
Accelerator Architectures for Machine

Learning (AAML)

Lecture 6: Digital DNN Accelerator

Tsung Tai Yeh
Department of Computer Science

National Yang-Ming Chiao Tung University

1

Acknowledgements and Disclaimer

● Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019

tutorial

Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin

Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020

Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC

Berkeley, 2020

CS231n Convolutional Neural Networks for Visual Recognition,

Stanford University, 2020

CS224W: Machine Learning with Graphs, Stanford University, 2021

2

Outline

● Reconfigurable Deep Learning Accelerators

○ Reconfigurable FPGA

○ SambaNova Reconfigurable Dataflow Unit (RDU)

○ Coarse grained reconfigurable array (CGRA)

○ Meta MTIA AI Accelerator

○ Tenstorrent AI Processor

○ Wafer-scale AI chip -- Cerebras

3

Reconfigurable Deep Learning on FPGA

4

Spectrum of Architectures for Deep Learning

5

Why Reconfigurable Computing?

● AI accelerators improves 100X performance/energy compared

to general-purpose processor

● But new hardware is sophisticated and expensive

○ Especially in cutting-edge manufacturing processes

6

Reconfigurable Computing

● Basic idea

○ A spatial array of processing

elements (PEs) & memories with

a configurable network

○ Map your computation spatially

onto the array

○ Goal: programmable with near

ASIC efficiency

7

Basic FPGA Design

8

Modern FPGAs

● FPGAs are coarse-grain today

○ Hardened logic in LUTs

○ “DSP blocks” to implement wide add/mul

efficiently

○ Dense memories distributed throughout fabric

9

High-Level Synthesis (HLS)

● Automated optimization and scheduling

● High portability against different PDK or

PPA requirements

● Short design cycle

10

Challenges of HLS Accelerator Design

● Time consuming

○ Manual architecture and micro-architecture design, manual

C/C++ code rewriting

● Suboptimal

○ Empirical parameter tuning, like parallel factors, buffer sizes,

tiling sizes, etc..

● Low flexibility

○ Only support a small set of models

11

Accelerator Design Languages (ADLs)

● Pythonic

● Maintainability

○ Decoupled hardware customizations

● Composability

○ All the kernels, primitives, and schedules

should be composable to form complex

designs

12

SambaNova Reconfigurable Dataflow

Unit (RDU)

13

Plasticine Architecture

● Plasticine architecture
○ A reconfigurable architecture for parallel patterns (Raghu, ISCA 2017)

○ Pattern Compute Unit (PCU)
■ Reconfigurable pipeline with multiple stages of SIMD functional units

(FUs)

○ Pattern Memory Unit (PMU)
■ A banked scratchpad memory

○ The compiler
■ Maps the computation of inner loops to PCUs

■ Most operands are transferred directly between FUs without scratchpad

access or inter-PCU communication

14

Plasticine Architecture Overview

● Data access address calculation occurs while the PCU is working

● Each DRAM channel is accessed using several address generators (AG)

on two sides of the chip

● Multiple AGs connect to an address coalescing unit for memory requests

15

Raghu, ISCA 2017

Plasticine PCU Architecture

● Pattern Compute Unit (PCU)

○ Each stage’s SIMD lane contains a FU and associated pipeline

register (PR)

16

1. Scalar: uses to communicate

single words of data

2. Each vector communicates

one word per line in the PCU

3. Control signals at the start or

end of execution of a PCU

Raghu, ISCA 2017

Plasticine PMU Architecture

● Pattern Memory Unit (PMU)

○ Contains a scratchpad memory and address calculation

○ Calculates address only needs simple scalar math

○ Has simpler FUs than ones in PCUs

17

Raghu, ISCA 2017

Reconfigurable Dataflow Unit (RDU)

● SambaNova RDU

○ Pattern Compute Units
■ BF16 with FP32 accumulation

■ Support FP32, Int32, Int16, Int8

○ Pattern Memory Unit
■ Memory transformation

○ Dataflow optimization
■ Tiling

■ Nested pipelining

■ Operator parallel streaming

18

Dataflow Exploits Data Locality / Parallelism

● Software-hardware co-design architecture

○ Dataflow captures data locality and parallelism

○ Flexible time and space scheduling to achieve higher utilization

○ Flexible memory system and interconnect to sustain high

compute throughput

○ Custom dataflow pipeline

19

Chip and Architecture Overview

● RDU Tile
○ Compute and memory components
○ A programmable interconnect

● Tile resource management
○ Combine adjacent tiles to form a

larger logical tile
○ Each tile controlled independently
○ Allow different applications on separate

tiles concurrently

● Memory access
○ Direct access to TBs DDR4 off-chip memory
○ Memory-mapped access to host memory

20

RDU Tile

21

Pattern Compute Unit (PCU)

● Pattern Compute Unit (PCU)

○ Compute engine

● Reconfigurable SIMD data path

○ For dense and sparse tensor

algebra in FP32, BF16, and

integer data format

● Programmable counters

○ Program loop iterators

● Tail unit

○ Accelerates functions such as

exp, sigmoid

22

Pattern Memory Unit (PMU)

● Pattern Memory Unit (PMU)

○ On-chip memory system

○ Banked SRAM arrays
■ Write and read multiple

high bandwidth SIMD data

stream concurrently

○ Address ALUs
■ Address calculation for

arbitrarily complex accesses

○ Data align
■ Tensor layout

transformation

23

Switch and On-chip Interconnect

● Switch
○ Programmable packet-switched interconnect fabric

● Independent data and control buses
○ Suit different traffic

classes

● Programmable routing
○ Flexible chip bandwidth

allocation to concurrent
stream

● Programmable counters
○ Outer loop iterators
○ On-chip metric collection

24

Interface to I/O Subsystem

● Address ALUs

○ Address calculation for arbitrarily complex accesses

● Coalescing Units

○ Enable transparent

access to memories

across RDUs and host

memory

● Address space manager

○ Programmable, variable

length segments

25

Operator Mapping

26

Operator Mapping (Softmax)

27

Pipelined in Space

28

Pipelined in Space + Fused

29

Fused

Spatial Dataflow within an RDU

● The dataflow removes

○ Memory traffic and host communication overhead

30

CGRA

31

Coarse grained reconfigurable array (CGRA)

● Coarse grained reconfigurable array (CGRA)
○ Multiple processing elements (PEs)
○ Each PE has ALU-like functional

unit
○ Array configurations vary by

■ Array size
■ Functional units
■ Interconnection network
■ Register file architectures

○ CGRAs can achieve power-efficiency of several 10s of
GOps/sec per Watt (why?)

■ Samsung SRP processor (embedded and multimedia apps)

32

Key features of CGRA accelerators

● Software-pipelining execution mapping
○ Accelerate loops with low parallelism
○ Loops with loop-carried dependence, loops with high branch

divergence

● Avoid von-Neumann architecture bottleneck
○ CGRAs are not subjected to dynamic fetch and decoding of

instructions
○ CGRA instructions are in a pre-decoded form in the

instruction memory
○ PE transfers data directly among each another
○ Without going through a centralized registers and memory

33

Loop execution on the CGRA

34

Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFFData dependency graph

Execution time: 1

1

2

Mapping data

dependency

graph to CGRA

Loop execution on the CGRA

35

Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFF
Data dependency graph

Execution time: 2

1

2

Mapping data

dependency

graph to CGRA
3

Loop execution on the CGRA

36

Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 3

1

2

Mapping data

dependency

graph to CGRA
3 4

5

Loop execution on the CGRA

37

Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 6

1

2

Mapping data

dependency

graph to CGRA
3 4

5 6 7

8

Takeaway Questions

● What are hardware components used by RDU ?

○ (A) Pattern computer unit (PCU)

○ (B) Pattern memory unit (PMU)

○ (C) Interconnect network router

● What are features of CGRAs ?

○ (A) Customized PEs

○ (B) Software-pipelining execution mapping

○ (C) Reconfigurable dataflow

38

Meta MTIA2 ASIC

39

MTIA Model Inference Engine

● MTIA Architecture
○ 8x8 array of processing

elements (PEs)

○ Network-on-chip (NoC)

connects to a set of

on-chip SRAMs

○ SRAMs are shared by the

PEs and to off-chip memory

○ Control core is quad-core

RISC-V processor
40

MTIA Model Inference Engine

● MTIA PE

○ Each PE includes 384 KB

local memory

○ RISC-V core issues

commands to Command

Processor to offload

computations to

fixed-function units

41

MTIA Model Inference Engine

● MTIA PE

○ RISC-V Vector extension

(64B wide)

○ Memory Layout Unit (MLU)

performs memory-layout

transformation

○ Dot Product Engine (DPE)

performs GEMM

42

MTIA Model Inference Engine

● MTIA PE

○ Dot Product Engine (DPE)

performs GEMM

■ Two 32 x 32B x 32

MAC tiles

■ 2.76 TFLOPS/s

per PE with FP16/

BF16 and output in

FP32 -> 2:4 sparsity for weights
43

MTIA Model Inference Engine

● MTIA PE

○ Reduction Engine (RE)

■ Stores matrix

multiply results as

they are accumulated

○ SIMD Engine (SE)

■ Performs quantization

and nonlinear funcs

■ Includes LUT for approximating nonlinear functions
44

MTIA Model Inference Engine

● MTIA PE

○ Fabric Interface (FI)

■ Acts as DMA engine

to transfer data in

and out of PE’s

local memory

through NoC

45

MTIA Model Inference Engine

● MTIA Unique Memory Hierarchy

○ Uses a large SRAM (256 MB) backed by LPDDR DRAM

■ Avoids HBM to reduce cost and power consumption

■ Meet latency requirements of recommendation models

■ The recommendation models exhibit significant locality

■ Similar to Cerebras and Groq accelerator

■ SRAM provides 2.7TB/s of bandwidth

■ Performance drops sharply as models reach a

complexity and size that exceeds the SRAM capacity
46

MTIA Model Inference Engine

● New Feature in MTIA2i

○ Dynamic INT8 quantization

■ Leveraging the reduction engine to identify the min and

max values per batch

■ Channel-wise symmetric dynamic INT8 for FC layers

○ Compression

■ Supports lossless asymmetric numerical system (ANS)

compression for weights

■ Achieves up to a 50% compression ratio
47

MTIA Model Inference Engine

● MTIA2i Software Stack
○ Support PyTorch eager

mode

○ TorchDynamo enables

symbolic tracing to

capture models with

dynamic shapes

○ TorchInductor generates

Triton codes for PyTorch

operator and operator fusion
48

Tenstorrent AI Hardware

49

Tenstorrent AI Processor

● The NoC grid of Tenstorrent

Wormhole

○ Most compute elements called a

Tensix core

○ D = DRAM

○ T = Tensix

○ E = Ethernet

○ A = ARC

○ P = PCI/e

50
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi

Tenstorrent AI Processor

● Each Tensix contains

○ 5 “Baby” RISC-V CPUs

■ 5 stage pipelined, single

issue CPU

■ Handle instruction

dispatch

○ 2 NoC interface

○ A vector unit

○ A matrix/tensor unit

51
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi

Tenstorrent AI Processor

● The Dataflow of Tensix

○ NoC 0 reads data from DRAM

○ Unpacker unpacks the data into a format that can be

processed by the matrix/tensor unit

○ Matrix/tensor unit performs the computation

○ Packer packs the result back into a format for storage

○ NoC 1 sends the result to DRAM

52
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi

Tenstorrent AI Processor

● The Tensix NoCs

○ The NoCs are full-duplex

○ Both NoCs supports sending and

receiving data at the same time

○ NoC 0 running in the opposite

direction of NoC1

○ The uni-directional design of the

NoCs reduce power and area

○ The 2D torus topology ensures that every points on the chip

remain accessible from every other point

53
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi

Tenstorrent AI Processor

● 3 kernels on Tensix

○ 2 data movement kernels

can be developed

separately

○ The 3 compute cores work

cooperatively to perform

the computation

54
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi

Tenstorrent AI Processor

● Kernel Synchronization

○ Circular buffers backed by hardware mutexes and SRAM

○ Kernels wait for available space in the circular buffer, write

data to it, and then mark that data as ready

55
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi

Tenstorrent AI Processor

● SRAM, interleaved and shared buffers

○ Allows data, intermediate tensor or operator buffers to live in

SRAM

○ This reduces the need for expensive DRAM accesses

○ The “interleaved” mode is used for memory access

○ The “shared mode” reduces the distance and cross talk

when accessing DRAM for certain operations

56
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi

Tenstorrent AI Processor

● Native tile based computing

○ The Tensix natively performs operations on 32 x 32 tiles

○ 32 x 32 tiles are

small enough

for hardware

to digest in

a few cycles

57
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi

Tenstorrent AI Processor

● Cache Hierarchy

○ There is no cache hierarchy on Tenstorrent chips

○ Provides direct access to SRAM across the entire chip

○ SRAM is not cache and no automatic caching occurs

○ Data must be explicitly brought into SRAM

58
https://clehaxze.tw/gemlog/2025/04-21-programming-tensotrrent-processors.gmi

Wafer-scale AI chip -- Cerebras

59

Largest AI chip

● 46,225 mm2 silicon

● 1.2 trillion transistors

● 400,000 AI optimized cores

● 18 Gigabytes of on-chip memory

● 9 Pbyte/s memory bandwidth

● 100 Pbit/s fabric bandwidth

● TSMC 16 nm process

60

Cerebras WSE

GPU

21.1 Billion

Transistors

815 mm2 silicon

Why big chips ?

● Big chips process data more quickly

○ Cluster scale performance on a single chip

○ GB of fast memory 1 clock cycle from core

○ On-chip interconnect orders of magnitude faster than off-

chip

○ Model-parallel, linear performance scaling

○ Training at scale, with any batch size, at full utilization

61

Cerebras Architecture

● Core optimized for neural network primitives
● Flexible, programmable core

○ NN models are evolving

● Designed for sparse compute
○ Workloads contain fine-grained sparsity (where are these

sparsity from ?)

● Local memory
○ reusing weight & activations

● Fast interconnect
○ Layer-to-layer with high bandwidth and low latency

62

Cerebras programmable core

● Flexible cores optimized for

tensor operations

○ General ops for control processing

○ e.g. arithmetic, logical, LD/ST,

branch

○ Optimized tensor ops for data

processing

○ Tensor operands

○ e.g. fmac [Z] = [Z], [W], a

3D 3D 2D

63

Sparse compute engine

● Nonlinear activations naturally

create fine-grained sparsity

● Dataflow scheduling in hardware

○ Triggered by data

○ Filters out sparse zero data

○ Skips unnecessary processing

● Fine-grained execution datapaths

○ Small cores with independent instructions

○ Efficiently processes dynamic, non-uniform work

64

Cerebras memory architecture

● Traditional memory designs
○ Centralized shared memory is slow & far

away

○ Requires high data reuse (caching)

○ Local weights and activations are local ->

low data reuse

● Cerebras memory architecture
○ All memory is fully distributed along compute

○ Datapath has full performance from memory

65

High-bandwidth low-latency interconnect

● 2D mesh topology effective for local communication

○ High bandwidth and low latency for local communication

○ All HW-based communication avoids SW overhead

○ Small single-word message

66

Challenges of wafer scale

● Building a 46,225 mm2, 1.2 trillion transistor chip

● Challenges include

○ Cross-die connectivity

○ Yield

○ Thermal expansion

○ Package assembly

○ Power and cooling

67

Takeaway Questions

● What are challenges to build a large chip for NN

applications ?
○ (A) Power and cooling

○ (B) Fault tolerance for defected dies

○ (C) Package assembly

● How does Cerebras tackle the DNN sparsity ?
○ (A) Customized sparse core

○ (B) Data-driven dataflow scheduling

○ (C) Filters out sparse zero data

68

