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Outline

● Multi-core Processor 

● Hardware Multi-Threading

● Cache Coherence 

● Vector Processors 

● Graphics Processors
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Multiplying Performance

4



Intel Quad-Core “Core i7”
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Application Domains for Multicore
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Multicore is Energy Efficient
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Amdahl’s Law
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Uniprocessor Concurrency
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Shared Memory Programming Model
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Shared Memory Model: Interleaving
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Shared Memory Implementations
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Simplest Multiprocessor
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Hardware Multithreading
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Hardware Multithreading
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Hardware Multithreading
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● Hardware Multithreading

○ (a) Superscalar

○ (b) Fine-grain MT superscalar

○ (c) SMT processor

○ A filled box indicates the

processor found an inst to

execute in that issue slot

on that cycle

○ Horizonal waste -> poor ILP

○ Vertical waste -> long latency

inst (memory access) inhibits further inst issue

Issue Slot



Hardware Multithreading
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● Hardware Multithreading

○ On any given cycle a processor executes instructions from 

one of the threads

○ On the next cycle, it switches to a different thread context

and executes instructions from the new thread

○ Better tolerate long latency operations

■ Remove vertical waste

■ Cannot remove horizontal waste as instruction issue 

width increases



Hardware Multi-Threading
● Simultaneous multithreading (SMT)

○ Exploiting TLP in a single processor core

○ Each clock, core chooses instructions from any 

threads that can issue

○ Dynamic schedules machine resources among 

instructions

○ Needs one context per thread

○ Benefits

■ Improve the hardware utilization

■ No partitioning of many resources

■ E.g. Intel Hyper-threading 18
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Simplest Multiprocessor

19



Starting point: no caches
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Starting point: no caches
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Add a Shared Cache
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Shared Cache Implementation
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Shared Cache Implementation
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Shared Cache Implementation
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Shared Cache Implementation
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Adding Private Caches
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Adding Private Caches
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Adding Private Caches
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Adding Private Caches
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Adding Private Caches
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Private Cache Problem
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Private Cache Problem
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Private Cache Problem
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Private Cache Problem
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Fix Problem by Tracking Sharers
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Use Tracking info to Invalidate
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Use Tracking info to Invalidate
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Use Tracking info to Invalidate
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Use Tracking info to Invalidate
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Valid/Invalid Cache Coherence
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VI (MI) Coherence Protocol
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VI Protocol State Transition Table
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MSI Cache Coherence Protocol
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MSI Coherence Example: Step #1
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MSI Coherence Example: Step #2
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MSI Coherence Example: Step #3
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MSI Coherence Example: Step #4
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MSI Coherence Example: Step #5

49



MSI Coherence Example: Step #6
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Classifying Misses: 3C Model
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MSI Coherence Example: Step #7
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MSI Coherence Example: Step #8
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MSI Coherence Example: Step #9
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MSI Coherence Example: Step #10
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MSI Coherence Example: Step #11
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VI-> MSI
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MSI Protocol State Transition Table
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Cache Coherence and Cache Misses
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MESI Cache Coherence
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MESI Operations
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MESI Coherence Example: Step #1
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MESI Coherence Example: Step #2
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MESI Coherence Example: Step #3
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MESI Coherence Example: Step #4
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MESI Coherence Example: Step #5
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MESI Coherence Example: Step #6
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MESI Coherence Example: Step #7
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MSI -> MESI
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MESI State Transition Table
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How to Compute SAXPY Quickly?
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Data-Level Parallelism
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Vector ISA Extensions (SIMD)
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Example Use of Vectors – 4-wide
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Vector Datapath & Implementation
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Vector ISAs
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What is GPU?

● GPU = Graphics Processing Units

● Accelerate computer graphics rendering and rasterization

● Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)

● Why does GPU use GDDR memory?

○ DDR RAM -> low latency access, GDDR RAM -> high bandwidth 
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Discrete GPU

● A (PCIe) bus connecting the CPU and GPU

● Separate DRAM memory spaces

○ CPU (system memory) and the GPU (device memory)

● DDR for CPU vs. GDDR for GPU

○ CPU DRAM optimizes for 

low latency access

○ GPU DRAM is optimized for 

high throughput
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Integrated GPU

● Have a single DRAM memory space 

● Often found on low-power mobile devices

○ Ex. AMD APU

○ Private cache -> cache coherence 
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CPU vs GPU
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Cores Clock 

Speed

Memory Price Speed

CPU (Intel 

Core i7-

7700k)

4 4.2 GHz DDR4 RAM $385 ~540 GFLOPs F32

GPU (Nvidia 

RTX 3090 Ti)

10496 1.7 GHz DDR6 24 GB $1499 36 TFLOPs F32

CPU: A small number of complex cores, the clock speed of 

each core is high, great for sequential tasks

GPU: A large number of simple cores, the clock speed of 

each core is low, great for parallel tasks



Why do we use GPU for computing ?

● What is difference between CPU and GPU?
○ GPU uses a large portion of silicon on the computation against CPU

○ GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak 

performance

○ Need to map applications on the GPU carefully (Programmers’ duties)
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CPU GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


GPU Programming

● Software GPU Thread Model (CUDA)

○ Single-program multiple data (SPMD) 

○ Each thread has local memory

○ Parallel threads packed in blocks

■ Access to per-block shared memory

■ Synchronize with barrier

○ Grids include independent groups
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GPU Programming

● In SAXPY example

○ CUDA code launches 256 threads per block

■ Thread = 1 iteration of scalar loop (1 element in vector loop)

■ Block = body of vectorized loop (with VL = 256 in this ex.)

■ Grid = vectorizable loop

83



GPU Architecture

● 15 SMX processors, shared L2, 6 memory controllers
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GPU Architecture

● Cores are
○ Multithreaded

○ Data parallel 

● Capabilities
○ 64K registers

○ 192 simple cores

■ Integer and SP FPU

○ 64 DP FPUs

● Scheduling
○ 4 warp schedulers, 2 instruction 

dispatch per warp 85



GPU Architecture

● All threads can be independent

○ HW implements zero-overhead switching

● 32 threads are packed in warps

○ Warp: set of parallel threads that execute the 

same instruction-> data parallelism

○ 1 warp instruction keeps cores busy for multiple 

cycles

● SW thread blocks mapped to warps

○ When HW resources are available
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GPU Architecture

● 64 warps per SMX

● 32 threads per warp

○ 64K registers/SMX

○ Up to 255 registers per threads (8 warps)

● Scheduling

○ 4 schedulers select 1 warp per cycle

○ 2 independent instructions issued per 

warp (double-pumped FUs)

○ Total bandwidth = 4 x 2 x 32 = 256 ops 

per cycle 87



GPU Architecture

● Each SMX has 64KB of memory

○ Split between shared mem and L1 cache

○ 256 Bytes per access

○ 48KB read-only data cache

○ 1.5MB shared L2

■ Supports synchronization operations

(atomicCAS, atomicADD …)

○ Throughput-oriented main memory

■ GDDRx standards
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Conclusion

● Instruction-Level Parallelism (ILP)

○ Pipelining, super-scalar processor

● Thread-Level Parallelism (TLP)

○ Hardware multi-threading

● Data-Level Parallelism (DLP)

○ SIMD, Vector processor, GPU
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