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Outline

● Neural Network Pruning

● Pruning granularity

● Pruning criterion

● Pruning ratio

● Fine-tune/train pruned neural network
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Pruning Happens in Human Brain

● Neural Network Pruning

○ Reduce the network connections

○ Small weight while maintaining training accuracy

4

50 Trillion Synapses 1000 Trillion Synapses

500 Trillion Synapses

New born

1 year old

Teenager
Christopher A Walsh, Peter Huttenlocher (1931 -

2013). Nature, 502(7470), 2013



Approaches to Reduce Model Sizes

● Weight sharing

○ Trained quantization

● Quantization

○ Quantizing the weight and 

activation

○ Fine-tune in floating-point format

○ Reduce to fixed-point format
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What is Neural Network Pruning ?

● Neural Network Pruning

○ Reducing the parameter counts 

of neural networks while 

maintaining model training 

accuracy

○ Create more zeros in weights

○ Reduce the size of weights 

through data compression
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Neural Network Pruning

● Challenge: Which weight values can become zero?

7



Neural Network Pruning

● Make neural network smaller by removing synapses and neurons
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Pruning in the Industry

● Hardware support for sparsity
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Neural Network Pruning
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Pruning at Different Granularities

● A simple example of 2D weight matrix
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Pruning at Different Granularities
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Pruning at Different Granularities
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Pruning at Different Granularities

● Fine-grained pruning 

○ Flexible pruning indices

○ Large compression ratio (flexibly find redundant weight)

○ Can deliver speedup on some customized hardware (EIE), but not 

GPU
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Pruning at Different Granularities

● Pattern-based pruning: N:M sparsity

○ N:M sparsity means that in each contiguous M elements, N of 

them is pruned

○ A classic case is 2:4 sparsity (50% sparsity)

○ It is supported by NVIDIA’s Ampere GPU, 2X speedup 
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Pruning at Different Granularities

● Pattern-based pruning: N:M sparsity

○ Usually maintains accuracy

16



Pruning at Different Granularities

● Channel pruning

○ Reduce channel numbers (leading to an neural network with 

smaller # of channels) -> speedup

○ Con: smaller compression ratio
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Pruning Criterion

● What synapses and neurons should we prune ?

○ The less important parameters should be removed

○ What is the less important parameter in a neural network?
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Magnitude-based Pruning

● Magnitude-based pruning

○ Considers weights with large absolute values are more important 

than other weights

○ Remove weights with small magnitudes
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Magnitude-based Pruning

● Row-wise pruning

○ The L1-norm magnitude can be defined as
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Magnitude-based Pruning

● A heuristic pruning criterion

○ The Lp-norm magnitude can be defined as

21



Feature-Based Pruning

● Feature-based pruning

○ Pruning based on the impact of the output feature map

○ Achieve higher accuracy than magnitude-based pruning

○ Complex evaluating the impact of the weights
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Pruning Neurons

● When removing neurons from a neural network model

○ The less useful neurons are removed
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Percentage-of-Zero-Based Pruning

● ReLU activation will generate zeros in the output activation

● The Average Percentage of Zero activations (APoZ) can be exploited to 

measure the importance of the neurons 
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Percentage-of-Zero-Based Pruning

● The Average Percentage of Zero activations (APoZ) can be exploited to 

measure the importance of the neurons 

● The neuron with smaller APoZ is more important
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Takeaway Questions

● How does feature-based pruning work?

○ (A) Removing weights with small magnitudes

○ (B) Pruning through complex evaluation

○ (C) Removing inputs with small magnitudes

● What are goals of neural network pruning ?

○ Less number of weights

○ Less number of inputs

○ Less bits per weights
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Takeaway Questions

● What are benefits of network pruning ?

○ (A) Reduce the size of input data

○ (B) Small size of filter data

○ (C) Shorten the time to complete the DNN model 

inference
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Pruning Ratio

● How should we find per-layer pruning ratios ?

○ Non-uniform pruning is better than uniform shrinking
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Finding Pruning Ratios

● Analyze the sensitivity of each layer

○ Pruning ratios are varied across different layers

○ Some layers are more sensitive (e.g., first layer, why?)

○ Some layers are more redundant

○ Need to perform sensitivity analysis to determine the per-layer 

pruning ratio
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Finding Pruning Ratios
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Finding Pruning Ratios
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Finding Pruning Ratios
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Finding Pruning Ratios
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Finding Pruning Ratios
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Finding Pruning Ratios
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Finding Pruning Ratios
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Automatic Pruning

● Given an overall compression ratio, how do we choose per-layer

pruning ratios ?

○ Sensitivity analysis ignores the interaction between layers

○ Conventionally, such process relies on human expertise and trails and 

errors
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AMC: AutoML for Model Compression

● Pruning as a reinforcement learning problem
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AMC: AutoML for Model Compression

● AMC uses the following steps for the reinforcement 

learning problem

○ State: 11 features (including layer indices, channel numbers, 

kernel sizes, FLOPs, …)

○ Action: A continuous number (pruning ratio)

○ Agent: Deep Deterministic Policy Gradient (DDPG) agent, 

because it supports continuous action output

○ Reward: 
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AMC: AutoML for Model Compression
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AMC: AutoML for Model Compression
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Summary of Neural Network Pruning

● Introduction to pruning

○ What is the purpose of pruning ?

● Determine the pruning granularity

○ Fine-grain, channel-level pruning ….

● Determine the pruning criterion

○ What synapses/neurons should we prune ?

● Determine the pruning ratio

○ What should target sparsity be for each layer

● Fine-tune/train pruned neural network

○ How to improve performance of pruned models
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Takeaway Questions

● How to find prune ratios appropriately ?

○ (A) Randomly guess

○ (B) Sensitivity analysis

○ (C) Refer to the ratio in the batch normalization

● What are potential techniques used by automatic pruning ?

○ (A) Word embedding

○ (B) Iterative training

○ (C) Reinforcement learning
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