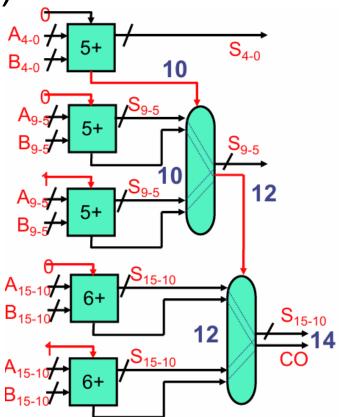


29

National Yang Ming Chiao Tung University Computer Architecture & System Lab

Carry-Select Adder (CSA)

- Multi-Segment CSA
 - Example: 5, 5, 6 bit = 16 bit
 - Hardware cost
 - Compute each segment with 0 and 1 carry-in
 - Serial mux chain
 - Delay
 - 5-bit adder (10) +
 Two muxes (4) = 14



Carry-Select Adder (CSA)

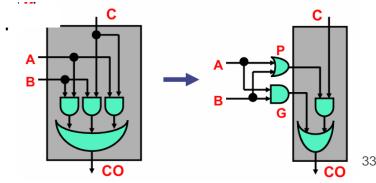
- What is CSA delay (two segment)?
 - $d(CO_{15}) = MAX (d(CO_{15-8}), d(CO_{7-0})) + 2$
 - $d(CO_{15}) = MAX(2*8, 2*8) + 2 = 18$
 - In general: 2*(N/2) + 2 = N + 2 (vs about 2N for RCA)
- What if we cut adder into 4 equal pieces?
 - $d(CO_{15}) = MAX(d(CO_{15-12}), d(CO_{11-0})) + 2$
 - $d(CO_{15}) = MAX(2*4, MAX(d(CO_{11-8}), d(CO_{7-0})) + 2) + 2$
 - $d(CO_{15}) = MAX(2*4, MAX(2*4, MAX(d(CO_{7-4}), d(CO_{3-0}))+2)+2)+2)$
 - d(CO15) = MAX(2*4, MAX(2*4, MAX(2*4, 2*4)+2)+2)+2
 - d(CO15) = 2*4 + 3*2 = 14
- N-bit adder in M equal pieces: 2*(N/M) + (M-1)*2

Takeaway Questions

- What is the delay of a 16-bit CSA adder with 8 parts?
 - (A) 16
 - (B) 18
 - (C) 20
 - (D) 32

Carry Lookahead Adder (CLA)

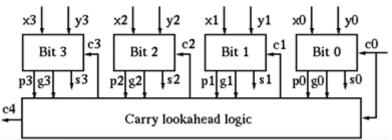
- Let's look at the single-bit carry-out function
 - CO = AB + AC + BC = (AB) + (A+B)C
 - (AB): <u>Generates</u> carry-out regardless of incoming C -> rename to G
 - Generate function: $g_i = x_i \bullet y_i$
 - If g_i = 1, the ith bit generate a carry, ci = 1
 - (A+B): <u>Propagates</u> incoming C -> rename to P
 - Propagate function: $p_i = x_i + y_i$
 - p_i is true when A_i or B_i is $1 \Rightarrow p_i = A_i$.
 - $CO_{i+1} = G_i + P_iC_i$

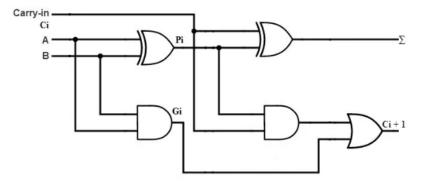


Carry Lookahead Adder (CLA)

- The CLA requires
 - AND and OR gates with many inputs as n + 1 (for C_n)
 - Both gi and pi can be generated for all n-bits in constant time

(1 gate delay)





Condition	C i +1	Ci	В	Α
	0	0	0	0
No carry generate	0	1	0	0
	0	0	1	0
	1	1	1	0
No carry propagate	0	0	0	1
	1	1	0	1
	1	0	1	1
Carry generate	1	1	1	1

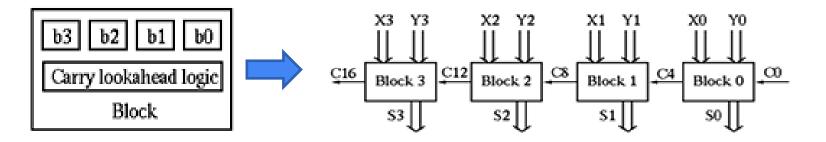
National Yang Ming Chiao Tung University Computer Architecture & System Lab

Carry Lookahead Adder (CLA)

- Infinite Hardware CLA
 - Can expand C1...N in terms of G's, P's, and C0
 - Example C₁₆
 - $C_{16} = G_{15} + P_{15}C_{15}$
 - $C_{16} = G_{15} + P_{15}(G_{14} + P_{14}C_{14})$
 - $C_{16} = G_{15} + P_{15}G_{14} + \dots + P_{15}P_{14} \dots P_2P_1G_0 + P_{15}P_{14} \dots P_2P_1P_0C_0$
 - A CLA
 - Generates c_i has logic in two gate delay after g_i and p_i are available
 - Generates S_i has logic in three gate delay after g_i and p_i are available
 - Example: the total gate delay of a 4-bit CLA is 6 (= 1 + 2 + 3)

Carry Lookahead Adder (CLA)

- Is there a compromise?
 - Reasonable number of small gates?
 - Sublinear (doesn't have to be constant) latency?
 - Multi-level CLA exploits hierarchy to achieve this
 - Example, we pack n = 4 bits as a block with carry lookahead
 - Still use ripple carry between the blocks (C₄, C₈, C₁₂, C₁₆)



Carry Lookahead Adder (CLA)

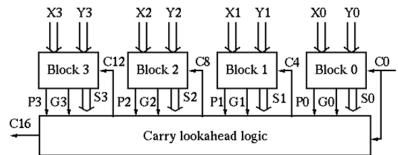
- Multi-level CLA
 - There are n/4 blocks in an n-bit adder, the total gate delays is

Operations	Number of Gate Delays
Generate g_i and p_i	1
Generate c_i (i=1,2,3,4) in block 1	2
Generate c_i (i=5,6,7,8) in block 2	2
Generate s_i	3
Total	1 + 2(n/4) + 3

• Example: When n = 64, the number of gate delays is 36

Carry Lookahead Adder (CLA)

- Two-Level CLA
 - The second-level generate and propagate functions
 - $P_i = P_{4i+3}P_{4i+2}P_{4i+1}P_{4i}$
 - If all four bits in a block propagate, the block propagates a carry
 - $G_i = g_{4i+3} + p_{4i+3}g_{4i+2} + p_{4i+3}p_{4i+2}g_{4i+1} + p_{4i+3}p_{4i+2}p_{4i+1}g_{4i}$
 - If at least one of the four bits generates carry and it can be propagated to the MSB, the block generates a carry



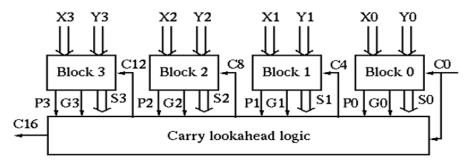
Carry Lookahead Adder (CLA)

- Two-Level CLA
 - The second-level generate and propagate functions
 - C4 can be generated in constant time (independent of n)

•
$$C_4 = (g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0) + (p_3 p_2 p_1 p_0) C_0 = G_0 + P_0 C_0$$

•
$$C_8 = G_1 + P_1C_4$$
, $C_{12} = G_2 + P_2C_8$, $C_{16} = P_3C_{12}$

- Combine four blocks of 4-bit CLA as a super block
- We get a 16-bit adder with two levels of carry-lookahead logic



Carry Lookahead Adder (CLA)

• Two-Level CLA

- There are n/16 super blocks in a n-bit adder
- The total gate delays can be found as

Operations	Number of Gate Delays
Generate all g_i and p_i	1
Generate all G_i and P_i $(i = 0, 1, 2, \cdots)$	2
Generate c_i ($i = 4, 8, 12, 16$) in Block 0	2
Generate c_i $(i = 20, 24, 28, 32)$ in Block 1	2
Generate s_i	3
Total	1 + 2 + 2(n/16) + 3

• When n = 64, the number of gate delays is 14

Carry Lookahead Adder (CLA)

- The third level of CLA
 - With the carries C₁₆, C₃₂, C₄₈, C₆₄ generated simultaneously by the third-level carry-look ahead logic

Operations	Number of Gate Delays
Generate all g_i and p_i	1
Generate all G_i and P_i $(i = 0, 1, 2, \cdots)$	2
Generate all \mathbf{G}_i and \mathbf{P}_i $(i = 0, 1, 2, \cdots)$	2
Generate c_i $(i = 16, 32, 48, 64)$ in super block 0	2
Generate s_i	3
Total	1+2+2+2(n/64)+3

• When n = 64, the number of gate delays is 10

Subtraction

- Sign/magnitude subtraction is reverse addition
 - 2C subtraction is addition
- How to subtract using an adder?
 - sub A B = add A -B
 - Negate B before adding (fast negation trick: -B = B' + 1)

Shift and Rotation

- Left/right shifts are useful
 - Fast multiplication/division by small constants
 - Bit manipulation: extracting and setting individual bits in words
- Right shifts
 - Can be logical (shift in 0s) or arithmetic (shift in copies of MSB)
 - srl 110011, 2 = 001100
 - sra 110011, 2 = **11**1100
 - Caveat: for negative numbers, sra is not equal to division by 2

```
-53 = 111111111001011

sra 2

11111111110010(11) = -14

sign dropped

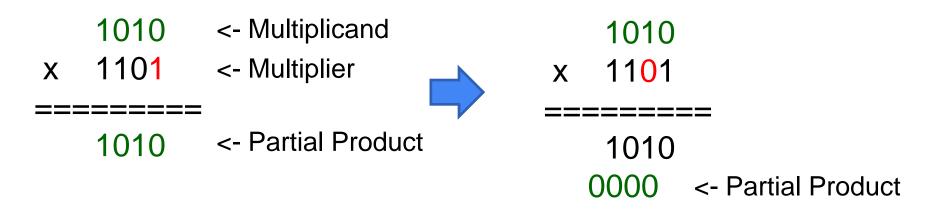
extension
```

```
53 sra 2 = floor( 53 / 2<sup>2</sup>) = floor( 13.25) = 13
-53 sra 2 = floor(-53 / 2<sup>2</sup>) = floor(-13.25) = -14
```

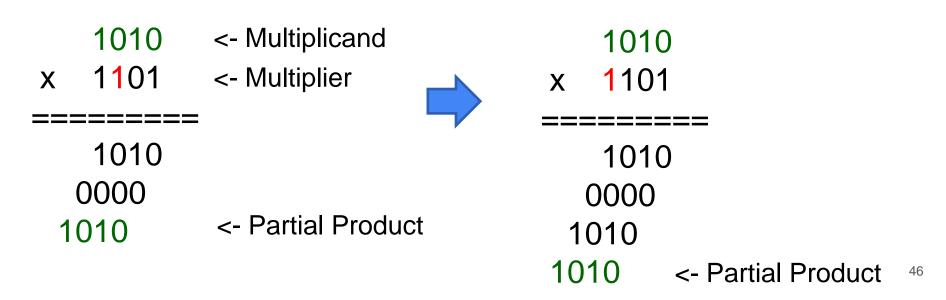

A Simple Shifter

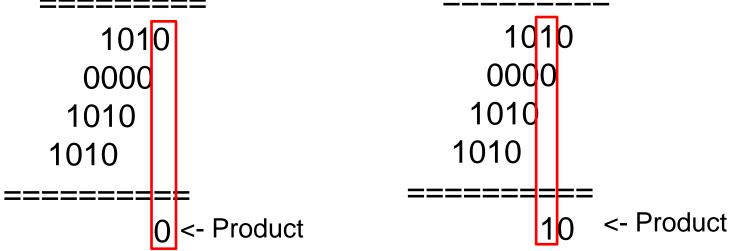
- The simplest 16-bit shifter: can only shift left by 1
 - Implement using wires (no logics)
- Logical shift operators << >>
 - Performs zero-extension for >>
 - wire [15:0] a = b << c[3:0];
- Arithmetic shift operator >>>
 - Performs sign-extension
 - Require a signed wire input
 - wire signed [15:0] b;
 - wire [15:0] a = b >>> c[3:0];

- How humans multiply
 - We first generate all partial product terms



- How humans multiply
 - We first generate all partial product terms





- Human method not best for computers
 - Each partial product must be stored -> extra hardware
 - Columns vary in size -> complexity
 - Multiple-digit carries -> complexity
 - Need a simpler method for low-cost multipliers

• Shift & Add Multiply

x	1010 1101	<- Multiplicand <- Multiplier	х	1010 11 <mark>0</mark> 1	<- Multiplicand <- Multiplier
========		===	======	=	
	00000 01010	<- Old Product <- New Product		01010 01010	<- Old Product <- New Product

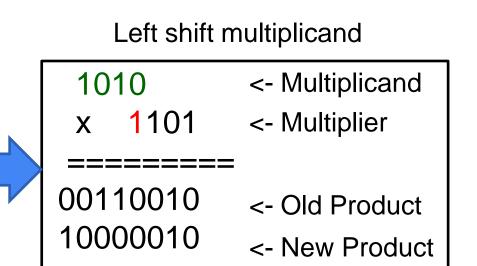
Left shift multiplicand

• Shift & Add Multiply

Left shift multiplicand

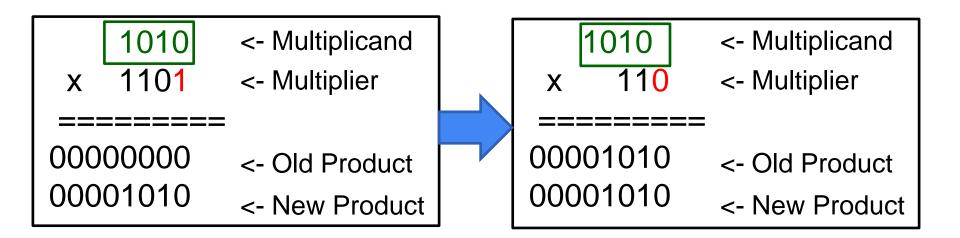
1010<- Multiplicand</th>x1101<- Multiplier</td>

00001010 <- Old Product 00110010 <- New Product

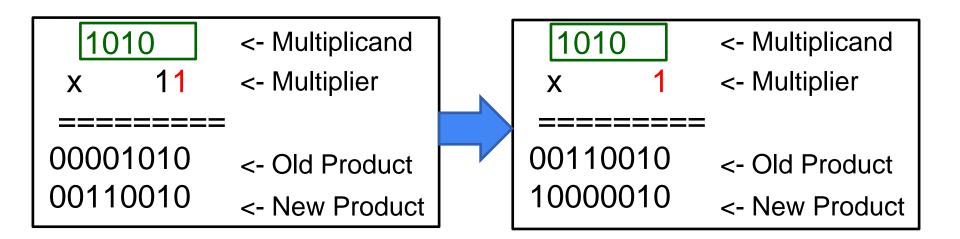


- Shift & Add Multiply
 - Computer multiply also shifts multiplier right so current multiplier bit is at a fixed position, the least significant bit (LSB)

• Shift & Add Multiply



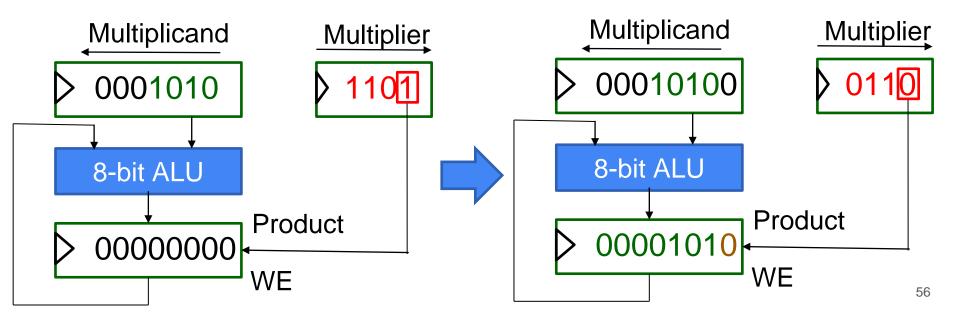
• Shift & Add Multiply



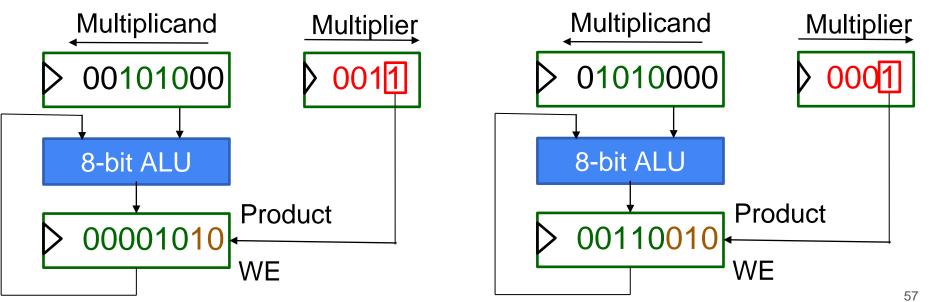
- Shift & Add Multiply
 - Shift & Add Multiply in C programming

```
int product = 0;
for (int i = 0; I < 32; i++)
     if ((multiplier >> i % 2) == 1)
        product = product + multiplicand << i;</pre>
```

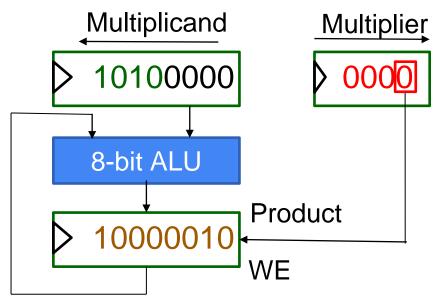

- Simple Shift & Add Multiply Hardware
 - Multiplier LSB is write enable for product latch



- Simple Shift & Add Multiply Hardware
 - Multiplier LSB is write enable for product latch

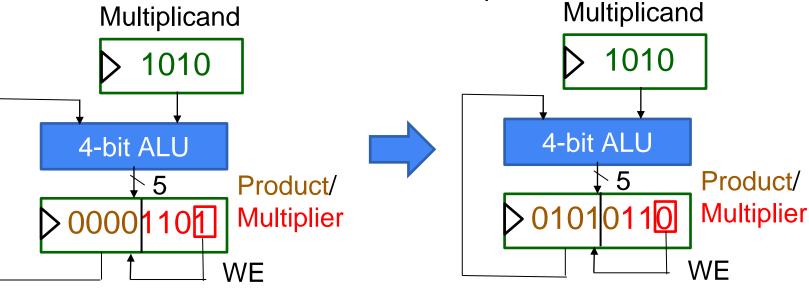


- Simple Shift & Add Multiply Hardware
 - Multiplier LSB is write enable for product latch

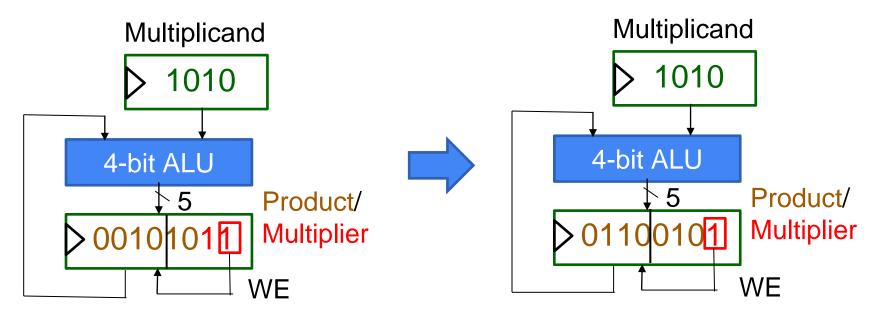


- This simple shift & add hardware
 - Only N significant bits are being summed each cycle, <u>but we are</u> using a 2N-bit adder, a waste
 - Each cycle, one new bit of the product is resolved, while one old bit of the multiplier is discarded
 - Simple multiply shifts Multiplicand left and keep product stationary

- Refined shift & add hardware
 - ALU input is accept/not accept based on WE
 - When WE = 0, shift but no ALU input **Multiplicand**

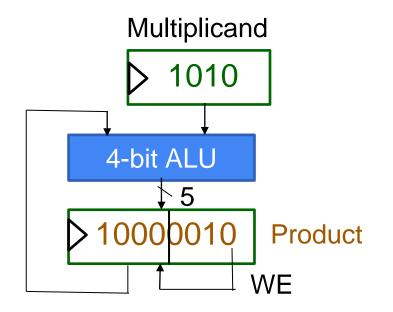


- Refined shift & add hardware
 - ALU input is accept/not accept based on WE



61

- Refined shift & add hardware
 - Final Result: 10 x 13 = 130



- Shift & Add Multiply only works for positive numbers
- To include negative numbers must:
 - Save XOR of sign bits to get product sign bit
 - Convert multiplier/multiplicand to positive
 - Do shift and add algorithm
 - Negate result if product sign bit is 1

- Booth's algorithm
 - Handle positive/negative number uniformly
 - E.g. $01110_2 (14_{10}) = 10000_2 (16_{10}) 00010_2 (2_{10})$ = 100002 - 00010_2
 - Convert string of 1s into leading +1 and a trialing -1

- Booth's algorithm
 - Identify leading +1s and trailing -1s in multiplier bit position I by looking at multiplier bit i and bit i-1
 - Example
 - $1_{10} = 00010 => 1$ • $1_{10} = 00010 => 11$ • $1_{10} = 00010 => 011$ • $1_{10} = 00010 => 0011$ • $1_{10} = 2 - 1 = 1$

		i	i-1
-1	for	1	0
+1	for	0	1
0	for	0	0
0	for	1	1

- Booth's algorithm
 - Identify leading +1s and trailing -1s in multiplier bit position I by looking at multiplier bit i and bit i-1
 - Example
 - $-1_{10} = 11110 => 1$ • $-1_{10} = 11110 => 01$ • $-1_{10} = 11110 => 001$ • $-1_{10} = 11110 => 0001$ • $-1_{10} = -1$

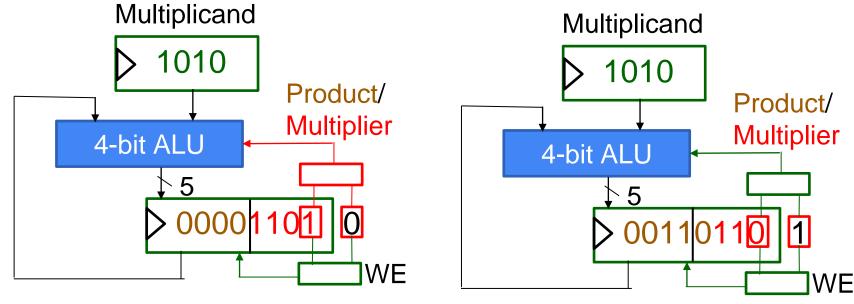
		i	i-1
-1	for	1	0
+1	for	0	1
0	for	0	0
0	for	1	1

- Booth's algorithm
 - Identify leading +1s and trailing -1s in multiplier bit position I by looking at multiplier bit i and bit i-1
 - Example
 - $-6_{10} = 10100 => 0$
 - $-6_{10} = 10100 => 10$
 - $-6_{10} = 10100 => 110$
 - -6₁₀ = 10100 => 1110
 - $-6_{10} = -8 + 4 2 = -6$

		i	i-1
-1	for	1	0
+1	for	0	1
0	for	0	0
0	for	1	1

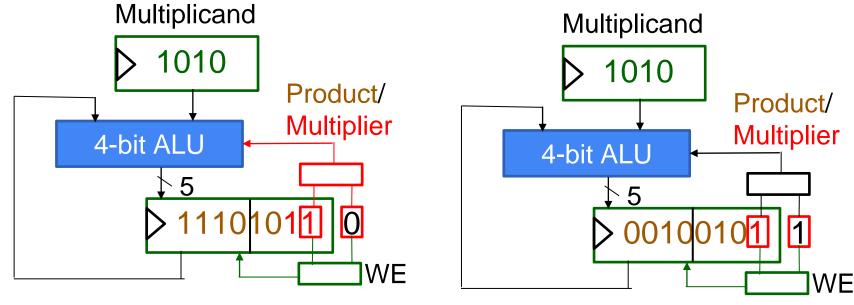
Booth's Algorithm Hardware

 Use ALU to ADD or SUB based on the trailing -1s, leading 1s from the Multiplier



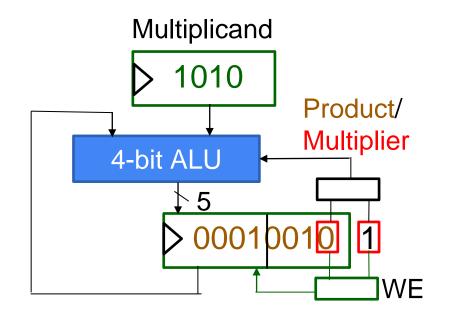
Booth's Algorithm Hardware

 Use ALU to ADD or SUB based on the trailing -1s, leading 1s from the Multiplier



Booth's Algorithm Hardware

• Final Result: -6 x -3 = 18



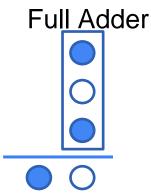
Wallace Tree Multiplier

Partial products produced sequentially (slow) 1010 Multiplicand 1101 **Multiplier** X 1010 00001010 Partial Products 1010

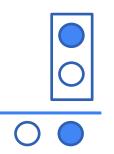
Partial products produced using array of AND gates (fast) **Multiplicand Multiplier** 1 () Partial Products

Wallace Tree Multiplier

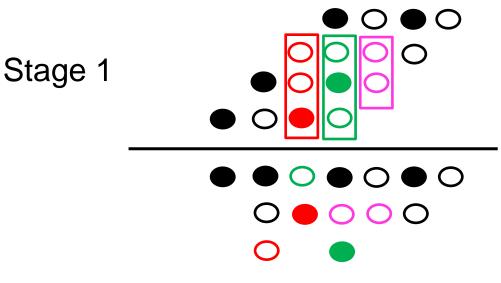
- Wallace Tree Reducers
 - Full adder cells used to reduce column segment of height 3 to row of width 2
 - Sum and carry out
 - Half adders used selectively for height-3 column that does not need full reduction



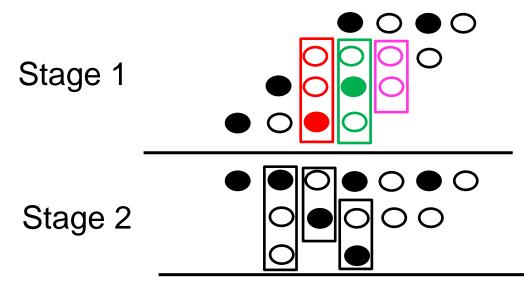
Half Adder



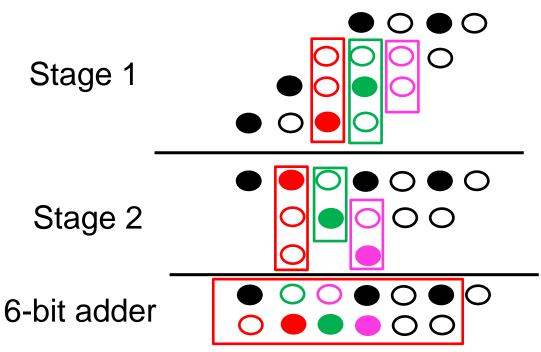
• Wallace Tree: 4 x 4 example

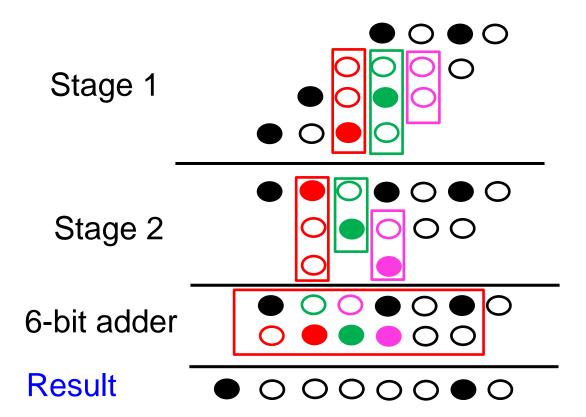


• Wallace Tree: 4 x 4 example



• Wallace Tree: 4 x 4 example





- Wallace tree fast multiply
 - column height is reduced by about 2/3 during each level
- For NxN multiply, an estimate for number of levels

N x $(2/3)^{x} = 2$, $(2/3)^{x} = 2/N$, $x \log_{2}(2/3) = \log_{2}(2/N)$, x = $\log_{2}(2/N) / \log_{2}(2/3)$, x = $(\log(2) - \log(N)) / -0.6$, x = -1.7 x $(1 - \log_{2}(N))$

- 2 levels for N = 4
- 4 levels for N = 8
- 7 levels for N = 32

• Consider a long division example

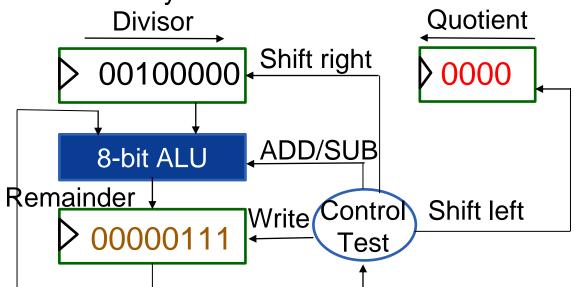
 $\begin{array}{c|ccccc} 0005678_{10} & \text{Quotient} \\ \hline \text{Divisor } 1234_{10} & 7006789_{10} & \text{Dividend} \\ \hline 7006 & \\ -6170 & \\ & 8367 & \\ -7404 & \end{array} \\ \begin{array}{c} \text{Partial Remainder} \\ \hline \end{array}$

. . .

137₁₀ Remainder

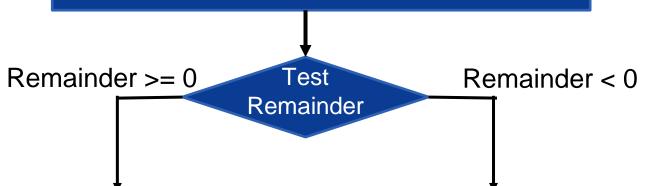
- Human Division
 - 1. Bring down next digit to partial remainder
 - 2. Compare divisor and partial remainder
 - If partial remainder < divisor: put 0 digit in quotient, goto 1
 - 3. Estimate Quotient digit
 - 4. Multiply divisor by estimated digit
 - 5. Subtract from partial remainder
 - IF result is negative, erase work, decrement estimated digit, goto 4
 - IF result > divisor, erase work, increment estimated digit, goto 4
 - ELSE put estimated digit in quotient, goto 1

- Simple hardware divider
 - Use ALU to subtract/add shift divisor from remainder
 - Conditionally add to 'erase' work after subtract



• Simple division algorithm

Start



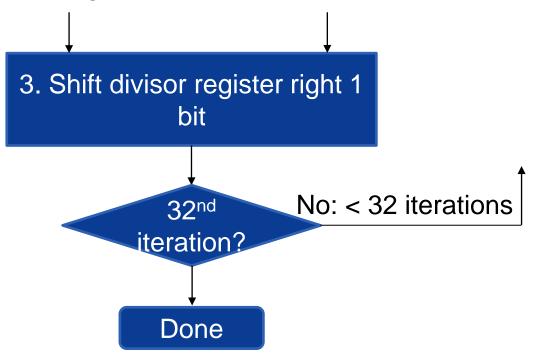
• Simple division algorithm

2a. Shift quotient register to left, set new rightmost bit to 1

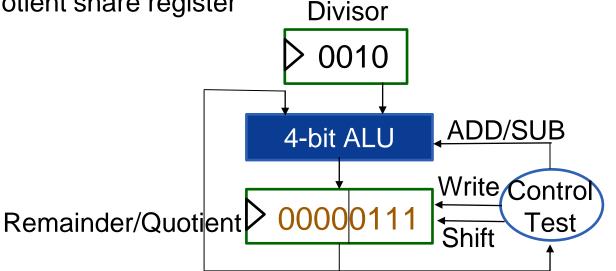
2a. Restore original value by adding divisor register to remainder register, place sum in remainder register. Shift quotient register to left, set new rightmost bit to 0

3. Shift divisor register right 1 bit

• Simple division algorithm



- Improved hardware divider
 - Divider, ALU are reduced in half
 - Remainder shifts left, divider fixed
 - Remainder/Quotient share register



- Signed division
 - Sign of quotient is XOR of signs of dividend and divisor
 - Sign of remainder matches sign of dividend
 - 122 / 3 = 40 remainder 2
 - -122 / -3 = 40 remainder -2
 - -122 / 3 = -40 remainder -2
 - 122 / -3 = -40 remainder 2

• Fast division

- So far all ALU operations can be done in log₂N time units
 - Carry Look-Ahead Adder: 1 clock cycle
 - Wallace Tree Multiplier: 2 clock cycles
 - Barrel Shifter: 1 clock cycle
- Best division algorithms take N time units (slow)
 - Resolve 4 bits per iteration rather than 1, and iterations are complex