X %% National Yang Ming Chiao Tung University

=X}7]

I
a7+ Computer Architecture & System Lab

Lecture 12: Virtual Memory

CS10014 Computer Organization

Tsung Tal Yeh
Department of Computer Science
National Yang Ming Chiao University

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Acknowledgements and Disclaimer

e Slides were developed in the reference with
® CS61C at UC Berkeley
® hittps://inst.eecs.berkeley.edu/~cs61c/sp23/
® (CS252 at ETHZ
® hittps://safari.ethz.ch/digitaltechnik/spring2023
® (CIS510 at Upenn
® hitps://www.cis.upenn.edu/~cis5710/spring2019/

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://safari.ethz.ch/digitaltechnik/spring2023
https://www.cis.upenn.edu/~cis5710/spring2019/

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Outline

» Virtual Memory

- Paged Memory

« Paged Table

« Multi-Level Page Table

- Translation Lookaside Buffer (TLB)
- Handling TLB Misses

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Review

o« Cache design choices
o Size of cache: speed vs. capacity
- Block size (i.e., cache aspect ratio)
o Write policy (write through vs. write back)
o Associativity choice of N (direct-mapped vs. set vs. fully
associative)
o Block replacement policy
o Multi-level caches

X ,1 National Yang Ming Chiao Tung University
=34
a4 Computer Architecture & System Lab

Memory Hierarchy

Thus far

Next:
Virtual
Memory

d

|'Regs

[Instr. Operands

Cache
1 BIocks

L2 Cache

1 Blocks

\ J

Memory

1 Pages

DISk

1 Files

Tape

Upper Level

F 3

Faster

Larger
Lower Level

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

DRAM Cells

o 1 transistor and 1 capacitor per bit
o Contrast with SRAM 6 transistors per bit
o Bit value is recorded as charge on the capacitor
o Charge dissipates over time: require periodic refresh

Word line

Pass transistor

FIGURE C.9.5 A single-transistor DRAM cell contains a capacitor that stores the cell
contents and a transistor used to access the cell.

c/o Patterson & Hennessy, COD, Appendix C

Capacitor

Bit line

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

DRAM Internal Structure

- Each bank composed of
cells

- Many banks per chip

- Many chips per rank
 1-4 ranks per stick/DIMM

* access one row at a time
(~8KB) across all chips

c¢/o Anandtech

t National Yang Ming Chiao Tung University

A Computer System + OS
« Operating System (0S): virtualizes hardware
- Abstraction: provides services (e.g., threads, files, etc.)

+ Simplifies programming, raw hardware is nasty
- Isolation: gives each process illusion of private CPU/mem/IO

+ Simplifies application programming model
Process

+ Increases hardware resource utilization
Process Process

Process

System (1/O) bus
DMA

I/O ctrl

Memory bus ¢ >
1 bridge
CPU/$|{CPU/$ Memory DI}.:1A
R — .
Disk display NIC
. n

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Virtualizing Hardware Resources

 To virtualize a resource is to make a finite

amount of a resource act like a very large/infinite
amount.

 Easier to write programs with a virtualized
interface

- Resources we can virtualize:
* processors (via multitasking)
- DRAM (via virtual memory)
» entire machine+0OS (via virtual machines)

+ Key question: how do you manage state?

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Multitasking: virtualizing a processor

- When multiple applications are run on the same
core, the OS shares the computer between them

« Multitasking dates back to the early days of computers when
systems were expensive and we needed to be able to
support multiple users concurrently.

« The OS needs to be able to switch between
different processes. In most cases it does this so
quickly that users/processes don’t realize the
machine is being shared.

« The act of switching between processes is
referred to as a context switch
» what state is involved?

10

X

=§§{1\ National Yang Ming Chiao Tung University

_‘, 874 Computer Architecture & System Lab

When to perform a context switch?

- Hardware timer ensures each process gets fair
access to the CPU

* When do we switch?
- when the timer goes off (e.qg., every 2ms)
« At system calls because they are usually slow

» we want to do something else useful in the meantime, so
switch to another process and run it instead

11

X$7 & National Yang Ming Chiao Tung University

=3\p7

"ig-r Computer Architecture & System Lab

Virtual Memory Motivation

o What if main memory is smaller than the program

address space”?
RV32I provides a 32-bit address space. Suppose RAM is 1GiB.
- 232 B = 4 GiB addressable memory —> 230 B addressable memory.

O0xFFFF FFFF

YYVYY

‘}J I Crash if we try to access an

address > 0x3FFF FFFF!

12

0x0000 0000

5‘?{1‘ National Yang Ming Chiao Tung University

_‘r 874 Computer Architecture & System Lab

Virtual Memory Motivation

o What if two programs access the same memory address?
o If all processes can access any 32-bit memory address, they can
corrupt/crash others

o Need protection (isolation) between processes

Program 1 stores your
bank account balance
at address 0x400

Program 2 stores your
video game score
at address 0x400

—— Program 1 —
— (1GiB) —

—

42 10000

. Program2 |
(2 GiB)

4 GiB RAM
0x400

13

'X$7 % National Yang Ming Chiao Tung University
=‘;§‘;'IP Computer Architecture & System Lab
Virtualizing Main Memory

» How do we share main memory?
- Goal: each application thinks it owns all of memory

» A process may want more memory than exists...
« Process insn/data footprint may be larger than main memory
- Requires main memory to act like a cache
« With disk as next level in memory hierarchy (slow)
- Write-back, write-allocate, large blocks or “pages”

- Solution:
« Part #1: treat memory as a “cache”
- Store the overflowed blocks in “swap” space on disk

14
« Part #2: add a level of indirection (address translation)

;\%fﬁ\ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

Virtualizing Memory
* Virtual Memory (VM)

« Level of indirection
« Application generated addresses are virtual addresses (VAs)
« A process thinks it has its own 2N bytes of address space
» Memory accessed using physical addresses (PAs)
- VAs translated to PAs at coarse (page) granularity
» OS controls VA to PA mapping for itself and all processes
 Logically: translate before every insn fetch, load, store
« but hardware acceleration removes translation overhead
OS App1 App2

[! M vas
I | 1 1 OS controlled VA—PA mappings

- i PAs (physical memory) 15

-

X ,ﬁ\ National Yang Ming Chiao Tung University

=337
‘ig-r Computer Architecture & System Lab

Virtualizing Memory

* Programs use virtual addresses (VA)
- VA size (N) aka pointer size (these days, 64 bits)

« Memory uses physical addresses (PA)
« PA size (M) typically M<N, often M=48/56 and N=64
- 2Mis most physical memory machine supports
- VA—PA at page granularity (VP—PP)
- Mapping need not preserve contiguity
* VP need not be mapped to any PP

- Unmapped VPs live on disk (swap) or nowhere (if unaccessed)
OS App1 App2

[LIITIIIT [Ioisk

16

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Address Translation

virtual address[31:0] VPN[31:16] POFS[15:0]
translate | | don’t change
physical address[27:0] PPN[27:16] POFS[15:0]

- VA—PA mapping called address translation

» Split VA into virtual page number (VPN) & page offset
(POFS)

« Translate VPN into physical page number (PPN)
« POFS is not translated
+ VA—-PA = [VPN, POFS] — [PPN, POFS]

- Example above
- 64KB pages — 16-bit POFS
» 32-bit machine — 32-bit VA — 16-bit VPN
« Maximum 256MB memory — 28-bit PA — 12-bit PPN

'X$7 % National Yang Ming Chiao Tung University
%;%'IP Computer Architecture & System Lab
Uses of Virtualizing Memory

» More recently: isolation and multi-programming
- Stack always starts at OxFFFFFFFF for each process
- Apps prevented from reading/writing each other’s memory
- Can’t even address the other program’s memory!
* Protection
« Each page with a read/write/execute permission set by OS
- Enforced by hardware
* Inter-process communication

« Map same physical pages into multiple virtual address spaces

* Or share files via the UNIX mmap () call
oS App1 App2

et

|- j

18

éif National Yang Ming Chiao Tung University

_‘r %'IP Computer Architecture & System Lab A p ro CeSS m e m O ry
address layout

Virtual Memory OXFEEFEEFE
o A program'’s address contains 4 regions
o Stack:
= local variables, grows downward
o Heap:

= Space requested for pointers via malloc(); resizes
dynamically, grows upward
o Static data:

= Variables declared outside main, does not grow or

shrink
- Code:
= Loaded when program starts, does not change

Stack

!

Unused
Memory

A

Heap

Code

19

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Paged Memory

o The concept of “paged memory” dominates
o Physical memory (DRAM) is broken into pages
o A disk access loads an entire page into memory
o Typical page size: 4KiB+ (on modern OSs)
= Need 12 bits of page offset to address all 4KiB

Virtual address (e.g. 32 Bits, i.e., 4 GiB Virtual Memory)
VPN (20 bits) offset (12 bits)

FFFFF004

Memory translation maps
Virtual Page Number (VPN) to
a Physical Page Number (PPN)

Physical address (e.g., 14 bits, i.e., 16KiB DRAM)
PPN (2 bits) [offset (12 bits)
0x1004

20

X ,ﬁ National Yang Ming Chiao Tung University
=7\
g7/ Computer Architecture & System Lab

e HOw a program accesses memory?
o Program executes a load specifying a virtual address (VA)

Program DRAM
(32-b virtual address space) Page Table (physical address space)
VPN PPN 0
1b t0, OxFFFFF004 (x0) 1
1b t1, 0x60000030 (x0) 0x60000 disk 2
1 3
CPU OxFFFFF

(assume 4 x 4KiB pages)

21

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Paged Memory

e HoOw a program accesses memory?

o Computer translates VA to the physical address (PA) in memory
= Extract virtual page number (VPN) from VA, e.g. top 20 bits if page
size 4KiB =212 B
= Look up physical page number (PPN) in page table

= Construct PA: physical page number + offset (from virtual address)
Program DRAM

(32-b virtual address space) Page Table (physical address space)
VPN PPN 0
1b t0, OxFFFFF004 (x0) 1 veveneeenen.data for t0...
lb t1, 0x60000030(x0) 0x60000 disk 5
3
CPU OxFFFFF 1

(assume 4 x 4KiB pages) 22

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
g7/ Computer Architecture & System Lab

Paged Memory

e HOw a program accesses memory?
o If the physical page is not in memory, then OS loads it in from

disk

Program

(32-b virtual address space)

1b tO,
1b t1,

CPU

OxFFFFFO004 (x0)
0x60000030 (x0)

DRAM

Page Table (physical address space)
VPN PPN 0
p 1
0x60000 disk ﬁ
OxFFFFF 1

(assume 4 x 4KiB pages)

23

t National Yang Ming Chiao Tung University

X
=347
@ Computer Architecture & System Lab

Paged Memory

e HOw a program accesses memory?
o The OS reads memory at the PA and returns the data to the

DRAM

(physical address space)

program
Program
(32-b virtual address space) Page Table
VPN

0x60000
(assume 4 x 4KiB pages)

1b t0, OxFFFFF004 (x0)
24

1b t1, 0x60000030 (x0)

OxFFFFF

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Address Translation Mechanics |

« How are addresses translated?

» In software (for now) but with hardware PT
acceleration (a little later)

- Each process has a page table (PT)

c

+ Software data structure constructed by ¢
OS

» Maps VPs to PPs or to disk (swap)
addresses

* VP entries empty if page never

referenced v
+ Translation is table lookup
25

National Yang Ming Chiao Tung University
Computer Architecture & System Lab

I\

4y

Page Table Example
Example: Memory access at address OxFFASBAFBA

By
=
gl

iﬁ
[C

Address of Page Table Root
OxFFFF87F8
Virtual Page Number Page Offset
1111 1111 1010 1000 | 1010 1111 1011 1010
>
0
11111111 10101000
>1 1111 1010 1111
1111111111114
A 4 Y
1111 1010 1111 | 1010 1111 1011 1010
Page Offset

Physical Address:
Physical Page Number

f\ National Yang Ming Chiao Tung University

=3\p7

X
"Eg-r Computer Architecture & System Lab

Paged Table

o A page table is NOT a cache
o A page table does not have data

o Itis alookup table (ng EEE;
o All VPNs have a valid entry 0x00000 0
o Page tables are stored in the
main memory 0x60000 2
disk
OXFFFFF 1

| - JL - J
Status bits Memory page/
(more later) disk address 27

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Paged Table

o 32-bit virtual address space, 4-KiB pages
o 232 virtual addresses / (212 B/pages)
o = 220 virtual page numbers (1MB pages)

Page Table
(220 entries)

o One page table per process 0%00000 0
o One entry per virtual page number 2
> Entry has physical page number 9%€0000

disk
OxXFFFFF 1

| - JL - J
Status bits Memory page/
(more later) disk address 28

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Paged Table Page table Memory (DRAM)

Page N

e Each process has a dedicated

page table
o OS keeps track of which process
IS active
e Isolation: Assign processes

different pages in DRAM
o Prevent accessing other
processes’ memory
o OS may assign some physical
page to several processes (e.g. page 2

system data), sharing is also e

possible

Page table

Page table

29

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Paged Table

« A page table contains the mapping of virtual address to

physical locations
o Each process has its

Virtual Address:

Page Table

VI AR iP.P.A

page no.
own page table
- OS changes page page Table
tables by changing Base Reg
contents of Page index
] into
Table Base Reqister page
table

Page tables are stored in main
memory

Val iAccess iPhysical

| -id iRights :Page

o +

:Address

!

Physical
Memory
Address

30

N

a4 Computer Architecture & System Lab

Paged Table

« Page Table Entry (PTE) format

o Contains either physical page number or indication not in main
memory

X %ﬁ\ National Yang Ming Chiao Tung University

o OS maps to disk if Not Valid (V=0) Pﬁfg’e Table
o If valid, also check if have Vi AR PPN
permission to use page Val §Access gPhysicaI \
= Access Rights (A.R.) may be |-id iRights :Page <—P.T.E.
Read Only, Read/Write :Number /
4 ’ VI AR P.P.N.
Executable ' :

31

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

o Status Bits

o Write protection bit

. Page Table
= On: If process writes to page

(220 entries)

trigger exception 000000 0
- Valid bit
= On: Pageisin RAM 0x60000 ?
o Dirty bit d.i;k
= On: page on RAM s
more up-to-date than OXFFFFF 1

page on dis Status bits ~ Memory page/
(more later) disk address 32

éi’ﬁ‘ National Yang Ming Chiao Tung University

_‘, 874 Computer Architecture & System Lab

Paged Tab|e Size VPN [20 bits] POFS [12 bits]

o How big is a page table on the following machine?

O

O

O

O

O

32-bit machine->32-bit VA -> 232 = 4GB virtual memory
4B page table entries (PTES)

4KB pages

4GB virtual memory / 4KB page size -> 1M VPs

1M VPs * 4 bytes per PTE -> 4MB

o What is the problem when increasing page size from 4 KB to
16 KB?

O

Internal fragmentation (big pages lead to waste within each page)

o Page tables can get big

O

There are ways of making them smaller

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
"Eg-r Computer Architecture & System Lab

Paged Table

o Page hit
o 1) Processor sends virtual address to MMU
o 2—3) MMU fetches PTE from page table in memory
o 4) MMU sends physical address to L1 cache
o 5) L1 cache sends data word to processor

@ | PTE
Processor > MMU @ Cache/
; memory

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Paged Table

o Page faults

o Page table entries store status to indicate if the page is in memory
(DRAM) or only on disk

One each memory access, check the page table entry “valid”
status bit

o Valid -> in DRAM

Read/write data in DRAM

o Not valid -> on disk

Trigger a page fault; OS intervenes to allocate the page into
DRAM

If out of memory, first evict a page from DRAM (LRU/FIFO/random)
Read request page from disk into DRAM

Finally, read/write data in DRAM 35

'X$7 % National Yang Ming Chiao Tung University
@ Computer Architecture & System Lab
Page Fault
» Page fault: PTE not in TLB or page table

* page is not in memory
- If no valid mapping for this page — segmentation fault
- Starts out as a TLB miss, detected by OS/hardware handler

« OS chooses a page to replace
- “Working set”: refined LRU, tracks active page usage
- If dirty, write to disk
« Read missing page from disk
+ Takes so long (~10ms), OS schedules another task
- Whose page are we evicting?

- frame map maps physical pages to <process,virtual
page> pairs

- Update page tables, flush TLBs, retry memory access 36

¢
[

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
874 Computer Architecture & System Lab

Page Fault

o Page faults

O

O

O

O

O

O

1) Process sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is 0, so MMU triggers page fault exception

5) Handler identifies victim, and if dirty pages it out to disk

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

I_____E{<_C_€_ETLQU___, Page fault exception handler
CPUchip i ®
i PTEA
: @ Victim pag
" PTE
Processor VA MMU @ Cache/ @ Disk
. i memory
@ ; New page

37

'X$Z % National Yang Ming Chiao Tung University

12
E3¢71
d

‘,i-r Computer Architecture & System Lab

Paged Table

Cache version Virtual Memory vers.
Block or Line Page
Miss Page Fault
Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative
Direct Mapped,
N-way Set Associative
Replacement: Least Recently Used

LRU or Random (LRU)
Write Thru or Back Write Back

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Multi-Level Page Table

o MUlti'IeveI page table Multi-level Page Table
_ PDBR] 200 |
- Chop up the page table into = T o .
page-sized units STT—201 T
. N0 - 1] rx 13 N
- Page directory tellswhere a |z o o -1 1%

page of the page table is The Page Directory
= A number of page directory
entries (PDE)
= A page frame number (PFN),
and a valid bit

[Page 1 of PT: Not Allocated]

[Page 2 of PT: Not Allocated]

—_—

rw 86
rw 15

PFN 204

w

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-smalltables.pdf 9

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Multi-Level Page Table

 What are the advantages

of multi-level page table?
o Only allocate “using”
page-table space
o Compact and supports
sparse address space

V Page
1 100

0)

0

1 107

Page table
V_ Flags Page
1 r 10

0)

1 r 12

1| rw 13

V _Flags Page
0

0)

1{ rw | 39

1| rw | 40

40

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Multi-Level Page Table

o Multi-level page tables
o Tree of page tables (“trie”)
o Lowest-level tables hold PTEs
o Upper-level tables hold pointers
to lower-level tables
o Different parts of VPN used to
Index different levels

o 20-bit VPN

o Upper 10 bits index 1st—|level table
- Lower 10 bits index 2"d-level table

pt “root’]

VPN[19:10] | VPN[9:0 2nd-level
PTEs
1st-level >
“Eointers”
——>
>
SRR

41

National Yang Ming Chiao Tung University
Computer Architecture & System Lab

By
=
gl

=z
I'c

Multi-Level Page Table

Example: Memory access at address OxFFASAFBA

Address of Page Table Root

OxFFFF87F8
Virtual Page Number Page Offset
1111111110?1010001010 111111011100
|
O0xFFFF87F8 |_)
OxFFFFFA88
1111111110 OxFFFFCBES
|_-T 1010001010
S ;
IFERELBES > 111110101111
\ 2 \ 4
111110101111 111111011100
Page Offset 54

Physical Address:
- H;ysical Page
Number

§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

_‘, 874 Computer Architecture & System Lab

Multi-Level Page Table

« Have we saved any space?
o Isn’t total size of 2"d |evel tables same as single-level table (i.e.,
AMB)?
o Yes, but
o Large virtual address regions unused
o Corresponding 2"%-level tables need not exist
o Corresponding 1s-level pointers are null
« How large for contiguous layout of 256 MB?
o Each 2"-level table maps 4MB of virtual addresses

o One 1st-level + 64 2"d-level pages
o 64 total pages = 260 KB (much less than 4MB)

43

X ,/1\ National Yang Ming Chiao Tung University

=337
",%-r Computer Architecture & System Lab

Multi-Level Page Table

o How many levels of page tables would be required ?
o A virtual memory system with physical memory of 8 GB, a page size
of 8 KB, 46 bit virtual address, and PTE size is 4 Bytes
o Initially
o Page size = 8 KB = 213 Bytes
o Virtual address space size = 246 Bytes
o PTE =4 Bytes = 22 Bytes
o Number of pages or number of entries in page table
= 246 Bytes / 213 Bytes = 233
o Size of page table = 233 x 22 Bytes = 23° Bytes

44

'X$Z % National Yang Ming Chiao Tung University

=3¢71n
‘ég-r Computer Architecture & System Lab

Multi-Level Page Table

« How many levels of page tables would be required ?
o A virtual memory system with physical memory of 8 GB, a
page size of 8 KB, 46 bit virtual address, and PTE sizeis 4 B
o Now, size of page table > page size (235 B > 213 B)
- Create one more level
- Number of page tables in last level
235 Bytes / 213 Bytes = 222
- Size of page table [second last level]
o 222X 22 Bytes = 224 Bytes

45

'X$Z % National Yang Ming Chiao Tung University

=3¢71n
‘ég-r Computer Architecture & System Lab

Multi-Level Page Table

« How many levels of page tables would be required ?
o A virtual memory system with physical memory of 8 GB, a
page size of 8 KB, 46 bit virtual address, and PTE sizeis 4 B
o Now, size of page table > page size (224 B > 213 B)
o Create one more level [third last level]
- Number of page tables in second last level
= 224 Bytes / 213 Bytes = 211
o Size of page table [third last level]=
= 211 x 22 Bytes = 213 Bytes = page size

'X$Z % National Yang Ming Chiao Tung University

=3¢71n
‘ég-r Computer Architecture & System Lab

Multi-Level Page Table

« How many levels of page tables would be required ?
o A virtual memory system with physical memory of 8 GB, a
page size of 8 KB, 46 bit virtual address, and PTE sizeis 4 B
o Now, size of page table > page size (224 B > 213 B)
o Create one more level [third last level]
- Number of page tables in second last level
= 224 Bytes / 213 Bytes = 211
o Size of page table [third last level]=
= 211 x 22 Bytes = 213 Bytes = page size

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Page Sizes

» More ISAs support multiple page sizes
. x86: 4KB, 2MB, 1GB

» larger pages have pros and cons
+ reduce page table size
- fewer entries needed to map a given amount of address
space
+ page table can be shallower
* makes page table lookups faster
- “internal fragmentation” that wastes physical memory
- allocate 2MB page but use only 5KB of it
— complex implementation
« OS looks for opportunities to use large pages

48

National Yang Ming Chiao Tung University
Computer Architecture & System Lab

RV32 Page Sizes
- 32-bit virt addrs S) i 1 T "

10 10 12

g Figure 4.16: Sv32 virtual address.
4KB pages
. RV64 5 PPN 2‘2_21 PPN[0] 12_ 3 page offset -]

12 10 12

. Supports 4KB, QMB, Figure 4.17: Sv32 physical address.
1 GB, 51 2GB pages :;“ PPN]]] 2“|]EI PPN | lt:t;\\fu' b TA | G [i [X [w j R [v |

12 10 T2 11 1 11

Figure 4.18: 5v32 page table entry.

X | W | R || Meaning

0| 0 | 0| Pointer to next level of page table.
0 0 |1 | Read-only page.

01 1 |0 | Reserved for future use.

0 1 |1 | Read-write page.

1| 0 |0 | Execute-only page.

1| 0 |1 | Read-exceute page.

1| 1 | 0 || Reserved for future use.

1 | 1 |1 || Read-write-execute page.

Table 4.5: Encoding of PTE R/W /X fields.

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

AT

Page Protections

» Piggy-back on page-table mechanism

- Map VPN to PPN + Read/Write/Execute
permission bits

- |f you attempt to execute data, to write read-only
data, or to read unmapped data...
» Exception —» OS terminates program
+ this is what a segmentation fault is
 helps protect against bugs and security vulnerabilities

« Useful for processes, and even for OS itself

50

'X$7 % National Yang Ming Chiao Tung University
%;%'IP Computer Architecture & System Lab
Address Translation Mechanics Il

« Conceptually
« Translate VA to PA before every cache access
- Walk the page table before every load/store/insn-fetch
— Would be terribly inefficient (even in hardware)

* In reality

« Translation Lookaside Buffer (TLB): cache translations
« Only walk page table on TLB miss

« Computer system design truisms
« Functionality problem? Add indirection (e.g., VM)
+ Performance problem? Add cache (e.g., TLB)

51

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Translation Lookaside Buffer (TLB)

o Good virtual memory design should be fast (~1 clock

cycle) and space efficient
o Every instruction/data access needs address translation

o But if page tables are in memory
o we must perform a page table walk per instruction/data access
= Single-level page table: 2 memory accesses
= Two-level page table: 3 memory accesses
o Solutions: Cache some translations in Translation Lookaside
Buffer

52

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Translation Lookaside Buffer (TLB)

« Translation lookaside buffer (TLB)
o Small cache: 16-64 entries i
- Associative (4+ way or fully o
associative common)
o Exploit temporal locality in page
table e
> What if an entry isn’t found in the || —
TLB? T
= Invoke TLB miss handler, - momory
walk page table e

page frame
number number

TLB hit

physical
] address

53

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Translation Lookaside Buffer (TLB)

« Translation lookaside buffer (TLB)
- A cache of address translations Virtual address _

. . [vén] —|-_-1' Page offset
o Avoid accessing the page table on L
every memory access
> Index = lower bits of VPN (virtual -
page #) Index
o Tag = unused bits of VPN + process ID | Page
- Data = a page-table entry rysicalpagene. g v

(Physical address)

o Status = valid, dirty

54

t National Yang Ming Chiao Tung University

i 1Y
ig-r Computer Architecture & System Lab

Translation Lookaside Buffer (TLB)

. A . . The TLB is indexed by the

Virtual - .
Sddress TLB tag TLB index offlset Virtual Page Number.

TLBindex/ |~ | TLBtag' PPN Page offset
tag used just L 1 1 :
like in a cache L ! v
PPN offset
L ’)

Physical addresls (split two ways)

* The data ' ‘
cache is Tag Index Offset
indexed Py . Tag | Block data Block
the Physical | | offset

| |

Address.

;\i’ﬁ‘ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

TLB Organization

- Like caches: TLBs also have ABCs
- Capacity
« Associativity (=4-way associative, full-assoc common)
- What does it mean for a TLB to have a block size of two?
- Two VPs can a single tag
« VPs must be aligned and consecutive
- Like caches: there are second-level TLBs

- Example: AMD Opteron

« 32-entry FA TLBs, 512-entry 4-way L2 TLB (insn & data)

« 4KB pages, 48-bit virtual addresses, four-level page table
« TLB should “cover” size of on-chip caches

- (#PTEs in TLB) * page_size > cache_size

- Why? Consider relative miss latency in each...

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

« TLB miss: translation not in TLB, but in page
table

- Two ways to “fill” it, both relatively fast

- Hardware-managed TLB: x86, ARM, RV

- Page table root in hardware register, hardware “walks” table
+ Latency: saves cost of OS call (avoids pipeline flush)
— Page table format is hard-coded

- Software-managed TLB: Alpha, MIPS

« Short (~10 insn) OS routine walks page table, updates TLB
+ Keeps page table format flexible
— Latency: 1-2 memory accesses + OS call (pipeline flush)

57

=3\p7

X if\ National Yang Ming Chiao Tung University

_‘r 874 Computer Architecture & System Lab

TLB Misses and Pipeline Stalls

K

1$

s [|TLB

>

lnop

>

I

>

Redfile

o

>
T
®

>
*
o o¢

v

TLB misses stall pipeline just like data hazards...
...if TLB is hardware-managed

If TLB is software-managed...
...must generate an interrupt

Hardware will not handle TLB miss

58

X ﬁ National Yang Ming Chiao Tung University
AY

=3¢7
‘E{T Computer Architecture & System Lab

Memory Access

o Can a cache hold the requested data if the corresponding
page is not in main memory?

o NO!
hit miss
Currently Executing: I VA TLB PA : I Primary
D
1b t0,0xFFFFF004 (x0) e Hpage cable Jata Memory
entry block
CPU
- — _

requested data 59

National Yang Ming Chiao Tung University

%i‘:i Computer Architecture & System Lab
The Life of Virtual Memory Access

ia

hit

MMUS$, physical
PT walk = address
T miss
fill line

miss

dCCess memaory

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
i

‘,i-r Computer Architecture & System Lab

Conclusion

« Virtual memory gives the illustration of “infinite” capacity
o A subset of virtual pages are located in physical memory
o A page table maps virtual pages to physical pages

o Address translation
o« A TLB speeds up address translation

o Multi-level page tables keep the page table size in check

61

