
Lecture 10: Cache I

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao University

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS252 at ETHZ

● https://safari.ethz.ch/digitaltechnik/spring2023

● CIS510 at Upenn

● https://www.cis.upenn.edu/~cis5710/spring2019/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://safari.ethz.ch/digitaltechnik/spring2023
https://www.cis.upenn.edu/~cis5710/spring2019/

Outline

● Memory Hierarchy

● Memory Caching

● Cache Basics

● Direct-Mapped Cache

● Read Data in Direct-Mapped Cache

● Directed-Mapped Cache Hardware

3

Types of Memory

● Static RAM (SRAM)

○ 6 or 8 transistors per bit

○ Two inverters (4 transistors) + transistors for reading/writing

○ Optimized for speed (first) and density (second)

○ Fast (sub-nanosecond latencies for small SRAM)

■ Speed roughly proportional to its area (~sqrt(number of bits))

○ Mixes well with standard processor logic

4

Types of Memory

● Dynamic RAM (DRAM)

○ 1 transistor + 1 capacitor per bit

○ Optimized for density (in terms of cost per bit)

○ Slow (> 30 ns internal access, ~50 ns pin-to-pin)

○ Different fabrication steps (does not mix well with logic)

● Nonvolatile storage: Magnetic disk, Flash RAM, Phase-change

memory, …

5

Memory & Storage Technologies

● Cost – what can $200 buy (2009)?
○ SRAM: 16MB

○ DRAM: 4,000 MB(4GB) – 250x cheaper than SRAM

○ Flash: 64,000 MB (64GB) = 16x cheaper than DRAM

○ Disk: 2,000,000MB (2TB) – 32x vs Flash (512x vs. DRAM)

● Latency
○ SRAM: < 1 to 2ns (on chip)

○ DRAM: ~50ns – 100x or more slower than SRAM

○ Flash: 75,000ns (75 microseconds) – 1500x vs. DRAM

○ Disk: 10,000,000ns (10ms) – 133x vs Flash (200,000x vs DRAM)

6

Memory & Storage Technologies

● Bandwidth

○ SRAM: 300GB/sec (e.g., 12-port 8-byte register file @ 3GHz)

○ DRAM: ~25GB/s

○ Flash: 0.25GB/s (250MB/s), 100x less than DRAM

○ Disk: 0.1GB/s (100MB/s), 250x vs DRAM, sequential access only

7

Memory Hierarchy

● Problems in memories

○ Bigger is slower

■ Bigger -> takes longer to determine the location

○ Faster is more expensive

■ SRAM vs. DRAM vs. SSD vs. Disk vs. Tape

○ Higher bandwidth is more expensive

■ Need more banks, more ports, more channels, higher

frequency or faster technology

8

Memory Hierarchy

● Why memory hierarchy?

○ We want both fast and large

○ But, we cannot achieve both with a single level of memory

○ Idea: Have multiple levels of storage

■ Bigger and slower as the levels are farther from the processor

■ Ensure most of the data the processor needs is kept in the

fast level

9

Memory Hierarchy

10

Memory Hierarchy

11

Memory Hierarchy

12

The Unit: Cache

● Cache: hardware managed
○ Hardware automatically retrieves missing

data

○ Built from fast SRAM, usually on-chip today

○ In contrast to off-chip, DRAM “main

memory”

● Cache organization
○ Speed vs. Capacity

○ Miss classification

13

Memory Locality

● Cache contains copies of data in memory being used

● Memory contains copies of data on disk being used

● Caches work on principles of temporal and spatial locality
○ Temporal locality: if we use it now, chances are we’ll want to use it

again soon

■ Data elements accessed in loops (same data elements are

accessed multiple times)

○ Spatial locality: if we use a piece of memory, chances are we’ll use

the neighboring pieces soon

■ Data elements accessed in array (each time different or just next

element is being accessing)
14

Exploiting Locality: Memory Hierarchy

15

Concrete Memory Hierarchy

16

Evolution of Cache Hierarchies

17

Cache Basics

18

Cache Basics

19

● A key question

○ How to map chunks of the main memory address space to blocks in

the cache?

○ Which location in cache can a given “main memory chunk” be

placed in?

Cache Basics

20

Cache Basics

21

● Block (line): Unit of storage in the cache
○ Memory is logically divided into blocks that map to potential locations

in the cache

● When reading memory, 3 things can happen
○ Cache HIT:

■ Cache block is valid and contains proper address, so read desired
word

○ Cache MISS:
■ Nothing in cache in appropriate block, so fetch from memory

○ Cache miss, block replacement
■ Wrong data is in cache at appropriate block, so discard it and fetch

desired data from memory

Cache Basics

● Each block address maps to a potential location in the cache,
determined by the index bits in the address

● Index
○ Specifies the cache index (which “row”/block of the cache we should

look in)

● Offset
○ Once we’ve found correct block, specifies which byte within the block

we want

● Tag
○ The remaining bits after offset and index are determined
○ These are used to distinguish between all the memory address that

map to the same location
22

Cache Basics

23

Cache Basics

24

● Cache associativity

○ One set can contain multiple cache blocks

Logical Cache Organization

25

Looking Up A Block

● A byte-addressable main memory

○ 256 bytes, 8-byte blocks -> 32 blocks in memory

○ Assume cache: 64 bytes, 8 blocks

26

Looking Up A Block

27

Is this the block you’re looking for?

28

Is this the block you’re looking for?

29

Handling a Cache Miss

30

Cache Misses and Pipeline Stalls

31

Cache Misses

32

● Types of Misses

○ Compulsory: First time data is accessed

○ Capacity: cache too small to hold all data of interest

○ Conflict: data of interest maps to same location in cache

○ Miss penalty: time it takes to retrieve a block from lower level of

hierarchy

Cache Performance Equation

33

Cache Performance Equation

34

● Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)

● Average memory access time (AMAT)

○ = (hit-rate * hit-latency) + (miss-rate * miss-latency)

CPI Calculation with Cache Misses

35

Multi-Word Cache Blocks

36

Cache Examples

37

4-bit Address, 8B Cache, 2B Blocks

38

4-bit Address, 8B Cache, 2B Blocks

39

4-bit Address, 8B Cache, 2B Blocks

40

Capacity and Performance

41

Block Size

42

Block Size and Tag Overhead

43

4-bit Address, 8B Cache, 4B Blocks

44

4-bit Address, 8B Cache, 4B Blocks

45

Effect of Block Size on Miss Rate

46

Block Size and Miss Penalty

47

Cache Conflicts

48

Direct-Mapped Cache

● Directed-mapped cache

○ A given main memory block can be placed in only one possible

location in the cache

○ Toy example: 256-byte memory, 64-byte cache, 8-byte blocks

49

Direct-Mapped Cache

50

Direct-Mapped Cache

● In a directed-mapped cache

○ Multiple memory addresses map to the same cache index, how do

we tell which one is in there?

○ What if we have a block size > 1 byte?

○ Ans: divide memory address into three fields

51

Direct-Mapped Cache

● A byte-addressable main memory

○ 256 bytes, 8-byte blocks -> 32 blocks in memory

○ Assume cache: 64 bytes, 8 blocks

○ Directed-mapped: A block can go to only one

location

52

Blocks with same

index contend for

the same cache

location => cause

conflict misses

when accessed

consecutively

Direct-Mapped Cache

● Direct-mapped cache

○ Two blocks in memory that map to the same index in the cache

cannot be present in the cache at the same time

○ One index -> one entry

○ Can lead to 0% hit rate if more than one block accessed in an

interleaved manner map to the same index

■ Assume addresses A and B have the same index bits but

different tag bits

■ A, B, A, B, A, B, A, B … -> conflict in the cache index

■ All accesses are conflict misses
53

Direct-Mapped Cache Example

● Suppose we have a 8B of data in a direct-mapped cache

with 2 byte blocks

● Determine the size of the tag, index, and offset fields if we

are using a 32-bit architecture

○ Offset

■ Need to specify correct byte within a block

■ Block contains 2 bytes = 21 bytes

■ Need 1 bit to specify correct byte

54

Direct-Mapped Cache Example

● Suppose we have a 8B of data in a direct-mapped cache

with 2 byte blocks

○ Index (index into an “array of blocks”)

■ Need to specify correct block in cache

■ # blocks/cache = bytes/cache

bytes/block

= 23 bytes/cache

21 bytes/block

= 22 blocks/cache

■ Need 2 bits to specify this many blocks
55

Direct-Mapped Cache Example

● Suppose we have a 8B of data in a direct-mapped cache

with 2 byte blocks

○ Tag: use remaining bits as tag

○ Tag length = address length – offset – index

= 32 – 1 – 2 bits

= 29 bits

56

The tag is leftmost 29 bits of

memory address

Read Data in Direct-Mapped Cache

● Ex. 16 KB of data, direct-mapped,

4 word block

● Read 4 addresses

○ 0x00000014

○ 0x0000001C

○ 0x00000034

○ 0x00008014

57

Read Data in Direct-Mapped Cache

● 4 addresses divided into

58

0x00000014

0x0000001C

0x00000034

0x00008014

Read Data in Direct-Mapped Cache

● 16 KB direct-mapped cache, 16B blocks

○ Valid bit: determines whether anything is stored in that row

(when computer initially turned on, all entries invalid)

59

Read Data in Direct-Mapped Cache

● No valid data

60

Read Data in Direct-Mapped Cache (5/15)

● Load that data into cache, setting tag, valid

61

Read Data in Direct-Mapped Cache

● Read from cache at offset, return word b

62

Read Data in Direct-Mapped Cache

● Read 0x00000034

63

Read Data in Direct-Mapped Cache

● Read block 3

64

Read Data in Direct-Mapped Cache

● No valid data

65

Read Data in Direct-Mapped Cache

● Load that cache block, return word f

66

Read Data in Direct-Mapped Cache

● Read 0x00008014

67

Read Data in Direct-Mapped Cache

● Read cache block 1, data is valid

68

Read Data in Direct-Mapped Cache

● Cache block 1 tag does not match (0 != 2)

69

Read Data in Direct-Mapped Cache

● Miss, so replace block 1 with new data & tag

70

Read Data in Direct-Mapped Cache

● Return word J

71

Takeaway Questions

● What is the cache status when reading?

○ Read address 0x00000030?

■ 000000000000000000 0000000011 0000

○ Read address 0x0000001C?

■ 000000000000000000 0000000001 1100

72

Takeaway Questions

● 0x00000030 a hit

○ Index = 3, Tag matches, offset = 0,

value = e

● 0x000001C a miss

○ Index = 1, tag mismatch, so replace from

memory, offset = 0xc, value = d

● Read values must = memory values

whether or not cached

○ 0x00000030 = e

○ 0x0000001C = d 73

Directed-Mapped Cache Hardware

74

Directed-Mapped Cache Hardware

75

Directed-Mapped Cache Hardware

76

Directed-Mapped Cache Hardware

77

Directed-Mapped Cache Hardware

78

● Increase block size

○ Block size , b = 4 words

○ C = 8 words, direct mapped (1 block per set)

○ Number of blocks, B = C/b = 8/4 = 2

Directed-Mapped Cache Hardware

79

Directed-Mapped Cache Hardware

80

Conclusion

● We would like to have the capacity of disk at the speed of

the processor: unfortunately this is not feasible

● So we create a memory hierarchy:

○ each successively lower level contains “most used” data from

next higher level

○ exploits temporal & spatial locality

○ do the common case fast, worry less about the exceptions

● Locality of reference is a Big Idea

81

