
Lecture 14: Multicores

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao University

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● 6.888 at MIT

● https://courses.csail.mit.edu/6.888/spring13/

● CIS510 at Upenn

● https://www.cis.upenn.edu/~cis5710/spring2024/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://courses.csail.mit.edu/6.888/spring13/
https://www.cis.upenn.edu/~cis5710/spring2019/

Outline

● Multi-core Processor

● Hardware Multi-Threading

● Cache Coherence

● Vector Processors

● Graphics Processors

3

Multiplying Performance

4

Intel Quad-Core “Core i7”

5

Application Domains for Multicore

6

Multicore is Energy Efficient

7

Amdahl’s Law

8

Uniprocessor Concurrency

9

Shared Memory Programming Model

10

Shared Memory Model: Interleaving

11

Shared Memory Implementations

12

Simplest Multiprocessor

13

Hardware Multithreading

14

Hardware Multithreading

15

Hardware Multithreading

16

● Hardware Multithreading

○ (a) Superscalar

○ (b) Fine-grain MT superscalar

○ (c) SMT processor

○ A filled box indicates the

processor found an inst to

execute in that issue slot

on that cycle

○ Horizonal waste -> poor ILP

○ Vertical waste -> long latency

inst (memory access) inhibits further inst issue

Issue Slot

Hardware Multithreading

17

● Hardware Multithreading

○ On any given cycle a processor executes instructions from

one of the threads

○ On the next cycle, it switches to a different thread context

and executes instructions from the new thread

○ Better tolerate long latency operations

■ Remove vertical waste

■ Cannot remove horizontal waste as instruction issue

width increases

Hardware Multi-Threading
● Simultaneous multithreading (SMT)

○ Exploiting TLP in a single processor core

○ Each clock, core chooses instructions from any

threads that can issue

○ Dynamic schedules machine resources among

instructions

○ Needs one context per thread

○ Benefits

■ Improve the hardware utilization

■ No partitioning of many resources

■ E.g. Intel Hyper-threading 18

T
im

e
 (P

ro
c
e
s
s
o
r C

y
c
le

s
)

Issue Slot

Simplest Multiprocessor

19

Starting point: no caches

20

Starting point: no caches

21

Add a Shared Cache

22

Shared Cache Implementation

23

Shared Cache Implementation

24

Shared Cache Implementation

25

Shared Cache Implementation

26

Adding Private Caches

27

Adding Private Caches

28

Adding Private Caches

29

Adding Private Caches

30

Adding Private Caches

31

Private Cache Problem

32

Private Cache Problem

33

Private Cache Problem

34

Private Cache Problem

35

Fix Problem by Tracking Sharers

36

Use Tracking info to Invalidate

37

Use Tracking info to Invalidate

38

Use Tracking info to Invalidate

39

Use Tracking info to Invalidate

40

Valid/Invalid Cache Coherence

41

VI (MI) Coherence Protocol

42

VI Protocol State Transition Table

43

MSI Cache Coherence Protocol

44

MSI Coherence Example: Step #1

45

MSI Coherence Example: Step #2

46

MSI Coherence Example: Step #3

47

MSI Coherence Example: Step #4

48

MSI Coherence Example: Step #5

49

MSI Coherence Example: Step #6

50

Classifying Misses: 3C Model

51

MSI Coherence Example: Step #7

52

MSI Coherence Example: Step #8

53

MSI Coherence Example: Step #9

54

MSI Coherence Example: Step #10

55

MSI Coherence Example: Step #11

56

VI-> MSI

57

MSI Protocol State Transition Table

58

Cache Coherence and Cache Misses

59

MESI Cache Coherence

60

MESI Operations

61

MESI Coherence Example: Step #1

62

MESI Coherence Example: Step #2

63

MESI Coherence Example: Step #3

64

MESI Coherence Example: Step #4

65

MESI Coherence Example: Step #5

66

MESI Coherence Example: Step #6

67

MESI Coherence Example: Step #7

68

MSI -> MESI

69

MESI State Transition Table

70

How to Compute SAXPY Quickly?

71

Data-Level Parallelism

72

Vector ISA Extensions (SIMD)

73

Example Use of Vectors – 4-wide

74

Vector Datapath & Implementation

75

Vector ISAs

76

What is GPU?

● GPU = Graphics Processing Units

● Accelerate computer graphics rendering and rasterization

● Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)

● Why does GPU use GDDR memory?

○ DDR RAM -> low latency access, GDDR RAM -> high bandwidth

77

CPU GPU

Cache

Memory

System

Memory

(DDR RAM)

Graphics

Memory

(GDDR RAM)

CPU GPU

bus

Discrete

GPU
Integrated

GPU

Discrete GPU

● A (PCIe) bus connecting the CPU and GPU

● Separate DRAM memory spaces

○ CPU (system memory) and the GPU (device memory)

● DDR for CPU vs. GDDR for GPU

○ CPU DRAM optimizes for

low latency access

○ GPU DRAM is optimized for

high throughput

78

System

Memory

(DDR RAM)

Graphics

Memory

(GDDR RAM)

CPU GPU

bus

Discrete

GPU

Integrated GPU

● Have a single DRAM memory space

● Often found on low-power mobile devices

○ Ex. AMD APU

○ Private cache -> cache coherence

79

CPU GPU

Cache

Memory

Integrated

GPU

CPU vs GPU

80

Cores Clock

Speed

Memory Price Speed

CPU (Intel

Core i7-

7700k)

4 4.2 GHz DDR4 RAM $385 ~540 GFLOPs F32

GPU (Nvidia

RTX 3090 Ti)

10496 1.7 GHz DDR6 24 GB $1499 36 TFLOPs F32

CPU: A small number of complex cores, the clock speed of

each core is high, great for sequential tasks

GPU: A large number of simple cores, the clock speed of

each core is low, great for parallel tasks

Why do we use GPU for computing ?

● What is difference between CPU and GPU?
○ GPU uses a large portion of silicon on the computation against CPU

○ GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak

performance

○ Need to map applications on the GPU carefully (Programmers’ duties)

81

CPU GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

GPU Programming

● Software GPU Thread Model (CUDA)

○ Single-program multiple data (SPMD)

○ Each thread has local memory

○ Parallel threads packed in blocks

■ Access to per-block shared memory

■ Synchronize with barrier

○ Grids include independent groups

82

GPU Programming

● In SAXPY example

○ CUDA code launches 256 threads per block

■ Thread = 1 iteration of scalar loop (1 element in vector loop)

■ Block = body of vectorized loop (with VL = 256 in this ex.)

■ Grid = vectorizable loop

83

GPU Architecture

● 15 SMX processors, shared L2, 6 memory controllers

84

GPU Architecture

● Cores are
○ Multithreaded

○ Data parallel

● Capabilities
○ 64K registers

○ 192 simple cores

■ Integer and SP FPU

○ 64 DP FPUs

● Scheduling
○ 4 warp schedulers, 2 instruction

dispatch per warp 85

GPU Architecture

● All threads can be independent

○ HW implements zero-overhead switching

● 32 threads are packed in warps

○ Warp: set of parallel threads that execute the

same instruction-> data parallelism

○ 1 warp instruction keeps cores busy for multiple

cycles

● SW thread blocks mapped to warps

○ When HW resources are available

86

GPU Architecture

● 64 warps per SMX

● 32 threads per warp

○ 64K registers/SMX

○ Up to 255 registers per threads (8 warps)

● Scheduling

○ 4 schedulers select 1 warp per cycle

○ 2 independent instructions issued per

warp (double-pumped FUs)

○ Total bandwidth = 4 x 2 x 32 = 256 ops

per cycle 87

GPU Architecture

● Each SMX has 64KB of memory

○ Split between shared mem and L1 cache

○ 256 Bytes per access

○ 48KB read-only data cache

○ 1.5MB shared L2

■ Supports synchronization operations

(atomicCAS, atomicADD …)

○ Throughput-oriented main memory

■ GDDRx standards

88

Conclusion

● Instruction-Level Parallelism (ILP)

○ Pipelining, super-scalar processor

● Thread-Level Parallelism (TLP)

○ Hardware multi-threading

● Data-Level Parallelism (DLP)

○ SIMD, Vector processor, GPU

89

