
Lab1: RISC-V Assembly Language

Programming

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao University

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● RISC-V Programming

● https://riscv-programming.org/book/riscv-book.html

● CENG3420, CUHK

● https://www.cse.cuhk.edu.hk/~byu/CENG3420/2022Spring/slides/l

ab1-1.pdf

2

https://riscv-programming.org/book/riscv-book.html
https://www.cse.cuhk.edu.hk/~byu/CENG3420/2022Spring/slides/lab1-1.pdf

Outline

● RISC-V Assembly Programming

● Labels

● Symbols

● Directives

● RARS RISC-V Assembly Simulator

3

Generating native programs

● A native program is a program
● Encoded using instructions that

can be directly executed by the

computer hardware

4

C Code
int main ()

{

int r = func (10);

return r+1;

}

RISC-V assembly code
.text

.align 2

main:

addi sp, sp, -16

li a0, 10

sw ra, 12(sp)

jal func

lw ra, 12(sp)

addi a0, a0, 1

addi sp, sp, 16

ret

Generating native programs

● A compiler
● translate a program from one language to another
● riscv64-unknown-elf-gcc -mabi=ilp32 -march=rv32i -S main.c -o main.s

● The RV32I assembly program will be stored on the main.s file

● An Assembler
● A assembler is a tool that translates a program in assembly

language into a program in machine language

● The GNU assembler tool (as) is an assembler

● The assembler produces object files (.o) that are encoded in

binary and contains code in machine language
● riscv64-unknown-elf-as -mabi=ilp32 -march=rv32i main.s -o main.o

5

Generating native programs

● A linker
● A tool that ‘links’

together one or more

object files

● Produces an

executable file

6

riscv64-unknown-elf-ld -m elf32lriscv

main.o mylib.o -o main.x

main.x is an executable file

Labels

● A label in assembly language
● As a marker that represent program

location

● ‘x:’ label identifies a program location

that contains a variable, which is

allocated and initialized by the directive

.word 10

● ‘sum10:’ label identifies the program location that contains the

first instruction of the sum10 routine

7

RISC-V assembly code
x:

.word 10

sum10:

lw a0, x

addia0, a0, 10

ret

Program Symbol

● Program symbols
● “names” that are associated with numerical values

● The “symbol table” is a data structure that maps each

program system to its value

● “nm” tool helps us to inspect the symbol table of a program

8

$ riscv64-unknown-elf-nm sum10.o

00000004 t .L0

00000004 t sum10

00000000 t x

Program Symbol

● Using the “.set” directive
● Explicitly define symbols

● The follow example that uses .set directive to define a symbol

named answer and assign value 42 to it

● Two symbols: answer, get_answer

9

.set answer, 42

get_answer

li a0, answer

ret

Global vs local Symbols

● Local symbols
● Only visible on the same file

● By default, the assembler registers labels as local symbols

● The .global directive
● Instructs the assembler to register a label as a global symbol

10

.global exit

exit:

li a0, 0

li a7, 93

ecall

Program Entry Point

● The entry point is defined by an address
● The address of the first instruction that must be executed

● The linker sets the entry point field on the executable file and

looks for a symbol named start

● The linker sets the entry point to a default value (the address

of the first instruction of the program) if the linker cannot find

“start” symbol

11

.global start

start:

li a0, 10

li a1, 20

jal exit

Program Section

● The assembly program is usually organized in ‘sections’
● A section may contain data or instructions

● The contents of each section are mapped to a set of

consecutive main memory addresses

● .text
● Store the program instructions

● .data
● Store initialized global variables

● .bss
● Store uninitialized global variables

● .rodata
● Store constants 12

Executable File (ELF)

● When linking multiple object files
● The linker groups information from

sections with the same name and

places them together into a single

section on the exec. File

● .text are mapped to addresses 8000

to 8007

● .data are mapped to addresses 800d

to 8011

13

Assembly Language

● Assembly program contains
● Comment
● Labels

● Usually defined by a name ended with the suffix “:”
● Assembly instructions

● Converted by the assembler into machine instructions
● E.g. addi a0, a1, 1

● Assembly directives
● Commands used to coordinate the assembling process
● E.g. .word 10

● Instruct the assembler to assemble a 32-bit value (10)
into the program

14

Program Structure I

● Plain text file with data declarations

● Data declaration section is followed by program code

section

15

Program Structure II

16

Program Structure III

17

An Example RISC-V Assembly Program

18

RISC-V ISA Simulator - RARS

● RARS
● The RISC-V Assembler, Runtime, and Simulator for RISC-V

assembly language programs

● RARS supports RISC-V IMFDN ISA base (riscv32 & riscv64)

● RARS supports debugging using breakpoints like ebreak

● RARS supports side by side comparison from pseudo-

instruction to machine with intermediate steps

● You need to Java environment to run RARS

● https://www.java.com/download/ie_manual.jsp

● Download RARA

● https://github.com/TheThirdOne/rars/releases/tag/v1.6 19

https://www.java.com/download/ie_manual.jsp
https://github.com/TheThirdOne/rars/releases/tag/v1.6

RISC-V ISA Simulator - RARS

● How to run RARS?
● Execute the command to start RARS: java -jar <rars jar path>

● In Windows OS

● Ensure you have installed Java Environment

● Right click

● Open with -> Java (TM) SE Platform

20

RISC-V ISA Simulator - RARS

21

RISC-V ISA Simulator - RARS

22

RAS Exec. Panel

RISC-V ISA Simulator - RARS

23

RISC-V ISA Simulator - RARS

24

RISC-V ISA Simulator - RARS

● RARS shortcut in windows OS
● Create a new source file: Ctrl + N

● Close the current source file: Ctrl + W

● Assemble the source code: F3

● Execute the current source code: F5

● Step running: F7

● Instructions & System call query: F1

25

