

Accelerator Architectures for Machine Learning (AAML)

Lecture 6: Digital DNN Accelerator

Tsung Tai Yeh

Department of Computer Science

National Yang-Ming Chiao Tung University

Acknowledgements and Disclaimer

 Slides was developed in the reference with Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020 CS231n Convolutional Neural Networks for Visual Recognition, Stanford University, 2020 CS224W: Machine Learning with Graphs, Stanford University, 2021

Outline

- Reconfigurable Deep Learning Accelerators
 - Reconfigurable FPGA
 - SambaNova Reconfigurable Dataflow Unit (RDU)
 - Coarse grained reconfigurable array (CGRA)
 - Meta MTIA Al Accelerator
 - Tenstorrent Al Processor
 - Wafer-scale AI chip -- Cerebras

Reconfigurable Deep Learning on FPGA

Spectrum of Architectures for Deep Learning

FLEXIBILITY

EFFICIENCY

MS BrainWave Achronix Etc. Google TPU Cerebras Etc.

Why Reconfigurable Computing?

- Al accelerators improves 100X performance/energy compared to general-purpose processor
- But new hardware is sophisticated and expensive
 - Especially in cutting-edge manufacturing processes

Can we bridge the gap btwn general-purpose & accelerators w/out custom hardware?

Reconfigurable Computing

Basic idea

- A spatial array of processing elements (PEs) & memories with a configurable network
- Map your computation spatially onto the array
- Goal: programmable with near ASIC efficiency

Basic FPGA Design

ö

Modern FPGAs

- FPGAs are coarse-grain today
 - Hardened logic in LUTs
 - "DSP blocks" to implement wide add/mul efficiently
 - Dense memories distributed throughout fabric

Mode Name	Mathematical Function
Multiplication Mode	X 'Y
Adder or Subtract Mode	(X + Y) or (X-Y)
Multiply-Add/Subtract	(X 'Y) + Z or (X 'Y) - Z
Multiply Accumulate Mode	(X ' Y) + Acc or (X ' Y) – Acc
Vector One Mode	(X 'Y) + Chain In

Interconnect Network

Switch Matrix

High-Level Synthesis (HLS)

- Automated optimization and scheduling
- High portability against different PDK or PPA requirements
- Short design cycle

Challenges of HLS Accelerator Design

Time consuming

 Manual architecture and micro-architecture design, manual C/C++ code rewriting

Suboptimal

 Empirical parameter tuning, like parallel factors, buffer sizes, tiling sizes, etc..

Low flexibility

Only support a small set of models

Accelerator Design Languages (ADLs)

- Pythonic
- Maintainability
 - Decoupled hardware customizations
- Composability
 - All the kernels, primitives, and schedules should be composable to form complex designs

SambaNova Reconfigurable Dataflow Unit (RDU)

Plasticine Architecture

Plasticine architecture

- A reconfigurable architecture for parallel patterns (Raghu, ISCA 2017)
- Pattern Compute Unit (PCU)
 - Reconfigurable pipeline with multiple stages of SIMD functional units (FUs)
- Pattern Memory Unit (PMU)
 - A banked scratchpad memory
- The compiler
 - Maps the computation of inner loops to PCUs
 - Most operands are transferred directly between FUs without scratchpad access or inter-PCU communication

Plasticine Architecture Overview

- Data access address calculation occurs while the PCU is working
- Each DRAM channel is accessed using several address generators (AG) on two sides of the chip
- Multiple AGs connect to an address coalescing unit for memory requests

Plasticine PCU Architecture

- Pattern Compute Unit (PCU)
 - Each stage's SIMD lane contains a FU and associated pipeline register (PR)

- **1. Scalar**: uses to communicate single words of data
- 2. Each **vector** communicates one word per line in the PCU
- **3. Control** signals at the start or end of execution of a PCU

Plasticine PMU Architecture

Pattern Memory Unit (PMU)

- Contains a scratchpad memory and address calculation
- Calculates address only needs simple scalar math
- Has simpler FUs than ones in PCUs

Reconfigurable Dataflow Unit (RDU)

SambaNova RDU

- Pattern Compute Units
 - BF16 with FP32 accumulation
 - Support FP32, Int32, Int16, Int8
- Pattern Memory Unit
 - Memory transformation
- Dataflow optimization
 - Tiling
 - Nested pipelining
 - Operator parallel streaming

Dataflow Exploits Data Locality / Parallelism

Software-hardware co-design architecture

- Dataflow captures data locality and parallelism
- Flexible time and space scheduling to achieve higher utilization
- Flexible memory system and interconnect to sustain high compute throughput
- Custom dataflow pipeline

Chip and Architecture Overview

RDU Tile

- Compute and memory components
- A programmable interconnect

Tile resource management

- Combine adjacent tiles to form a larger logical tile
- Each tile controlled independently
- Allow different applications on separate tiles concurrently

Memory access

- Direct access to TBs DDR4 off-chip memory
- Memory-mapped access to host memory

RDU Tile

Pattern Compute Unit (PCU)

- Pattern Compute Unit (PCU)
 - Compute engine
- Reconfigurable SIMD data path
 - For dense and sparse tensor algebra in FP32, BF16, and integer data format
- Programmable counters
 - Program loop iterators
- Tail unit
 - Accelerates functions such as exp, sigmoid

Pattern Memory Unit (PMU)

- Pattern Memory Unit (PMU)
 - On-chip memory system
 - Banked SRAM arrays
 - Write and read multiple high bandwidth SIMD data stream concurrently
 - Address ALUs
 - Address calculation for arbitrarily complex accesses
 - Data align
 - Tensor layout transformation

Switch and On-chip Interconnect

- Switch
 - Programmable packet-switched interconnect fabric
- Independent data and control buses
 - Suit different traffic classes
- Programmable routing
 - Flexible chip bandwidth allocation to concurrent stream
- Programmable counters
 - Outer loop iterators
 - On-chip metric collection

Interface to I/O Subsystem

Address ALUs

Address calculation for arbitrarily complex accesses

Coalescing Units

Enable transparent
 access to memories
 across RDUs and host
 memory

Address space manager

Programmable, variable length segments

Operator Mapping

Operator Mapping (Softmax)

Pipelined in Space

Pipelined in Space + Fused

Spatial Dataflow within an RDU

- The dataflow removes
 - Memory traffic and host communication overhead

CGRA

Coarse grained reconfigurable array (CGRA)

- Coarse grained reconfigurable array (CGRA)
 - Multiple processing elements (PEs)
 - Each PE has ALU-like functional unit
 - Array configurations vary by
 - Array size
 - Functional units
 - Interconnection network
 - Register file architectures
 - CGRAs can achieve power-efficiency of several 10s of GOps/sec per Watt (why?)
 - Samsung SRP processor (embedded and multimedia apps)

Key features of CGRA accelerators

- Software-pipelining execution mapping
 - Accelerate loops with low parallelism
 - Loops with loop-carried dependence, loops with high branch divergence
- Avoid von-Neumann architecture bottleneck
 - CGRAs are not subjected to dynamic fetch and decoding of instructions
 - CGRA instructions are in a pre-decoded form in the instruction memory
 - PE transfers data directly among each another
 - Without going through a centralized registers and memory

Loop execution on the CGRA

Data dependency graph

Loop:

t1 = (a[i]+b[i]-k)*c[i] $d[i] = \sim t1 \& 0xFFFF$

Execution time: 1

Loop execution on the CGRA

Loop:

t1 = (a[i]+b[i]-k)*c[i] $d[i] = \sim t1 \& 0xFFFF$

Data dependency graph

Mapping data dependency graph to CGRA

Execution time: 2

Loop execution on the CGRA

Loop:

t1 = (a[i]+b[i]-k)*c[i] $d[i] = \sim t1 \& 0xFFFF$

Data dependency graph

Mapping data dependency graph to CGRA

Execution time: 3

Loop execution on the CGRA

Loop:

t1 = (a[i]+b[i]-k)*c[i] $d[i] = \sim t1 \& 0xFFFF$

Data dependency graph

Mapping data dependency graph to CGRA

Execution time: 6

Takeaway Questions

- What are hardware components used by RDU?
 - (A) Pattern computer unit (PCU)
 - (B) Pattern memory unit (PMU)
 - (C) Interconnect network router
- What are features of CGRAs?
 - (A) Customized PEs
 - (B) Software-pipelining execution mapping
 - (C) Reconfigurable dataflow

Meta MTIA2 ASIC

MTIA Architecture

- 8x8 array of processing elements (PEs)
- Network-on-chip (NoC) connects to a set of on-chip SRAMs
- SRAMs are shared by the PEs and to off-chip memory
- Control core is quad-core RISC-V processor

MTIA PE

- Each PE includes 384 KB local memory
- RISC-V core issues
 commands to Command
 Processor to offload
 computations to
 fixed-function units

MTIA PE

- RISC-V Vector extension (64B wide)
- Memory Layout Unit (MLU) performs memory-layout transformation
- Dot Product Engine (DPE)performs GEMM

MTIA PE

- Dot Product Engine (DPE) performs GEMM
 - Two 32 x 32B x 32
 MAC tiles
 - 2.76 TFLOPS/s
 per PE with <u>FP16/</u>
 BF16 and output in

FP32 -> 2:4 sparsity for weights

MTIA PE

- Reduction Engine (RE)
 - Stores matrix
 multiply results as
 they are accumulated
- SIMD Engine (SE)
 - Performs quantization and nonlinear funcs
 - Includes LUT for approximating nonlinear functions

MTIA PE

- Fabric Interface (FI)
 - Acts as DMA engine to transfer data in and out of PE's local memory through NoC

MTIA Unique Memory Hierarchy

- Uses a large SRAM (256 MB) backed by LPDDR DRAM
 - Avoids HBM to reduce cost and power consumption
 - Meet latency requirements of recommendation models
 - The recommendation models exhibit significant locality
 - Similar to Cerebras and Groq accelerator
 - SRAM provides 2.7TB/s of bandwidth
 - Performance drops sharply as models reach a complexity and size that exceeds the SRAM capacity

New Feature in MTIA2i

- Dynamic INT8 quantization
 - Leveraging the reduction engine to identify the min and max values per batch
 - Channel-wise symmetric dynamic INT8 for FC layers
- Compression
 - Supports lossless asymmetric numerical system (ANS) compression for weights
 - Achieves up to a 50% compression ratio

MTIA2i Software Stack

- Support PyTorch eager mode
- TorchDynamo enables symbolic tracing to capture models with dynamic shapes
- TorchInductor generates
 Triton codes for PyTorch
 operator and operator fusion

Tenstorrent Al Hardware

The NoC grid of Tenstorrent Wormhole

- Most compute elements called a Tensix core
- D = DRAM
- T = Tensix
- E = Ethernet
- A = ARC
- P = PCI/e

Each Tensix contains

- 5 "Baby" RISC-V CPUs
 - 5 stage pipelined, single issue CPU
 - Handle instruction dispatch
- 2 NoC interface
- A vector unit
- A matrix/tensor unit

The Dataflow of Tensix

- NoC 0 reads data from DRAM
- Unpacker unpacks the data into a format that can be processed by the matrix/tensor unit
- Matrix/tensor unit performs the computation
- Packer packs the result back into a format for storage
- NoC 1 sends the result to DRAM

The Tensix NoCs

- The NoCs are <u>full-duplex</u>
- Both NoCs supports sending and receiving data at the same time
- NoC 0 running in the opposite direction of NoC1
- The uni-directional design of the NoCs reduce power and area
- The 2D torus topology ensures that every points on the chip remain accessible from every other point

3 kernels on Tensix

- 2 data movement kernels can be developed separately
- The 3 compute cores work cooperatively to perform the computation

Kernel Synchronization

- Circular buffers backed by hardware mutexes and SRAM
- Kernels wait for available space in the circular buffer, write data to it, and then mark that data as ready

SRAM, interleaved and shared buffers

- Allows data, intermediate tensor or operator buffers to live in SRAM
- This reduces the need for expensive DRAM accesses
- The "interleaved" mode is used for memory access
- The "shared mode" reduces the distance and cross talk when accessing DRAM for certain operations

Native tile based computing

- The Tensix natively performs operations on 32 x 32 tiles
- 32 x 32 tiles are small enough for hardware to digest in a few cycles

Cache Hierarchy

- There is no cache hierarchy on Tenstorrent chips
- Provides direct access to SRAM across the entire chip
- SRAM is not cache and no automatic caching occurs
- Data must be explicitly brought into SRAM

Wafer-scale AI chip -- Cerebras

Largest AI chip

- 46,225 mm² silicon
- 1.2 trillion transistors
- 400,000 Al optimized cores
- 18 Gigabytes of on-chip memory
- 9 Pbyte/s memory bandwidth
- 100 Pbit/s fabric bandwidth
- TSMC 16 nm process

Cerebras WSE

21.1 Billion
Transistors
815 mm² silicon

Why big chips?

- Big chips process data more quickly
 - Cluster scale performance on a single chip
 - GB of fast memory 1 clock cycle from core
 - On-chip interconnect orders of magnitude faster than offchip
 - Model-parallel, linear performance scaling
 - Training at scale, with any batch size, at full utilization

Cerebras Architecture

- Core optimized for neural network primitives
- Flexible, programmable core
 - NN models are evolving
- Designed for sparse compute
 - Workloads contain fine-grained sparsity (where are these sparsity from ?)
- Local memory
 - reusing weight & activations
- Fast interconnect
 - Layer-to-layer with high bandwidth and low latency

Cerebras programmable core

- Flexible cores optimized for tensor operations
 - General ops for control processing
 - e.g. arithmetic, logical, LD/ST, branch
 - Optimized tensor ops for data processing
 - Tensor operands
 - e.g. fmac [Z] = [Z], [W], a3D 3D 2D

Sparse compute engine

- Nonlinear activations naturally create fine-grained sparsity
- Dataflow scheduling in hardware
 - Triggered by data
 - Filters out sparse zero data
 - Skips unnecessary processing
- Fine-grained execution datapaths
 - Small cores with independent instructions
 - Efficiently processes dynamic, non-uniform work

Cerebras memory architecture

Traditional memory designs

- Centralized shared memory is slow & far away
- Requires high data reuse (caching)
- Local weights and activations are local -> low data reuse

Cerebras memory architecture

- All memory is fully distributed along compute
- Datapath has full performance from memory

Memory uniformly distributed across cores

■ Core Memory

High-bandwidth low-latency interconnect

- 2D mesh topology effective for local communication
 - High bandwidth and low latency for local communication
 - All HW-based communication avoids SW overhead
 - Small single-word message

Challenges of wafer scale

- Building a 46,225 mm², 1.2 trillion transistor chip
- Challenges include
 - Cross-die connectivity
 - Yield
 - Thermal expansion
 - Package assembly
 - Power and cooling

Takeaway Questions

- What are challenges to build a large chip for NN applications?
 - (A) Power and cooling
 - (B) Fault tolerance for defected dies
 - (C) Package assembly
- How does Cerebras tackle the DNN sparsity?
 - (A) Customized sparse core
 - (B) Data-driven dataflow scheduling
 - (C) Filters out sparse zero data