X //1 National Yang Ming Chiao Tung University
T i [N
a7+ Computer Architecture & System Lab

Lecture 11: Cache ll

CS10014 Computer Organization

Tsung Tal Yeh
Department of Computer Science
National Yang Ming Chiao University



X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Acknowledgements and Disclaimer

e Slides were developed in the reference with
® CS61C at UC Berkeley
® hittps://inst.eecs.berkeley.edu/~cs61c/sp23/
® (CS252 at ETHZ
® hittps://safari.ethz.ch/digitaltechnik/spring2023
® (CIS510 at Upenn
® hitps://www.cis.upenn.edu/~cis5710/spring2019/



https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://safari.ethz.ch/digitaltechnik/spring2023
https://www.cis.upenn.edu/~cis5710/spring2019/

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Outline

« Associativity

» Fully Associative Cache

« N-way Set Associative Cache
« Cache Write Issue

« Cache Replacement Policy

o Multi-level Caches



X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Review: Cache Basics

o How to transparently move data among levels of a

storage hierarchy
o Address => index to set of candidates
o Compare desired address with tag
o Service hit or miss -> load new block and binding on miss

address: tag index offset

00000000O0O0OOOOOOOOO 0OOOOOOOO1 1100

Vali
Tag / Oxc-f O0x8- -7 0x0-3
0 tzj} c B 3

: WNHFO




X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

AT

Review: Cache Basics

o 4-bit addresses -> 16 bytes memory

o 8 bytes cache, 2 bytes blocks
o The number of sets: 4 (capacity / block size)
o How address splits into offset/index/tag bits
« Offset: least-significant log,(block size) = log,(2) = 1-> 0000
=« Index: next log,(number-of-sets) = log,(4) = 2 -> 0000
= lag:rest=4-1-2=1->0000

T — S




X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Review: Cache Basics

o Given capacity, manipulate miss rate by changing cache

organization S
« One option: increase block size Ao
- Exploit spatial locality Iz
o Notice index/offset bits change N
o Tag remain the same EL
e Increasing cache block size . oot
o + reduce miss rate (up to a point) 4 el

o + reduce tag overhead (why?) [T WF
o - potentially useless data transfer address  data hit? 6



X ,/1\ National Yang Ming Chiao Tung University

=337
",%-r Computer Architecture & System Lab

Review: Cache Basics

e Hit Time
o Time to find and retrieve data from current level cache
o Miss Penalty

o Average time to retrieve data on a current level miss (includes the
possibility of misses on successive levels of memory hierarchy)

o Hit Rate
o % of requests that are found in current level cache

o Miss Rate
o 1 - Hit Rate




'X$Z % National Yang Ming Chiao Tung University

=3¢71n
‘ég-r Computer Architecture & System Lab

Review: Cache Basics

Valid Bit Tag Cache Data

1 | | B3TB2TBIIB 0]

o Cache Size =4 bytes, Block Size = 4 bytes
o Only ONE entry (row) in the cache

« If item accessed, likely accessed again soon
o But unlikely will be accessed again immediately!

o The next access will likely to be a miss again
o Continually loading data into the cache but discard data before

using it again

o Nightmare for cache designer: Ping Pong Effect




'X$7 % National Yang Ming Chiao Tung University
=‘;§‘;'IP Computer Architecture & System Lab
Review: Cache Basics

Miss Miss
. Penalty Rate

Fewer blocks:
compromises

temporal locality

Exploits Spatial Locality

Block Size Block Size
Average Increased Miss Penalty
AC_CeSS 4 & Miss Rate

Time

Block Size



X fﬁ National Yang Ming Chiao Tung University
_‘r{'? Computer Architecture & System Lab
Direct mapped Set associative Fully associative
Block# 01234567 Set#¢ 0 1 2 3
Data Data Data
1 1 1
T T T
- 2 d = 2
Seach ] Seach | ] Secr TTTTTTT

FIGURE 513 The location of a memory block whose address is 12 in a cache with eight blocks varies for direct-
mapped, set-associative, and fully associative placement. [n dircct-mapped placement, there = only one cache block where
mcmory block 12 can be found, and that block s grven by (12 modubo 8) = 4. In a two-way sct-associative cache, there would be four scts,
and memory block 12 must be insct (12 mod 4) =0; the memory block could be in cither ckement of the sct. In a fully assocative placement,

the memory block for block add ress 12 can appear in any of the cight cache blocks.

10



X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Associativity

o Direct-mapped cache
o Index completely specifies position which position a block can go
In on a miss
o« N-Way Set associative
o Index specifies a set, but block can occupy any positions within
the set on a miss
o Fully associative
o Block can be written into any positions

11



XtZ

1Y

National Yang Ming Chiao Tung University

=327
‘E{T Computer Architecture & System Lab

Associativity

o Set-associativity

(@)

(@]

(@)

(@)

(@]

(@)

(@)

(@)

Frame groups called sets
Each frame in set called a way
This is 2-way set-associative (SA)
1-way -> directed-mapped (DM)
1-set-> fully-associative (FA)
+ Reduce conflicts
- Increase latency,,;

= Additional tag match & muxing

[ st T 102

Block can reside in one of few frames

associativity T

—

4B 4B
[10:2] preEE
[31:11]
addr hit data

12



X ﬁ National Yang Ming Chiao Tung University
AY

=3¢7
‘E{T Computer Architecture & System Lab

associativity T

—

Associativity s ] o

o Lookup algorithm
4B 4B

o Use index bits to find set ——
o Read data/tags in all frames in parallel -
o Any (match and valid bit), Hit —— i

. . . [10:2]
o Notice tag/index/offset bits

= Only 9-bit index (versus 10-bit [31:11]
for direct mapped)
addr hit data

13



=§ f National Yang Ming Chiao Tung University
_‘E{'IP Computer Architecture & System Lab
Associativity
tag array data array
—1— frame _
block/line
valid bit
tag”
way

block offset/displacement

address: [[fag | index



X ,/1\ National Yang Ming Chiao Tung University

=337
‘,%-r Computer Architecture & System Lab

Associativity

« How many blocks can be presented in the same index
(i.e., SEt)? hit rate

o Larger associativity
o Lower miss rate (reduced conflict)

o Higher hit latency and area cost

o Smaller associativity
o Lower cost
o Lower hit latency o
o Especially important for L1 assoclativity
caches 15




X ,ﬁ\ National Yang Ming Chiao Tung University

=337
‘,%-r Computer Architecture & System Lab

Fully Associative Cache

« Memory address fields
o Tag: same as before
o Offset: same as before
o Index: Non-exist
o What does this mean?
o No “rows”: any block can go anywhere in the cache
o Must compare with all tags in entire cache to see if data is there

16



X ,/1 National Yang Ming Chiao Tung University
AT d 1N
i

‘é\-r Computer Architecture & System Lab

Fully Associative Cache

o Fully Associative Cache (e.g., 32 bytes block)
o Compare tags in parallel

31 4 0
Cache Tag (27 bits long)  [Byte Offset

Cache Tag Va_lid Cache Data

O EI"EBU

|
?

éf"




X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Fully Associative Cache

o Fully Associative Cache

o A block can be placed in any cache location

Tag store | I ] I ] ] | ]
y J l y d l y l
=? =? =? =7 =? =7 =? =?
l J v y ) l l l
Logic
! Hit?
Data store| | I | | | | I
v v v \ ! v
o MUX
Address WJX/A}“E injblock
tag byte in block
5bits | 3 bits

18



X ,ﬁ\ National Yang Ming Chiao Tung University

=337
‘Eg-r Computer Architecture & System Lab

Fully Associative Cache

o Benefit of Fully Assoc Cache
o No conflict misses (since data can go anywhere)

o« Drawbacks of Fully Assoc Cache
o Need hardware comparator for every single entry
o If we have a 64KB of data in cache with 4 bytes entries, we need
16K comparators
o Expensive to build

V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data
e ¢+ r trr r &+ r+ &+ &+ & 17 [ T[ [ |

19



X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Types of Cache Misses

“Three Cs” Model of Misses
o 3'd C: Capacity Misses
o Miss that occurs because the cache has a limited size

o Miss that would not occur if we increase the size of the cache
o This is the primary type of miss for Fully Associative cache

20



X

a4 Computer Architecture & System Lab

N-way Set Associative Cache

X %ﬁ\ National Yang Ming Chiao Tung University

o« Memory address fields:
o Tag: same as before
o Offset: same as before
o Index: points us to the correct “row” (called a set in this case)

o What's the difference?

o Each set contains multiple blocks
o Once we've found correct set, must compare with all tags in that
set to find our data



_\/

#Z % National Yang Ming Chiao Tung University
Computer Architecture & System Lab

II\

N- -way Set Associative Cache

Memory Cache
Address Memory Index
: 0-
1 0
1
2
3 1
4
5
6 . .
. Here is a simple 2-way set
2 associative cache
B
C
D
E
F

22



X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

N-way Set Associative Cache

e Basic idea
o Cache is directed-mapped w/respect to sets
o Each set is fully associative with N blocks in it

o Given memory address
o Find correct set using index value
o Compare Tag with all Tag values in the determined set
o If a match occurs, hit! Otherwise a miss

o Finally, use the offset field as usual to find the desired data within
the block

23



X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

N-way Set Associative Cache

o What’s so great about this?
o Even a 2-way set associative cache avoids a lot of conflict misses
o Hardware cost isn’t that bad: only need N comparators
» In fact, for a cache with M blocks
o It's Direct-Mapped if it's 1-way set associativity
o It's Fully Associative if it's M-way set associativity
o S0 these two are just special cases of the more general set

associative design

24



=3\p7

X if\ National Yang Ming Chiao Tung University

_‘r 874 Computer Architecture & System Lab

N-way Set Associative Cache

Memory
Address

Byte
Tag Set Offset
| oo
Way 1 Way 0
28 2 ¥
V' Tag Data V' Tag Data
128 32 28 32
L /
_-I = o

J[sz

Data

2-way set
associative
cache

Hit

25



National Yang Ming Chiao Tung University

YA
- Computer Architecture & System Lab

i
N-way Set Associative Cache

3130--+12111098---3210
I |

I
tag 22 &
frTiex
Tag Data 4-Way Set

index V Tag Data V Tag Data V Tag Data v
:
2—23» 7 i i O 5 Y T associative
e cache
Jz2 {32
(=
# ways = index

(= fr:) ng:)
| - length / offset
. j length
ST

Hit

26




éi’ﬁ‘ National Yang Ming Chiao Tung University

- 874 Computer Architecture & System Lab

ia

N-way Set Associative Performance

# RISC-V assembly code

Miss Rate =

addi $to, $0, 5
loop: beq $te, %0, done

lw  $t1, ox4a($e)

lw $t2, ox24(%0)

addi $te, $te, -1

Jj loop
done:

Way 1 Way 0

I I I
V' Tag Data V Tag Data
0 0 Set 3
0 0 Set 2
11 00..10 | mem[0x00...24] [ 1 | 00..00 | mem[0x00...04] | Set 1
0 0 Set 0

27



'X$7 % National Yang Ming Chiao Tung University
=X
a4 Computer Architecture & System Lab

ia

N-way Set Associative Performance

# RISC-V assembly code Miss Rate = 2/10

addi $to, %0, 5 — [7)
loop: beq $te, $0, done =20%

lw $t1, ox4(%e) TR

Iw $t2. ox24($0) Asso§|at|v!ty reduces

addi $te, $te, -1 conflict misses

j loop
done:

Way 1 Way 0

| | | |
V Tag Data V' Tag Data
0 0 Set 3
0 0 Set 2
11 00..10 | mem[0x00...24] | 1 | 00..00 | mem[0x00...04] | Set 1
0 0 Set 0

28



X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Cache Replacement Policy

« If we have the choice, where should we write an incoming

block?
o If there are any locations with valid bit off (empty), then usually
write the new block into the first one
o If all possible locations already have a valid block, we must pick a

replacement policy:
= Rule by which we determine which block gets “cached out” on

a miss

29



X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Cache Replacement Policy

o On cache miss, which block in set to replace (kick out)?

o If there are any locations with valid bit off (empty), then usually
write the new block into the first one
o If all possible locations already have a valid block, we must pick a

replacement policy:
= Rule by which we determine which block gets “cached out” on

a miss

30



X i% National Yang Ming Chiao Tung University

17
SOZ1h

=‘r 874 Computer Architecture & System Lab

Cache Replacement Policy

« Block replacement options
o Random
o FIFO (first-in first-out)
o LRU (least recently used)
« Fit with temporal locality, LRU = |least likely to be used in
future
o NMRU (not most recently used)
= Track which block in setis MRU
= Onreplacement, pick a non-MRU block
= One MRU pointer per set (vs. N LRU counters)




§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Cache Replacement Policy: LRU

e LRU (Least Recently Used)

o ldea:
= cache out block which has been accessed (read or write)
least recently
o Pro:
= temporal locality => recent past use implies likely future use
o Con:
= With 2-way set assoc, easy to keep track (on LRU bit)
= With 4-way or greater, requires complicated hardware and
much time to keep track of this

32



X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Cache Replacement Policy: LRU

: data f
o Add LRU field to each set e frommemor}
- LRU data is encoded “way” i

o Hit? Update MRU - —
o LRU bits updated on each
511 - 1023
access :

! g&

- [14:5] 40 l>/<< /

aldress data

&
*
""t

33




X$7 & National Yang Ming Chiao Tung University

=E3471N
‘,%-r Computer Architecture & System Lab

Cache Replacement Policy: LRU

« We have a 2-way set associative cache with a four word
total capacity and one word blocks. We perform the
following word access (ignore bytes for this problem)

- 0,20,1,4,0,2,3,5,4

 How many hits an how many misses will there be for the

LRU cache replacement policy?

34



X ,/1 National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

Cache Replacement Policy: LRU

0: miss, bring into set O (loc 0)

2. miss, bring into set O (loc 1)
O: hit

1: miss, bring into set 1 (loc 0)

Addresses 0, 2,0, 1,4, 0, ...

loc O loc 1
set O‘ 0 Iru
set 1‘
set of U ol 2
set 1
set 0} 0 ”UZ
set 1
set O‘ 0 ”Uz
set 1‘ 1 Iru




'X$Z % National Yang Ming Chiao Tung University

=3¢71n
‘,%-r Computer Architecture & System Lab

: loc 0 loc 1
Cache Replacement Policy: LRU —
set O‘ o2
1: miss, bring into set 1 (loc 0) set 1‘ 1 Iru
set 0 ”U4
4: miss, bring into set O (loc 1, replace 2) set1 1 Iru
set 0 0 ”U4
0: M set1] 1 Iru

Addresses 0, 2,0, 1,4, 0, ...



=3\p7

X if\ National Yang Ming Chiao Tung University

_‘r 874 Computer Architecture & System Lab

Cache Replacement Policy: LRU
« 4-bit address, 8B Cache, 2B Blocks, 2-way

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Olv|Zz2|Z|r|R|lw|—m|T|IO|M|M|O|O|m|>

Main memory | tag (2 bit) | index (1bits) | 1bit |
Way 0 LRU Way 1
Data Data
Tag 0 1 Tag 0
0 00 B 0 01 E F
1 00 C D 1 01 G




=3\p7

X if\ National Yang Ming Chiao Tung University

_‘r 874 Computer Architecture & System Lab

Cache Replacement Policy: LRU
« 4-bit address, 8B Cache, 2B Blocks, 2-way

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

A

n
'u:Zert—-HIG)-anhUJ

QO

Main memory | tag (2 bit) | index (1bits) | 1bit |
Load: 1110 Miss
Way 0 LRU Way 1

Data Data

Tag 0 1 Tag 0 1

0 | 00 l B | o | o1 l E | F

1 00 C = D 01 G « H

Eemmmnm L — Immmmnm L —




fﬁ\ National Yang Ming Chiao Tung University
FlaT4 Computer Architecture & System Lab

Cache Replacement Policy: LRU
« 4-bit address, 8B Cache, 2B Blocks, 2-way

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

Main memory | tag (2 bit) | index (1bits) | 1bit |

Load: 1110 Miss

Way 0 LRU Way 1
Data Data
Tag 0 1 Tag 0 1

LRU updated on each access
(not just misses)

[ |
0:1:2 ZEIrlR|lvwlw|TalmMmm|ojo|w|>




X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Cache Write Issue

« So far we have looked at reading from cache
o Instruction fetches, loads

o What about writing into cache
o Stores, not an issue for instruction caches

o Several new issues
o Tag/data access
o Write-through vs. write-back
o Write-allocate vs. write-not-allocate
o Hiding write miss latency

40



X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Cache Write Issue

o Tag/Data access
o Reads: read tag and data in parallel
= Tag mis-match -> data is wrong (OK, just stall until good data
arrives)
o Writes: read tag, write data in parallel? No. Why?
= Tag mis-match -> clobbered data (oops!)
= For associative caches, which way was written into?

41



X

,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Cache Write Issue

o Tag/Data access
o Writes are a pipelined two step (multi-cycle) process
=« Step 1. match tag
= Step 2: write to matching way
= Bypass (with address check) to avoid load stalls
= May introduce structural hazards

42



'X$Z % National Yang Ming Chiao Tung University

=3¢71n
‘Eg-r Computer Architecture & System Lab

Cache Write Issue

o Write propagation: when to propagate new value to (lower
level) memory?

- Option #1: Write-through: immediately
= On hit, update cache
= Immediately send the write to the next level

- Option #2: Write-back: when block is replaced
= Requires additional “dirty” bit per block
= Replace clean block: no extra traffic

= Replace dirty block: extra “writeback” of block
43



{1\ National Yang Ming Chiao Tung University
a

&t/ Computer Architecture & System Lab

Cache Write Issue

o Option #2: Write-back: when block is replaced
o Writeback-buffer (WBB)
= Hide latency of writeback (keep off critical
path)
=« Step#1: Send “fill” request to next-level
= Step#2: While waiting, write dirty block to buffer
= Step#3: When new blocks arrives, put it into cache
= Step#4:. Write buffer contents to next-level

Next-level-$




N

a4 Computer Architecture & System Lab

Cache Write Issue

o Write-through
o - Requires additional bus bandwidth
= Consider repeated write hits
o - Next level must handle small writes (1, 2, 4, 8-bytes)
o + No need for dirty bits in cache
o + No need to handle “writeback” operations
= Simplifies miss handling

e Write-back

o + Key advantages: uses less bandwidth
o Used in most CPU designs

X iﬁ\ National Yang Ming Chiao Tung University




X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
"Eg-r Computer Architecture & System Lab

Cache Write Issue

o Write Miss Handling
o Write-allocate: fill block from next level, then write it
= + Decreases read misses (next read to block will hit)
= - Requires additional bandwidth
= Commonly used (especially with write-back caches)
o Write-non-allocate: just write to next level, no allocate
= - Potentially more read misses
= + Uses less bandwidth
= Use with write-through

46



X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Cache Write Issue

o Write Miss and Store Buffers
o Read miss?
=« Load can’t go on without the data
= |t must stall
o Write miss?
= No instruction is waiting for data
= Why stall?

a7



'X$7 % National Yang Ming Chiao Tung University
=‘;§‘;'IP Computer Architecture & System Lab
Cache Write Issue

e Write Miss and Store Buffers

O

O

O

O

O

Stores put address/value to store buffer,

keep going

Store buffer writes stores to D$ in the
background

Loads must search store buffer

+ Eliminates stalls on write misses (mostly)
Store buffer vs. write-back buffer

= Store buffer: in front of D$, for hiding store
misses

= Write-buffer: behind D$, for hiding
writebacks

WBB

Processor

SB

Y ¥

‘ Cache

F 3

Y

Next-level
cache

48



X

a4 Computer Architecture & System Lab

Classifying Misses: 3C Model

e Divide cache misses into three categories
e Compulsory (cold): never seen this address before
 Would miss even in infinite cache
e Capacity: miss caused because cache is too small
e Would miss even in fully associative cache

o Identify? Consecutive accesses to block separated by access to
at least N other distinct blocks (N is number of frames in cache)

e Conflict: miss caused because cache associativity is too low
o Identify? All other misses

e (Coherence): miss due to external invalidations
e Only in shared memory multiprocessors (later)

X iﬁ\ National Yang Ming Chiao Tung University




X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab
L |
L}
Miss Rate: ABC

e Why do we care about 3C miss model?
e So that we know what to do to eliminate misses
o If you don't have conflict misses, increasing associativity won't help

* More associativity (assuming fixed capacity)
+ Decreases conflict misses
— Increases latencyy,;;
e Larger block size (assuming fixed capacity)
— Increases conflict/capacity misses (fewer frames)
+ Decreases compulsory misses (spatial locality)
* No significant effect on latency,,;
e More capacity
+ Decreases capacity misses
— Increases latency,;

50



X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Reducing Conflict Misses: Victim Buffer

e Conflict misses: not enough associativity

» High associativity is expensive, but also rarely needed

» 3 blocks mapping to same 2-way set and accessed (XYZ)+

e Victim buffer (VB): small fully-associative cache

e Sits on I$/D$ miss path

 Small (e.g., 8 entries) so very fast

» Blocks kicked out of I$/D$ placed in VB

e On miss, check VB: hit? Place block back in I$/D$
e 8 extra ways, shared among all sets

+ Only a few sets will need it at any given time
+ Very effective in practice

1$/D$

1§

VB

L2

51



X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Prefetching

e Bring data into cache proactively/speculatively
e If successful, reduces number of caches misses

o Key: anticipate upcoming miss addresses accurately
e (Can do in software or hardware

e Simple hardware prefetching: next block prefetching

e Miss on address X — anticipate miss on X+block-size
+ Works for insns: sequential execution

+ Works for data: arrays

1$/D$

e Table-driven hardware prefetching
* Use predictor to detect strides, common patterns

—

o Effectiveness determined by: prefetch logic

e Timeliness: initiate prefetches sufficiently in advance

v

h 4

* Coverage: prefetch for as many misses as possible
e Accuracy: don't pollute with unnecessary data

L2

52



;\i’ﬁ‘ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

Software Prefetching

e Use a special “prefetch” instruction
e Tells the hardware to bring in data
e Just a hint

e Inserted by programmer or compiler

e Example
int tree add(tree_ t* t) {
if (t == NULL) return 0;
__builtin prefetch(t->left);
__builtin prefetch(t->right);
return t->val + tree add(t->right) + tree add(t->left);
}

o Multiple prefetches bring multiple blocks in parallel
e More “Memory-level” parallelism (MLP)



;\i’ﬁ‘ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

Software Restructuring: Data

o (Capacity misses: poor spatial or temporal locality
» Several code restructuring techniques to improve both
— Compiler must know that restructuring preserves semantics

 Loop interchange: spatial locality
e Example: row-major matrix: X[i] [j] followed by X[i] [j+1]
e Poor code: X[1i][j] followed by X[i+1][7]
for (j = 0; j<NCOLS; j++)
for (1 = 0; i<NROWS; i++)
sum += X[1i] []]~
e Better code
for (1 = 0; i<NROWS; i++)
for (j = 0; j<NCOLS; j++)
sum += X[1i][]]~

54



X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Software Restructuring: Data

e Loop blocking: temporal locality
* Poor code
for (k=0; k<NUM ITERATIONS; k++)
for (i1i=0; i<NUM ELEMS; i++)
X[1] = £(X[1]):; /] say
* Better code
e Cut array into CACHE_SIZE chunks
e Run all phases on one chunk, proceed to next chunk
for (i=0; i<NUM ELEMS; i+=CACHE SIZE)
for (k=0; k<NUM ITERATIONS; k++)
for (j=0; j<CACHE SIZE; j++)
X[1i+3] = £(X[1+]]);

— Assumes you know CACHE SIZE, do you?

55



#Z % National Yang Ming Chiao Tung University
Computer Architecture & System Lab

Software Restructurina: Code
e Compiler can lay out code for temporal and spatial locality
o If (@) { codel; } else { code2; } code3;
e But, code2 case never happens (say, error condition)

X
=t

¢
I

/
lj

+ Better locality for code

+ Better locality
+ Fewer taken branches
after code3
+ Fewer taken branches



X ,/1\ National Yang Ming Chiao Tung University

=337
",%-r Computer Architecture & System Lab

Multi-level Caches

o T, cess VS- Y0, tradeoff

o Upper memory components (I$, D$) emphasize low t
o Frequent access ->t, ..., Important
o Thiss IS NOt bad -> %,.... less important
o Lower capacity and lower associativity (to reduce t
o Small-medium block-size (to reduce conflicts)

e Moving down (L2, L3) emphasis turns to %,
o Thiss IS bad -> %, Important
o High capacity, associativity, and block size (to reduce %

acCccess

access)

miss)

S7



#Z % National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

Multi-level Caches

o« Memory hierarchy parameters

Parameter |I$/D$ L2 L3 Main Memory
taccess 2ns 10ns 30ns 100ns

tmiss 10ns 30ns 100ns 10ms (10M ns)
Capacity 8KB—64KB 256KB-8MB | 2-16MB 1-4GBs

Block size 16B-64B 32B-128B 32B-256B NA

Associativity | 2-8 4-16 4-16 NA

58




X %% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Multi-level Caches

o Split vs. unified caches

o Split I$/D$: instruction and data in different caches
o To minimize structural hazards and t,_ ..
o Larger unified 1$/D$ would be slow, 2" port even slower
o Optimize I$ and D$ separately
= Not write for I$, smaller reads for D$



X ,ﬁ\ National Yang Ming Chiao Tung University

=337
",%-r Computer Architecture & System Lab

Multi-level Caches

o Split vs. unified caches

o Unified L2, L3: instruction and data together
o To minimize %,

o + Fewer capacity misses: unused instruction capacity can be
used for data
o - More conflict misses: instruction/data conflict
= A much smaller effect in large caches

o Instruction/data structural hazards are rare: simultaneous I$/D$
MmISS

60



Ntz National Yang Ming Chiao Tung University
=‘;§“'IP Computer Architecture & System Lab
Multi-level Caches

e Inclusion
* Bring block from memory into L2 then L1
e A block in the L1 is always in the L2
e If block evicted from L2, must also evict it from L1
* Why? more on this when we talk about multicore

e Exclusion
e Bring block from memory into L1 but not L2
e Move block to L2 on L1 eviction
e |2 becomes a large victim cache
» Block is either in L1 or L2 (never both)
e Good if L2 is small relative to L1
e Example: AMD's Duron 64KB L1s, 64KB L2

61



iﬁ\ National Yang Ming Chiao Tung University

X
_‘r 874 Computer Architecture & System Lab

Multi-level Caches

« Memory performance equation

CPU e For memory component M
T e Access: read or writeto M
tccess e Hit: desired data found in M
A\ e Miss: desired data not found in M
e Must get from another (slower) component
M " e Fill: action of placing data in M
/°m|ss
r * 9% ..i.c (Miss-rate): #misses / #accesses
: timiss o t..cess: time to read data from (write data to) M

e t,: time to read data into M

e Performance metric
e t,.o: average access time

tavg = taccess + (o/omiss * tmiss)



X

a4 Computer Architecture & System Lab

Takeaway Question

X %ﬁ\ National Yang Ming Chiao Tung University

o Parameters
o Baseline pipeline CPI =1
o 30% of instructions are memory operations
o L1:t, s = 1 cycle (included in CPI of 1), %,,.s = 5% of accesses
o L2:t, s = 10 cycle, %, = 20% of L2 accesses

o DRAM: t ... = 50 cycle
o What is the new CPI?



_\\ij National Yang Ming Chiao Tung University

- 874 Computer Architecture & System Lab

Takeaway Question

Parameters
o 30% of instructions are memory operations
o L1:t, s = 1 cycle (included in CPI of 1), %, = 5% of accesses

O

L2: t

sccess — 10 cycle, %, = 20% of L2 accesses

o DRAM: t ... = 50 cycle
What is the new CPI?

O

CPI=1+30

tmlssD$ tavg L2 =
cycles

Thus, CPI =

% * 3% * tmlssD$
ach2 (/0m|ssL2 tachem) - 10 + (20%*50) — 20

1+ 30% *5% * 20 = 1.3 CPI

64



X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Conclusion

« Memory hierarchy
o Cache (SRAM) -> Memory (DRAM) -> swap (Disk)
o Smaller, faster, more expensive
« Cache ABCs (capacity, associativity, block size)
o 3C miss model: compulsory, capacity, conflict
o Write issues
o Write-back vs. write-through/write-allocate vs. write-no-allocate

65



