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Outline

● Reconfigurable Deep Learning Accelerators

○ Reconfigurable FPGA

○ SambaNova Reconfigurable Dataflow Unit (RDU)

○ Coarse grained reconfigurable array (CGRA)

○ Meta MTIA AI Accelerator

○ Tenstorrent AI Processor

○ Wafer-scale AI chip -- Cerebras
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Reconfigurable Deep Learning on FPGA
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Spectrum of Architectures for Deep Learning
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Why Reconfigurable Computing?

● AI accelerators improves 100X performance/energy compared 

to general-purpose processor

● But new hardware is sophisticated and expensive

○ Especially in cutting-edge manufacturing processes
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Reconfigurable Computing

● Basic idea

○ A spatial array of processing 

elements (PEs) & memories with 

a configurable network

○ Map your computation spatially

onto the array

○ Goal: programmable with near

ASIC efficiency
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Basic FPGA Design
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Modern FPGAs

● FPGAs are coarse-grain today

○ Hardened logic in LUTs

○ “DSP blocks” to implement wide add/mul

efficiently

○ Dense memories distributed throughout fabric
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High-Level Synthesis (HLS)

● Automated optimization and scheduling

● High portability against different PDK or

PPA requirements

● Short design cycle
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Challenges of HLS Accelerator Design

● Time consuming

○ Manual architecture and micro-architecture design, manual 

C/C++ code rewriting

● Suboptimal

○ Empirical parameter tuning, like parallel factors, buffer sizes, 

tiling sizes, etc..

● Low flexibility

○ Only support a small set of models
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Accelerator Design Languages (ADLs)

● Pythonic

● Maintainability

○ Decoupled hardware customizations

● Composability

○ All the kernels, primitives, and schedules

should be composable to form complex

designs
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SambaNova Reconfigurable Dataflow 

Unit (RDU)
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Plasticine Architecture

● Plasticine architecture
○ A reconfigurable architecture for parallel patterns (Raghu, ISCA 2017)

○ Pattern Compute Unit (PCU)
■ Reconfigurable pipeline with multiple stages of SIMD functional units 

(FUs)

○ Pattern Memory Unit (PMU)
■ A banked scratchpad memory

○ The compiler
■ Maps the computation of inner loops to PCUs

■ Most operands are transferred directly between FUs without scratchpad 

access or inter-PCU communication
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Plasticine Architecture Overview

● Data access address calculation occurs while the PCU is working

● Each DRAM channel is accessed using several address generators (AG) 

on two sides of the chip

● Multiple AGs connect to an address coalescing unit for memory requests
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Plasticine PCU Architecture

● Pattern Compute Unit (PCU)

○ Each stage’s SIMD lane contains a FU and associated pipeline 

register (PR)
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1. Scalar: uses to communicate 

single words of data

2. Each vector communicates 

one word per line in the PCU

3. Control signals at the start or 

end of execution of a PCU

Raghu, ISCA 2017



Plasticine PMU Architecture

● Pattern Memory Unit (PMU)

○ Contains a scratchpad memory and address calculation

○ Calculates address only needs simple scalar math

○ Has simpler FUs than ones in PCUs
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Reconfigurable Dataflow Unit (RDU)

● SambaNova RDU

○ Pattern Compute Units
■ BF16 with FP32 accumulation

■ Support FP32, Int32, Int16, Int8

○ Pattern Memory Unit
■ Memory transformation

○ Dataflow optimization
■ Tiling

■ Nested pipelining

■ Operator parallel streaming
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Dataflow Exploits Data Locality / Parallelism

● Software-hardware co-design architecture

○ Dataflow captures data locality and parallelism 

○ Flexible time and space scheduling to achieve higher utilization

○ Flexible memory system and interconnect to sustain high 

compute throughput

○ Custom dataflow pipeline
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Chip and Architecture Overview

● RDU Tile
○ Compute and memory components
○ A programmable interconnect

● Tile resource management
○ Combine adjacent tiles to form a 

larger logical tile
○ Each tile controlled independently
○ Allow different applications on separate

tiles concurrently

● Memory access
○ Direct access to TBs DDR4 off-chip memory
○ Memory-mapped access to host memory
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RDU Tile
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Pattern Compute Unit (PCU)

● Pattern Compute Unit (PCU)

○ Compute engine

● Reconfigurable SIMD data path

○ For dense and sparse tensor

algebra in FP32, BF16, and

integer data format

● Programmable counters

○ Program loop iterators

● Tail unit

○ Accelerates functions such as

exp, sigmoid
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Pattern Memory Unit (PMU)

● Pattern Memory Unit (PMU)

○ On-chip memory system

○ Banked SRAM arrays
■ Write and read multiple

high bandwidth SIMD data

stream concurrently

○ Address ALUs
■ Address calculation for 

arbitrarily complex accesses

○ Data align
■ Tensor layout 

transformation
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Switch and On-chip Interconnect

● Switch
○ Programmable packet-switched interconnect fabric

● Independent data and control buses
○ Suit different traffic 

classes 

● Programmable routing
○ Flexible chip bandwidth

allocation to concurrent
stream

● Programmable counters
○ Outer loop iterators
○ On-chip metric collection
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Interface to I/O Subsystem

● Address ALUs

○ Address calculation for arbitrarily complex accesses

● Coalescing Units

○ Enable transparent

access to memories 

across RDUs and host

memory

● Address space manager

○ Programmable, variable

length segments
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Operator Mapping
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Operator Mapping (Softmax)
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Pipelined in Space 

28



Pipelined in Space + Fused
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Spatial Dataflow within an RDU

● The dataflow removes 

○ Memory traffic and host communication overhead
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CGRA
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Coarse grained reconfigurable array (CGRA)

● Coarse grained reconfigurable array (CGRA)
○ Multiple processing elements (PEs)
○ Each PE has ALU-like functional

unit
○ Array configurations vary by

■ Array size
■ Functional units
■ Interconnection network
■ Register file architectures

○ CGRAs can achieve power-efficiency of several 10s of 
GOps/sec per Watt (why?)

■ Samsung SRP processor (embedded and multimedia apps)
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Key features of CGRA accelerators

● Software-pipelining execution mapping
○ Accelerate loops with low parallelism
○ Loops with loop-carried dependence, loops with high branch 

divergence

● Avoid von-Neumann architecture bottleneck
○ CGRAs are not subjected to dynamic fetch and decoding of 

instructions
○ CGRA instructions are in a pre-decoded form in the 

instruction memory
○ PE transfers data directly among each another
○ Without going through a centralized registers and memory
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Loop execution on the CGRA 

34

Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFFData dependency graph

Execution time: 1

1

2

Mapping data 

dependency 

graph to CGRA



Loop execution on the CGRA 
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Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFF
Data dependency graph

Execution time: 2

1

2

Mapping data 

dependency 

graph to CGRA
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Loop execution on the CGRA 
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Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 3
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Loop execution on the CGRA 
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t1 = (a[i]+b[i]-k)*c[i]
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Takeaway Questions

● What are hardware components used by RDU ?

○ (A) Pattern computer unit (PCU)

○ (B) Pattern memory unit (PMU)

○ (C) Interconnect network router

● What are features of CGRAs ?

○ (A) Customized PEs

○ (B) Software-pipelining execution mapping

○ (C) Reconfigurable dataflow
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Meta MTIA2 ASIC
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MTIA Model Inference Engine

● MTIA Architecture
○ 8x8 array of processing

elements (PEs)

○ Network-on-chip (NoC)

connects to a set of 

on-chip SRAMs

○ SRAMs are shared by the

PEs and to off-chip memory

○ Control core is quad-core

RISC-V processor
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MTIA Model Inference Engine

● MTIA PE

○ Each PE includes 384 KB

local memory

○ RISC-V core issues

commands to Command

Processor to offload

computations to 

fixed-function units
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MTIA Model Inference Engine

● MTIA PE

○ RISC-V Vector extension

(64B wide)

○ Memory Layout Unit (MLU)

performs memory-layout

transformation

○ Dot Product Engine (DPE)

performs GEMM
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MTIA Model Inference Engine

● MTIA PE

○ Dot Product Engine (DPE)

performs GEMM

■ Two 32 x 32B x 32

MAC tiles

■ 2.76 TFLOPS/s

per PE with FP16/

BF16 and output in

FP32 -> 2:4 sparsity for weights
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MTIA Model Inference Engine

● MTIA PE

○ Reduction Engine (RE)

■ Stores matrix

multiply results as

they are accumulated

○ SIMD Engine (SE)

■ Performs quantization

and nonlinear funcs

■ Includes LUT for approximating nonlinear functions
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MTIA Model Inference Engine

● MTIA PE

○ Fabric Interface (FI)

■ Acts as DMA engine

to transfer data in

and out of PE’s

local memory 

through NoC
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MTIA Model Inference Engine

● MTIA Unique Memory Hierarchy

○ Uses a large SRAM (256 MB) backed by LPDDR DRAM

■ Avoids HBM to reduce cost and power consumption

■ Meet latency requirements of recommendation models

■ The recommendation models exhibit significant locality

■ Similar to Cerebras and Groq accelerator

■ SRAM provides 2.7TB/s of bandwidth

■ Performance drops sharply as models reach a

complexity and size that exceeds the SRAM capacity
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MTIA Model Inference Engine

● New Feature in MTIA2i

○ Dynamic INT8 quantization

■ Leveraging the reduction engine to identify the min and 

max values per batch

■ Channel-wise symmetric dynamic INT8 for FC layers

○ Compression

■ Supports lossless asymmetric numerical system (ANS) 

compression for weights

■ Achieves up to a 50% compression ratio
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MTIA Model Inference Engine

● MTIA2i Software Stack
○ Support PyTorch eager

mode

○ TorchDynamo enables

symbolic tracing to 

capture models with 

dynamic shapes

○ TorchInductor generates

Triton codes for PyTorch

operator and operator fusion
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Tenstorrent AI Hardware
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Tenstorrent AI Processor

● The NoC grid of Tenstorrent

Wormhole

○ Most compute elements called a 

Tensix core

○ D = DRAM

○ T = Tensix

○ E = Ethernet

○ A = ARC

○ P = PCI/e
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Tenstorrent AI Processor

● Each Tensix contains

○ 5 “Baby” RISC-V CPUs

■ 5 stage pipelined, single

issue CPU

■ Handle instruction 

dispatch

○ 2 NoC interface

○ A vector unit

○ A matrix/tensor unit
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Tenstorrent AI Processor

● The Dataflow of Tensix

○ NoC 0 reads data from DRAM

○ Unpacker unpacks the data into a format that can be

processed by the matrix/tensor unit

○ Matrix/tensor unit performs the computation

○ Packer packs the result back into a format for storage

○ NoC 1 sends the result to DRAM
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Tenstorrent AI Processor

● The Tensix NoCs

○ The NoCs are full-duplex

○ Both NoCs supports sending and

receiving data at the same time

○ NoC 0 running in the opposite

direction of NoC1

○ The uni-directional design of the 

NoCs reduce power and area

○ The 2D torus topology ensures that every points on the chip 

remain accessible from every other point
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Tenstorrent AI Processor

● 3 kernels on Tensix

○ 2 data movement kernels

can be developed

separately 

○ The 3 compute cores work

cooperatively to perform

the computation
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Tenstorrent AI Processor

● Kernel Synchronization

○ Circular buffers backed by hardware mutexes and SRAM

○ Kernels wait for available space in the circular buffer, write 

data to it, and then mark that data as ready
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Tenstorrent AI Processor

● SRAM, interleaved and shared buffers

○ Allows data, intermediate tensor or operator buffers to live in 

SRAM

○ This reduces the need for expensive DRAM accesses

○ The “interleaved” mode is used for memory access

○ The “shared mode” reduces the distance and cross talk 

when accessing DRAM for certain operations
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Tenstorrent AI Processor

● Native tile based computing

○ The Tensix natively performs operations on 32 x 32 tiles

○ 32 x 32 tiles are

small enough

for hardware

to digest in

a few cycles
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Tenstorrent AI Processor

● Cache Hierarchy

○ There is no cache hierarchy on Tenstorrent chips

○ Provides direct access to SRAM across the entire chip

○ SRAM is not cache and no automatic caching occurs

○ Data must be explicitly brought into SRAM
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Wafer-scale AI chip -- Cerebras
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Largest AI chip

● 46,225 mm2 silicon

● 1.2 trillion transistors

● 400,000 AI optimized cores

● 18 Gigabytes of on-chip memory

● 9 Pbyte/s memory bandwidth

● 100 Pbit/s fabric bandwidth

● TSMC 16 nm process
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Cerebras WSE

GPU

21.1 Billion 

Transistors

815 mm2 silicon



Why big chips ?

● Big chips process data more quickly 

○ Cluster scale performance on a single chip

○ GB of fast memory 1 clock cycle from core

○ On-chip interconnect orders of magnitude faster than off-

chip

○ Model-parallel, linear performance scaling

○ Training at scale, with any batch size, at full utilization
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Cerebras Architecture

● Core optimized for neural network primitives
● Flexible, programmable core

○ NN models are evolving

● Designed for sparse compute
○ Workloads contain fine-grained sparsity (where are these 

sparsity from ?)

● Local memory 
○ reusing weight & activations

● Fast interconnect
○ Layer-to-layer with high bandwidth and low latency
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Cerebras programmable core

● Flexible cores optimized for 

tensor operations

○ General ops for control processing

○ e.g. arithmetic, logical, LD/ST, 

branch

○ Optimized tensor ops for data

processing

○ Tensor operands

○ e.g. fmac [Z] = [Z], [W], a

3D   3D 2D
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Sparse compute engine

● Nonlinear activations naturally 

create fine-grained sparsity

● Dataflow scheduling in hardware

○ Triggered by data

○ Filters out sparse zero data

○ Skips unnecessary processing

● Fine-grained execution datapaths

○ Small cores with independent instructions

○ Efficiently processes dynamic, non-uniform work
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Cerebras memory architecture

● Traditional memory designs
○ Centralized shared memory is slow & far 

away

○ Requires high data reuse (caching)

○ Local weights and activations are local ->

low data reuse

● Cerebras memory architecture
○ All memory is fully distributed along compute

○ Datapath has full performance from memory
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High-bandwidth low-latency interconnect

● 2D mesh topology effective for local communication

○ High bandwidth and low latency for local communication

○ All HW-based communication avoids SW overhead

○ Small single-word message
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Challenges of wafer scale

● Building a 46,225 mm2, 1.2 trillion transistor chip

● Challenges include

○ Cross-die connectivity

○ Yield

○ Thermal expansion

○ Package assembly

○ Power and cooling
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Takeaway Questions

● What are challenges to build a large chip for NN 

applications ?
○ (A) Power and cooling

○ (B) Fault tolerance for defected dies 

○ (C) Package assembly

● How does Cerebras tackle the DNN sparsity ?
○ (A) Customized sparse core

○ (B) Data-driven dataflow scheduling

○ (C) Filters out sparse zero data
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