

Accelerator Architectures for Machine Learning (AAML)

Lecture 9: Sparse DNN Accelerator

Tsung Tai Yeh

Department of Computer Science

National Yang-Ming Chiao Tung University

Acknowledgements and Disclaimer

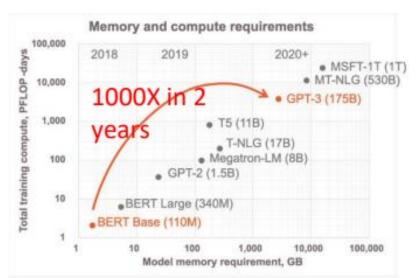
 Slides was developed in the reference with Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020 CS231n Convolutional Neural Networks for Visual Recognition, Stanford University, 2020 CS224W: Machine Learning with Graphs, Stanford University, 2021

Outline

- Sparse Transformer Model
- TPU v4 Sparse Core
- Nvidia Tensor Core: M:N Sparsity
- Cnvlutin Sparse Accelerator
- TorchSparse: Sparse CONV on the GPU

Unsustainable ML Model Growth

- We need a better way to grow models more efficiently
- Get the advantages of larger models but with substantially less compute and memory resources



Sparsity might be one of answer

Deep Transformer Models

- Attention memory usage for a deep Transformer
 - 64 layers and 4 heads, recomputed during the backward pass
 - Requires the creation of an N x N attention matrix for every layer and attention head

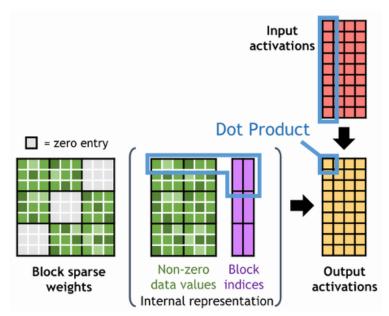
Data type	Stored	Recomputed
1024 text tokens (several paragraphs)	1.0 GB	16 MB
32×32×3 pixels (CIFAR-10 image)	9.6 GB	151 MB
64×64×3 pixels (Imagenet 64 image)	154 GB	2.4 GB
24,000 samples (~2 seconds of 12 kHz audio)	590 GB	9.2GB

Sparse Transformer

- Two-dimensional factorization of the attention matrix
 - The stride attention is roughly equivalent to each position attending to its row and its column
 - The fixed attention attends to a fixed column and the elements after the latest column elements

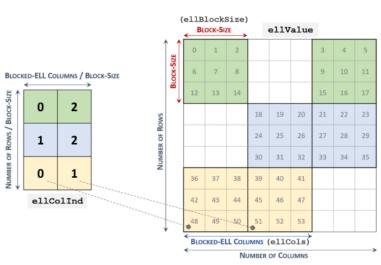
cuSPARSE Block-SpMM

- The full matrix organized in blocks and its internal memory representation
 - Compressed values and block indices
 - Not all values of matrix B are accessed for computing the output
 - Skipping unnecessary
 computations represented
 by zeros



cuSPARSE Block-SpMM

- Blocked-Ellpack Format (Blocked-ELL)
 - The right array stores nonzero values in consecutive blocks
 - The second array contains the column indices of the corresponding nonzero blocks
 - All rows in the left arrays must have the same number of blocks
 - Allow zero padding



Compressed Sparse Row (CSR) Format

- A matrix M (m * n) is represented by three 1-D vectors
- The A vector
 - Store values of non-zero elements
 - Row-by-row traversing order
- The IA vector
 - Store the cumulative number of non-zero elements with size m + 1
 - $\circ \quad \mathsf{IA}[\mathsf{0}] = \mathsf{0}$
 - IA[i] = IA[i 1] + # of non-zero elements in (i-1) th row of the M
- The JA vector
 - Store the column index of each element in the A vector

CSR Case Study

- A vector is [3, 4, 2, 1]
- JA vector stores column indices of element in A
- JA = [0, 1, 2, 1]
- IA[0] = 0, IA[1] = IA[0] + # of non-zero
 elements in row 0 = 0
- IA[2] = IA[1] + 2 = 2, IA[3] = IA[2] + 1 = 3, IA[4] = IA[3] + 1 = 4
- IA = [0, 0, 2, 3, 4]

0	Index 1 2 3				
0	0	0	0		
3	4	0	0		
0	0	2	0		
0	1	0	0		

Analysis of CSR Format

- The sparsity of the matrix
 - (Total # of elements # of non-zero elements) / Total # of element
- The direct array based representation required memory
 - 3 * NNZ (Number of Non-Zero)
- CSR format required memory: 2 * NNZ + m + 1
- CSR matrices are memory efficient as long as
 - \circ NNZ < (m * (n 1) 1)/2

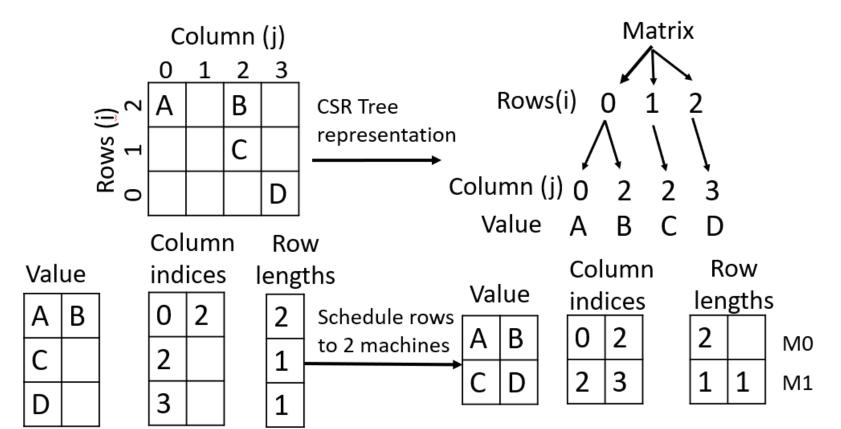
Compressed Sparse Column (CSC) Format

- A matrix M (m * n) is represented by three 1-D vectors
- The A vector
 - Store values of non-zero elements
 - Column-by-column traversing order
- The IA vector
 - Store the cumulative number of non-zero elements with size n + 1
 - $\circ \quad \mathsf{IA}[\mathsf{0}] = \mathsf{0}$
 - IA[i] = IA[I 1] + # of non-zero elements in (i-1) th column of the M

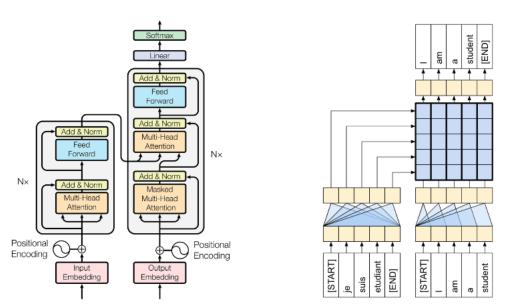
The JA vector

Store the row index of each element in the A vector

Sparse Matrix Vector Multiplication (SpMV)

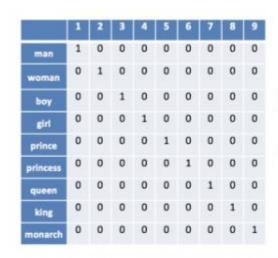


- Sparse Core accelerates Embedding layer of NLP
 - DLRM (deep learning recommendation models)

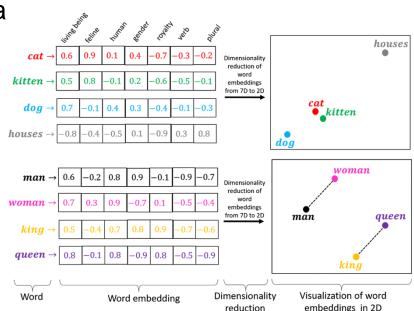


- Accelerate embedding lookups
 - Stress memory bandwidth with all-to-all communication traffic

Sparse feature vector data

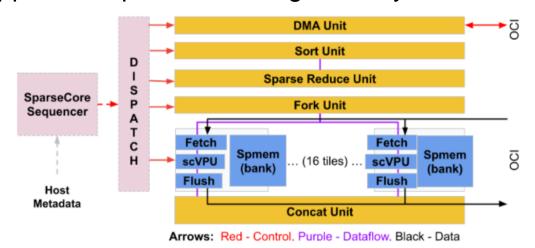


Each word gets a 1x9 vector representation



- Problems of TensorCore for sparse embeddings
 - Produce a lot of small gather/scatter memory accesses
 - Variable length data exchange
- Dedicated inter-core connection link (ICI) with HBM memory on TPU
 - Provide fast gather/scatter memory access support

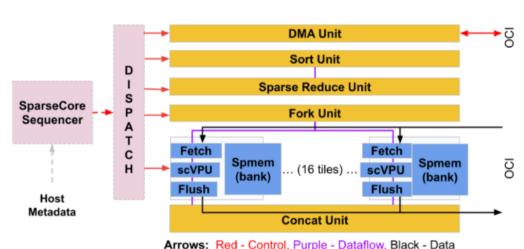
- TPU v4 includes 4 sparse core(SC)
 - Each SC consists of 16 compute tiles
 - Each tile has an associated HBM channel
 - Support multiple outstanding memory accesses



- TPU v4 includes 4 sparse core(SC)
 - Each tile has a <u>Fetch Unit</u>, a programmable 8-wide SIMD Vector Processing Unit (<u>scVPU</u>)

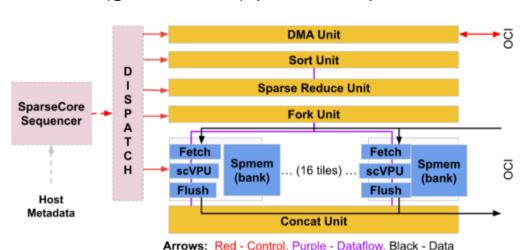
Fetch unit reads activations and parameters from the HBM

into the tile's slice of a 2.5 MB spmem

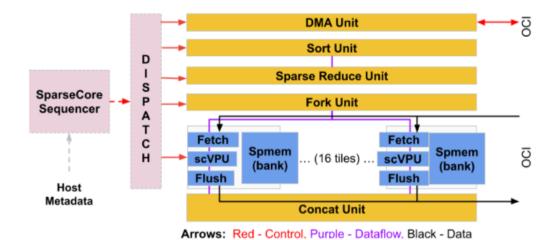


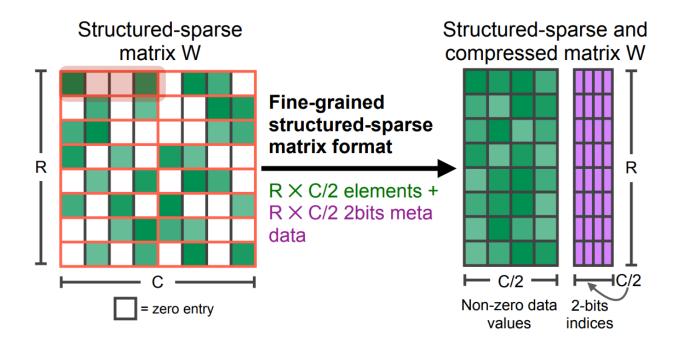
- TPU v4 includes 4 sparse core(SC)
 - The <u>Flush Unit</u> writes updated parameters to HBM during the backward pass
 - Five <u>cross-channel units (gold boxes)</u> perform specific

embedding operations

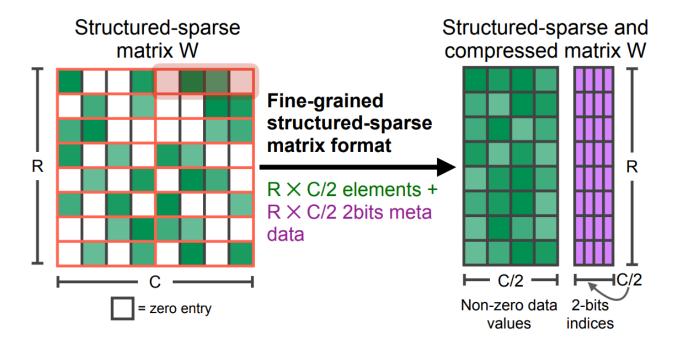


- TPU v4 includes 4 sparse core(SC)
 - Each cross-channel unit executes CISC-like instructions
 - Operate on variable-length inputs
 - Operate across all 16 banks of spmem collectively

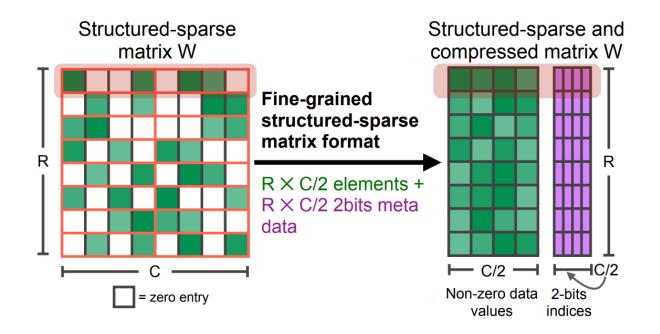




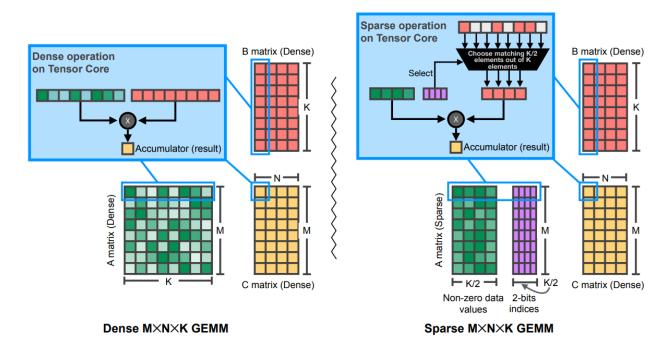
Two weights are nonzero out of four consecutive weights (2:4 sparsity).



Two weights are nonzero out of four consecutive weights (2:4 sparsity).



Push all the nonzero elements to the left in memory: save storage and computation.



The indices are used to mask out the inputs. Only 2 multiplications will be done out of four.

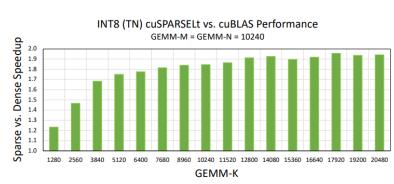


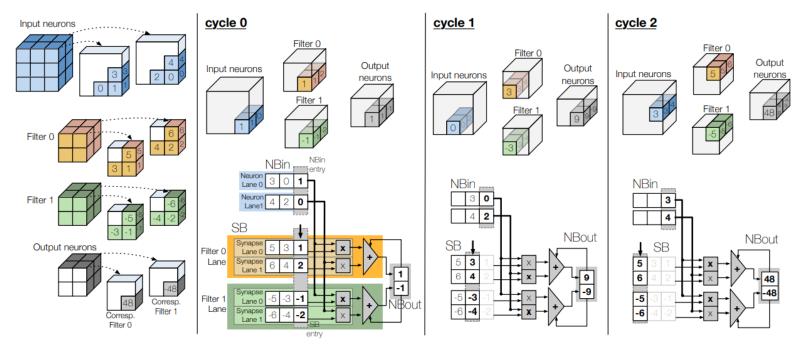
Fig. 3. Comparison of sparse and dense INT8 GEMMs on NVIDIA A100 Tensor Cores. Larger GEMMs achieve nearly a $2\times$ speedup with Sparse Tensor Cores.

Network	Accuracy		
	Dense FP16	Sparse FP16	Sparse INT8
ResNet-34	73.7	73.9	73.7
ResNet-50	76.1	76.2	76.2
ResNet-50 (SWSL)	81.1	80.9	80.9
ResNet-101	77.7	78.0	77.9
ResNeXt-50-32x4	77.6	77.7	77.7
ResNeXt-101-32x16	79.7	79.9	79.9
ResNeXt-101-32x16 (WSL)	84.2	84.0	84.2
DenseNet-121	75.5	75.3	75.3
DenseNet-161	78.8	78.8	78.9
Wide ResNet-50	78.5	78.6	78.5
Wide ResNet-101	78.9	79.2	79.1
Inception v3	77.1	77.1	77.1
Xception	79.2	79.2	79.2
VGG-11	70.9	70.9	70.8
VGG-16	74.0	74.1	74.1
VGG-19	75.0	75.0	75.0
SUNet-128	75.6	76.0	75.4
SUNet-7-128	76.4	76.5	76.3
DRN26	75.2	75.3	75.3
DRN-105	79.4	79.5	79.4

Pruning CNNs with 2:4 sparsity will bring about large speedup for GEMM workloads and it will not incur performance drop for DNN models.

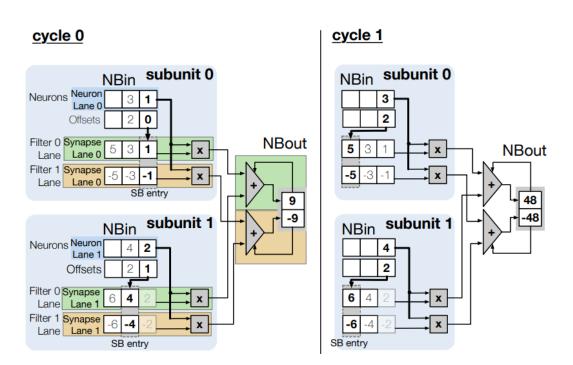
Cnvlutin

Baseline does not skip zero and takes three cycles to complete



Cnvlutin

- Work on CONV layer
- Cnvlutin skips zero to shorten the execution time
- Add offset bit to indicate the proper filter to read



Takeaway Questions

- What are critical issues when designing a sparse DNN accelerator?
 - (A) Compressed data overhead
 - (B) Sparse data mapping
 - (C) Hard to prefetch data