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Outline

o Reconfigurable Deep Learning Accelerators
- Reconfigurable FPGA
- SambaNova Reconfigurable Dataflow Unit (RDU)
- Coarse grained reconfigurable array (CGRA)
- Meta MTIA Al Accelerator
o Tenstorrent Al Processor
- Wafer-scale Al chip -- Cerebras
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Reconfigurable Deep Learning on FPGA



O
Spectrum of Architectures for Deep Learning

_cru | orv B reoa ) asic

Scalar processors Vector-based SIMD Customized Customized
with vector extension with DL extensions micro-arch micro-arch
MS BrainWave Google TPU

Achronix Cerebras

Etc. Etc.
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Why Reconfigurable Computing?

e Al accelerators improves 100X performance/energy compared
to general-purpose processor
e But new hardware is sophisticated and expensive
o Especially in cutting-edge manufacturing processes

Can we bridge the gap btwn general-purpose & accelerators w/out custom hardware?

Specialized

9soding-|esauan

ASICs Accelerators FPGAs GPUs Vector VLIW CPUs
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Reconfigurable Computing

« Basic idea

o A spatial array of processing
elements (PEs) & memories with
a configurable network

o Map your computation spatially
onto the array

o Goal: programmable with near
ASIC efficiency

Mem Mem Mem Mem
| | | |
NoC s NoC s NoC s NoC
| | 1 |
PE PE PE PE
| | 1 |
NoC = bo ——— iy . foC
| | | | [ | | |
PE PE PE PE
| | | | [ | | |

NoC s NoC s NoC s NoC

PE PE PE RE
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Basic FPGA Design

programmable routing

Tl

—= N +—
0000000000 _ PR
O O O Ry
o O ™1
N
HEEERERRER programmable lookup tables
I (LUT) and flip-flops (FF)
OO O00O0UOC) -t _aka “soft logic” or “fabric”
[:I_DD_DDDDI_:ID_D

: : E g LUTI FF
I/O pins g N

18-643-F23-L01-56, James C. Hoe, CMU/ECE/CALCM, ©2023
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Modern FPGAS

o« FPGAs are coarse-grain today
o Hardened logic in LUTs 3 M 0] TR |
o "DSP blocks” to implement wide add/mul Hosie Block - Memory BlockDSF Bleck
efficiently
o Dense memories distributed throughout fabric

Single-precision
Floating Paint
Mode Name Mathematical Function _—.r{b"l‘ cupur IS
Multiplication Mode Xy -
Adder or Subtract Mode (X +Y) or (X-Y) 7
Multiply-Add/Subtract (X ¥Y)+Zor(X"Y)-2Z
Multiply Accumulate Mode | (X " ¥)+ Accor (X " ¥Y) - Acc precis
Vector One Mode (X" Y)+ ChainIn e S?l—l‘ 9
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High-Level

High-Level Synthesis (HLS)
Synthesis
~
Logic Synthesis

lGate level netl

ist

e Automated optimization and scheduling
High portability against different PDK or
Technology mapping
st

1 LUT level netli

o
PPA requirements
e Short design cycle Deploy
g W Clustering
SO Highdevel 1 LB level netist
o PlaceSiRo ute

Configuration
data

CPU

10

\

Performance
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Challenges of HLS Accelerator Design

« Time consuming
o Manual architecture and micro-architecture design, manual
C/C++ code rewriting
e« Suboptimal
o Empirical parameter tuning, like parallel factors, buffer sizes,
tiling sizes, etc..
o Low flexibility
o Only support a small set of models

11
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Accelerator Design Languages (ADLS)

« Pythonic gﬂg
o Maintainability B
o Decoupled hardware customizations Pafsef A
o Composability e e i
o All the kernels, primitives, and schedules R BLZJiIder ®
should be composable to form complex Scheduler  MLIR
designs Seies S

12
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SambaNova Reconfigurable Dataflow
Unit (RDU)

13
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Plasticine Architecture
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e Plasticine architecture

o A reconfigurable architecture for parallel patterns (raghu, 1sca 2017)
o Pattern Compute Unit (PCU)
= Reconfigurable pipeline with multiple stages of SIMD functional units
(FUs)
o Pattern Memory Unit (PMU)
= A banked scratchpad memory
o The compiler
= Maps the computation of inner loops to PCUs
= Most operands are transferred directly between FUs without scratchpad
access or inter-PCU communication

14
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Plasticine Architecture Overview

e Data access address calculation occurs while the PCU is working

e Each DRAM channel is accessed using several address generators (AG)
on two sides of the chip

e Multiple AGs connect to an address coalescing unit for memory requests

= = [—“
AG <->L?L I's |« ['s |« ['s |« Npy s} '?_]-u AG
Coalescing PMU PCU PMU ‘ PCU PMU PCU Coalescing
Unit ‘ Unit
¢=>A AG q-{s sJ;\ /"15 \Js s.lf s sI‘J‘ AG ﬁ:{)
— PCU PMU PCU PMU PCU PMU —
ﬁtq{s s—"—/ [s s s | s} s}+ AG ﬁ
Coalescing /Jﬂ /1 ' Coalescing
Unit PMU PCU PMU | PCU PMU PCU Unit
QE"E’ 5] o \&r A el o Raghu, ISCA 125017
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Plasticine PCU Architecture

e Pattern Compute Unit (PCU)

Scalar: uses to communicate
single words of data

Each vector communicates
one word per line in the PCU
Control signals at the start or
end of execution of a PCU

o Each stage’s SIMD lane contains a FU and associated pipeline

register (PR)

Scalar

Scalar
-] Outputs
»

{ |
_— e
‘ Vector

- i LOutputs
HJJ

;HJ_

-~ Scalar EE )
FIFO v | L
= H s
» S F ]
Q Vector " L
Vector i > FU| i FU
Inputs '
Q Vector |
FIFO 11
—4 FU
Control Co |
Inputs
E—— !
: H Fu

- -
Control
Ou!pgts

Raghu, ISCA 2017
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Plasticine PMU Architecture

e Pattern Memory Unit (PMU)
o Contains a scratchpad memory and address calculation
o Calculates address only needs simple scalar math
o Has simpler FUs than ones in PCUs

Scalar
Scratchpad
mputs Scalar S ST OSC:"art
: utputs
FIFO o SRAM >
E Ly wa
| ' - Vector
g pt S R g = ‘Banking SRAM Outputs
FIFO B Y § i :
Vector %H* FU _’EH FUREREY Fu BER Buffering
Inputs . ||  Logic
Vector F' :
' FIFO ——
Control
Outputs

Raghu, ISCA 2017
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Reconfigurable Dataflow Unit (RDU)

1F TensorFlow User Graph User Kernel
Template Compiler

O PyTorch

Dataflow Graph Analyzer

e SambaNova RDU
Pattern Compute Units
BF16 with FP32 accumulation

Spatial Templates

Dataflow Graphs

O
|
= Support FP32, Int32, Int16, Int8
o Pattern Memory Unit
Dataflow Optimizer, Compiler, & Assembler
Runtime

= Memory transformation
Dataflow optimization
= Tiling

Nested pipelining
Operator parallel streaming

Sl|SambaNovar

(@]

18
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Dataflow Exploits Data Locality / Parallelism

o Software-hardware co-design architecture
o Dataflow captures data locality and parallelism
o Flexible time and space scheduling to achieve higher utilization
o Flexible memory system and interconnect to sustain high
compute throughput
o Custom dataflow pipeline

19
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Chip and Architecture Overview § . .
e RDU Tile TILEO TILE 1
o) Compute and memory components \ /X /
o A programmable interconnect - N ( h
e Tileresource management TILE 2 TILE 3
Combine adjacent tiles to form a S JAN )
: Virtual Memory Manager ]
' Top-Level Interconnect ]

@)
larger logical tile
Each tile controlled independently
Allow different applications on separate k
—oon

=

(@)

O
tiles concurrently
Memory access
Direct access to TBs DDRA4 off-chip memory
DRAM

O
o Memory-mapped access to host memory
(TBs) Scale-Out -
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RDU Tile

/ Software-Driven Architecture
Tiled architecture with reconfigurable SIMD pipelines, distributed scratchpads, and programmed switches
e a
L ]
- — AG S 5 s b--——--
TILEO TILE 1 B I - - - J
. ) g
N g
| L | BN Y
TILE 2 J == - . s
\\
[ Virtual Memory Manager ] AN
\ — Ac st s - s F------
[ Top-Level Interconnect ] . = . . J
Unit
i L
‘ ‘ i AG s i S s ------
& 2 =
Pattern

1
DRAM Host
- Coalescing Coalescing Address Pattern
(TBS) Scale-Out \ Unit IUniI AG Gonerafion Switch PMU emory SO-;"W
Unit Unit ni
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Pattern Compute Unit (PCU)

Pattern Compute Unit (PCU)

O

Reconfigurable SIMD data path p

O

Compute engine

For dense and sparse tensor
algebra in FP32, BF16, and
integer data format

Programmable counters

(@)

Program loop iterators

Tail unit

O

Accelerates functions such as
exp, sigmoid

Data
Inputs

Counters

Control

-0 oQOx

Inputs

=

=

9
5

Configurable
SIMD data path

o} e}
e e

gl N o
5 5

ol

Y

Data
) Qutputs

=

Control
Qutputs

Configuration and Pipeline Control

22
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Pattern Memory Unit (PMU)
e Pattern Memory Unit (PMU) p N
o On-chip memory system . |::>[ P ]
o Banked SRAM arrays U & o
= Write and read multiple E>[ Data
high bandwidth SIMD data outpus
stream concurrently “oer ] bt i
© Address ALUS Control [Com‘rc;l )
= Address calculation for nevts ] ) oVl
arbitrarily complex accesses Il I T
Configuration and Pipeline Control
O "
23

Data align
Tensor layout

transformation

O
|
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Switch and On-chip Interconnect

e Switch

o Programmable packet-switched interconnect fabric
e Independent data and control buses

o Suit different traffic

classes Configuration and Pipeline Control
e Programmable routing I I
o Flexible chip bandwidth ata o Data
allocation to concurrent Inputs Outputs
stream Router Pipeline CTOO::;:IT
e Programmable counters
; Control = = Control
o Outer loop iterators Inputs Outputs
A

o On-chip metric collection

Counters

24
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Interface to I/0O Subsystem

.,4",}//

e Address ALUs
o Address calculation for arbitrarily complex accesses
e Coalescing Units g A
o Enable transparent
access to memories N
across RDUs and host  MEere \
memory 13
Control Virtual
e Address space manager Inputs Memory Sotmore
> Programmable, variable | — 8
length segments Configuration and Pipeline Control ]
. J
25
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Operator Mapping

exp(z;)
Ej exp(z;)

SOFTMAX:  Softmax(z;) =

X m l o}
r
Map Reduce Zip
@

O

26

l d g
tcoce BON 2o KON oo KON 2o
. Sar +
mean + Sqﬂ j
F3 'y
€ Y

P~
LR + 5



Operator Mapping (Softmax)

SOFTMAX:  Softmax(z;) = E"i[(p)

|-W-

lii
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Pipelined in Space

z — B[z

LAYERNORM: Yy=————x7+p
Var[z| + €
_ < d g o

Reduce
Sqgr +

Reduce

mean - o
medn

28
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Pipelined in Space + Fused

LAYERNORM:

X
Reduce
mean
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Spatial Dataflow within an RDU

e The dataflow removes
Memory traffic and host communication overhead
CONVOLUTION GRAPH

O

DDR Memory

30
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CGRA
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Coarse grained reconfigurable array (CGRA)

e Coarse grained reconfigurable array (CGRA)

(@)

(@)

(@)

Multiple processing elements (PES)

Each PE has ALU-like functional
unit
Array configurations vary by
m Array size
= Functional units
= Interconnection network
m Register file architectures

J

| Instruction Memory |

L.S..,E-ﬁ_p

- e e e
0 K : 7 s
‘L . J

Daga Memory

—tl l

.pe~ -PE- ﬁpe]- l !PE /

() s ll \l /

}

E» —PE- qps}-i‘ -

Data From Neighbors & Bus

Register
g Fu g File

|17T__)

Qutput To Neighbors

CGRAs can achieve power-efficiency of several 10s of

GOps/sec per Watt (why?)

s  Samsung SRP processor (embedded and multimedia apps)
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Key features of CGRA accelerators

o Software-pipelining execution mapping
o Accelerate loops with low parallelism
o Loops with loop-carried dependence, loops with high branch
divergence
e Avoid von-Neumann architecture bottleneck
o CGRAs are not subjected to dynamic fetch and decoding of
Instructions
o CGRA instructions are in a pre-decoded form in the
Instruction memory
o PE transfers data directly among each another
o Without going through a centralized registers and memory

33
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Loop execution on the CGRA oo
t1 = (a[i]+b[i]-k)*c]i]
d[i] = ~t1 & OXFFFF

Data dependency graph

Execution time: 1

Mapping data
dependency
graph to CGRA
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Loop execution on the CGRA oo
t1 = (a[i]+b[i]-k)*c]i]
d[i] = ~t1 & OXFFFF

Data dependency graph

Execution time: 2

Mapping data
dependency
graph to CGRA
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Loop execution on the CGRA

Data dependency graph

Mapping data
dependency
graph to CGRA

‘

Loop:
t1 = (a[i]+b[i]-k)*c[i]
dfi] = ~t1 & OXFFFF

Execution time: 3

36
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Loop execution on the CGRA

Data dependency graph

e Mapping data
dependency
° graph to CGRA

Loop:
t1 = (a[i]+b[i]-k)*c[i]
dfi] = ~t1 & OXFFFF

Execution time: 6

37
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Takeaway Questions

« What are hardware components used by RDU ?
o (A) Pattern computer unit (PCU)
- (B) Pattern memory unit (PMU)
o (C) Interconnect network router
« What are features of CGRAs ?
o (A) Customized PEs
o (B) Software-pipelining execution mapping
> (C) Reconfigurable dataflow
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Meta MTIA2 ASIC

39
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MTIA Model Inference Engine

G Ea Ea e
. e oonew | [oonen | oonen
o MTIA Architecture oo | ) NS S
0 87<8 arr?y o;éarocessmg 8 I . HHHHHHHHI%«»E
elements (PEs) JUW-T-T-T-1-1-1-T-1 b
o Network-on-chip (NoC) I BEapanan I”E
connects to a set of Pl DooooEEE 8¢
on-chip SRAMs i I DO EEEE I»E
> SRAMSs are shared by the - EEEEEEEE -
PEs and to off-chlp memory E«_I Tl I"E
o Control core is quad-core ¥ —
RISC-V processor ————

En En Em Em 5
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MTIA Model Inference Engine

¢ MTIA PE Fabric Interface (FI)
> Each PE includes 384 KB ! i

Memo
local memory Debug |o RISC-Y [+ «+{ Layout Uni

] Subsystem (scalar) (MLU)

o RISC-V core issues , !
(];?;2222(: _ | Dot Product
commands to Command E - R > Engine (DPE)
- ) B nicrconnec
Processor to offload e t o Rcdiﬂm
computations to - . E”gl“i -
. . . R,IE'(._V . Local

fixed-function units e > vecton) 14> Registers ||\ oo lles SIMD Engine

41



X ,/1 National Yang Ming Chiao Tung University
=347\
a4 Computer Architecture & System Lab

MTIA Model Inference Engine

« MTIA PE |
> RISC-V Vector extension : - “‘"“‘“"“’:‘F”

(64B Wlde) Debug | o RISC-V +—> +—> LaMygmoglit
. Subsystem (scalar) (MLU)
- Memory Layout Unit (MLU) 1
Command
performs memory-layout Procesor | [&b) o, )
Machine PE Interconnec 4P
transformation EH 4 | Rcdim
- Dot Product Engine (DPE) - I
performs GEMM e aes oo Rty 4 of S i

42
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MTIA Model Inference Engine

« MTIA PE

Fabric Interface (FI)

o Dot Product Engine (DPE)
performs GEMM

= Two 32 x32B x 32
MAC tiles

= 2.76 TFLOPS/s
per PE with EP16/
BF16 and output in
EP32 -> 2:4 sparsity for weights

Debug
Subsystem

Interrupt
Controller

Nla‘chmc
Timer

&
h 4

RISC-V
(scalar)

PE Interconnect

!

Command
Processor

4+

RISC-V
(vector)

Memory

F 1

Layout Unit
(MLU)

S

Dot Product

F 3

A J

Engine (DPE)

:

Reduction

jl r 3
r Y

Local

Registers

Memory

F 3

Y

Engine (RE)

}

SIMD Engine

v

(SE)
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MTIA Model Inference Engine

o MTIA PE : Fabriclntcrfaccj(kF])
- Reduction Engine (RE) - v—

Debug | RISC-V <+ Layout Unit

F 3
Y

= Stores matrix Subsystem (scalar) (MLU)
multiply results as Gommand || Dot Product

Engine (DPE)

they are accumulated | " <> PEltecomet < ]

F 3
Y

- SIMD Engine (SE) ! 3 Fagins (RE)

v

= Performs quantization Ewm RISC-V [ oca '
Controller

(vector) 4| Registers Memory |1 S[MD1Enginc
and nonlinear funcs : =
= Includes LUT for approximating nonlinear functions
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local memory
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MTIA Model Inference Engine
Fabric Interface (FI)
Y MTIA PE : abric Inter acc“
. v
- Fabric Interface (FI) Memory
Debug  |o 4 RISC-V [ <« Layout Unit
= Acts as DMA engine B®sen (scalar) (MLU)
- 2l
. _ | Dot Product
to transfer data in Commard || [0
Machine | PE Interconnect <+ =ngine (OPF)
Timer i
t < Reduction
1,. +—| | Engine (RE)
|

A J

A 4

(vector) <
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MTIA Model Inference Engine

« MTIA Unique Memory Hierarchy
o Uses a large SRAM (256 MB) backed by LPDDR DRAM

Avoids HBM to reduce cost and power consumption
Meet latency requirements of recommendation models
The recommendation models exhibit significant locality
Similar to Cerebras and Groq accelerator

SRAM provides 2.7TB/s of bandwidth

Performance drops sharply as models reach a
complexity and size that exceeds the SRAM capacity

46
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MTIA Model Inference Engine

o New Feature in MTIAZI

o Dynamic INT8 guantization
= Leveraging the reduction engine to identify the min and
max values per batch
= Channel-wise symmetric dynamic INT8 for FC layers
o Compression
= Supports lossless asymmetric numerical system (ANS)
compression for weights
= Achieves up to a 50% compression ratio

47
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MTIA Model Inference Engine

[ Application Layer
!

)
o MTIAZ2I Software Stack (S s
]

[ TorchDynamo &torch.export

o Support PyTorch eager I

Torchinductor

[
mode L I
° Torch Dynamo enab|es [ MTIA Graph Compiler ] [ MTIAT Compiler ]

SymbOIiC traCing tO [ Runtime for MTIA ],_,_,/\ |T:::|l{|)per|at:: | \l Runtime for MTIA J

Compiled Subgraph Eager Operatar

capture models with |

MTIATensor, Device Memory ) |

dynamic Shapes Allocataor, [feviceAPls
MTIA Streaming Interface
o TorchIlnductor generates LR e
Triton codes for PyTorch (vraFmmwere )

operator and operator fusion
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Tenstorrent Al Hardware
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HOOOEEEEEEEE
aapannaannne
0/0/0/0/0/0/0a00/0/0
HEOEEEREEOEE
HEOEEEHEEEEE
unuuonuunnoo

p— r
T | . . \ : ,n
A k.__J \

Tensix

Ethernet
o A=ARC

PCl/e

Most compute elements called a

Tensix core
D = DRAM

T
E
P

(@)
(@)
(@)
(@)
(@)

e The NoC grid of Tenstorrent
Wormhole

Tenstorrent Al Processor

50
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Tenstorrent Al Processor

o Each Tensix contains = q
> 5 “Baby” RISC-V CPUs 4
= 5 stage pipelined, single
Issue CPU
= Handle instruction T
dispatch ; ’
o 2 NoC interface
o A vector unit
o A matrix/tensor unit

https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi
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Tenstorrent Al Processor

e The Dataflow of Tensix
o NoC 0 reads data from DRAM
o Unpacker unpacks the data into a format that can be
processed by the matrix/tensor unit
o Matrix/tensor unit performs the computation
o Packer packs the result back into a format for storage
o NoC 1 sends the result to DRAM

52
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi
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Tenstorrent Al Processor

Tensix Tensix

e The Tensix NoCs
o The NoCs are full-duplex
o Both NoCs supports sending and =
receiving data at the same time

o NoC 0 running in the opposite
direction of NoC1 Tensix Tensix
o The uni-directional design of the

NoCs reduce power and area Y
o The 2D torus topology ensures that every points on the chip
remain accessible from every other point

53
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi
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Tenstorrent Al Processor

N
e 3 kernels on Tensix ; ( ]
/—\ \\__ Y

o 2 data movement kernels
can be developed
separately ®
- The 3 compute cores work ‘
cooperatively to perform
the computation o tarce 1[4

po—— Al NS

54
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi
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Tenstorrent Al Processor

e Kernel Synchronization

o Circular buffers backed by hardware mutexes and SRAM

o Kernels wait for available space in the circular buffer, write
data to it, and then mark that data as ready

Circular Buffer sends data across kernels

(‘TL\ink them as P]Pe_s)

They are backed by SRAM O
55

(Or even send data te itself!)
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi
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Tenstorrent Al Processor

e SRAM, interleaved and shared buffers
o Allows data, intermediate tensor or operator buffers to live in
SRAM
o This reduces the need for expensive DRAM accesses
o The “interleaved” mode is used for memory access
o The “shared mode” reduces the distance and cross talk
when accessing DRAM for certain operations

56
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi
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Tenstorrent Al Processor

o Native tile based computing
o The Tensix natively performs operations on 32 x 32 tiles
o 32x32tiles are
small enough
for hardware
to digest in
a few cycles
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Tenstorrent Al Processor

e Cache Hierarchy

(@)

(@)

(@)

(@)

There is no cache hierarchy on Tenstorrent chips
Provides direct access to SRAM across the entire chip
SRAM is not cache and no automatic caching occurs
Data must be explicitly brought into SRAM
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Wafer-scale Al chip -- Cerebras
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e 46,225 mm? silicon

e 1.2 trillion transistors

e 400,000 Al optimized cores

e 18 Gigabytes of on-chip memory
e 9 Pbyte/s memory bandwidth .
e 100 Pbit/s fabric bandwidth Cerebras WSE

e TSMC 16 nm process

21.1 Billion
Transistors
815 mm?2 silicon

GPU o0
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Why big chips ?

» Big chips process data more quickly
o Cluster scale performance on a single chip
- GB of fast memory 1 clock cycle from core
o On-chip interconnect orders of magnitude faster than off-
chip
- Model-parallel, linear performance scaling
o Training at scale, with any batch size, at full utilization
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Cerebras Architecture

e Core optimized for neural network primitives
o Flexible, programmable core

O

NN models are evolving

e Designed for sparse compute

O

Workloads contain fine-grained sparsity (where are these
sparsity from ?)

e Local memory

O

reusing weight & activations

Fast interconnect

O

Layer-to-layer with high bandwidth and low latency
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Cerebras programmable core

e Flexible cores optimized for
tensor operations

o General ops for control processing o i
o e.g. arithmetic, logical, LD/ST, ouefloy Teger__
branch — .
L —*’Memory 5
o Optimized tensor ops for data — Registers— £
. I 3
processing | g | g

o Tensor Operands - Datapath

e—————————————————

o e.g.fmac [Z] =[Z], [W], a
3D 3D 2D
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Sparse compute engine

6660
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e Nonlinear activations naturally
create fine-grained sparsity
e Dataflow scheduling in hardware
o Triggered by data
o Filters out sparse zero data
o SKips unnecessary processing
e Fine-grained execution datapaths sparse Network
o Small cores with independent instructions
o Efficiently processes dynamic, non-uniform work

Dense Network

000000000000
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Cerebras memory architecture

e Traditional memory designs

(@)

Centralized shared memory is slow & far
away

Requires high data reuse (caching)

Local weights and activations are local ->
low data reuse

o Cerebras memory architecture

o All memory is fully distributed along compute

(@)

Datapath has full performance from memory

/ /% / e L
‘M E/H E/H m/EREE/mE/RnE
H/AE/EE/NE/EREEEENR
/ / / / Pid /
HE/EEEEEEEERE/NE
WE/mE/nE/dE/Em/EE N
/ / Ay L / [/ /]
H'EH H/H B/HR E/EEE/NE/N
HE/ERE/NERNEERERN NN

Memory uniformly distributed across cores

M Core 7] Memory
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High-bandwidth low-latency interconnect

« 2D mesh topology effective for local communication
o High bandwidth and low latency for local communication
o All HW-based communication avoids SW overhead
- Small single-word message
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Challenges of wafer scale

o Building a 46,225 mm?, 1.2 trillion transistor chip

« Challenges include
- Cross-die connectivity
- Yield
o Thermal expansion
o Package assembly
- Power and cooling
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Takeaway Questions

o What are challenges to build a large chip for NN
applications ?
o (A) Power and cooling
o (B) Fault tolerance for defected dies
o (C) Package assembly
e How does Cerebras tackle the DNN sparsity ?
o (A) Customized sparse core
o (B) Data-driven dataflow scheduling
o (C) Filters out sparse zero data
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