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Outline

o Neural Network Pruning

o Pruning granularity

e Pruning criterion

e Pruning ratio

o Fine-tune/train pruned neural network
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Pruning Happens in Human Brain

o Neural Network Pruning
- Reduce the network connections
o Small weight while maintaining training accuracy
1000 Trillion Synapses
') 500 Tr|II|on Synapses

50 Trillion Synapses

Teenager

Christopher A Walsh, Peter Huttenlocher (1931
2013). Nature, 502(7470), 2013

.

New born
1 year old
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Approaches to Reduce Model Sizes

 Weight sharing 2.03, 2.11,71.98,1.94
- Trained quantization “,
o Quantization 20
o Quantizing the weight and
activation 32 bit
o Fine-tune in floating-point format 2pit| 8xless
> Reduce to fixed-point format memory

footprint
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What is Neural Network Pruning ?

o Neural Network Pruning

o

O

O

Reducing the parameter counts

of neural networks while
maintaining model training

accuracy

Create more zeros in weights
Reduce the size of weights

through data compression
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Neural Network Pruning

o Challenge: Which weight values can become zero?

Train Connectivity
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J
Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurlPS 2015]
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Neural Network Pruning

e Make neural network smaller by removina svnapses and neurons
MACs

#Parameters
Neural Network
Before Pruning After Pruning Reduction Reduction
AlexNet 61 M 6.7 M 9 X 3X
VGG-16 138 M 10.3 M 12 X 5 X
GoogleNet 7™M 20M 3.5 X 5X
ResNet50 26 M 7.47TM 3.4 X 6.3 X
SqueezeNet 1M 0.38 M 3.2 X 35X

Efficient Methods and Hardware for Deep Learnina [Han S.. Stanford Universitvl
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Pruning in the Industry

e Hardware support for sparsity

Compressed 4-bit 16-bit

DNN Model Virtual welght W-w Real weight
Encoded Weight Look-u w Prediction
Relative Index

t Index 5 Result
Input Sparse Fol 4-bit Accum 16-bit u

Image Relative Index Absolute Index

EIE [Han et al., ISCA 2016]

ESE [Han et al., FPGA 2017]

© Matrix Condensing T Row Prefetcher ~ Less Partial Matrices

5

"o P-palmad Mu!up{y and Merge
od Input Reuse Output Reuse

SpArch [Zhang et al., HPCA 2020]
SpAtten [Wang et al., HPCA 2021]

bty
® Huffman Tree Scheduler

~ L "/ L~ . Nt
v
M- R 2X
v v/ %
v oo™ MRV Effective
- ~ W ~
A N~
W v — v
AN N —— =) S—
S e
Dense Matrix Sparse Matrix A100 Sparsity

Optimized Tensor Core

2:4 sparsity in A100 GPU
2X peak performance, 1.5X measured BERT speedup
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Neural Network Pruning

* In general, we could formulate the pruning as
|

follows:
arg min L(x; Wp)
P

subject to
IW,llg <N

« L represents the objective function for neural
|
arg min L(x; W)
\4%

network training;
« Xis input, W is original weights, W, is pruned
weights;
« |IW,|l, calculates the #nonzeros in Wp, and N is

the target #nonzeros.

l

arg min L(x; Wp)
wl’
s.t.||Wpllg <N

10
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Pruning at Different Granularities

B Preserved
Pruned

o A simple example of 2D weight matrix

Coarse-grained/Structured

» Less flexible pruning index choice (a subset

Fine-grained/Unstructured
* More flexible pruning index choice
* Hard to accelerate (irregular)

of the fine-grained case)
Easy to accelerate (just a smaller matrix!)

11
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Pruning at Different Granularities

The case of convolutional layers

 The weights of convolutional layers have 4 dimensions [c,, ¢;, k;,, k,,|:
 ¢;: input channels (or channels)
* ¢, output channels (or filters)
* kj: kernel size height

 k,: kernel size width

 The 4 dimensions give us more choices to select pruning granularities

12
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Pruning at Different Granularities
B Preserved rﬁ ‘ ?ﬁ

The case of convolutional layers
* Some of the commonly used pruning granularities

[] Pruned “’
i

» Regular

Irregular

el .
S o("agl."

Fine-grained
Pruning

Channel-level

Pattern-based Vector-level Kernel-level
Pruning Pruning Pruning Pruning

anelf 5 &

g Blf e
FHE
g Bl f5t

like Tetris )
Exploring the granularity of sparsity in convolutional neural networks [Mao et al.. CVPR-W]

13
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Fine-grained pruning
Large compression ratio (flexibly find redundant weight)

2
Pruning at Different Granularities

o
o Flexible pruning indices
O
o Can deliver speedup on some customized hardware (EIE), but not
GPU
#Parameters
Neural Network
’ Before Pruning After Pruning Reduction

AlexNet 61 M 6.7M 9 X

VGG-16 138 M 10.3 M 12 X

GoogleNet 7™M 20M 35X

ResNet50 26 M 7.47 M 34X
Efficient Methods and Hardware for Deep Learnina [Han S.. Stanford Universitvl 14
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Pruning at Different Granularities

e Pattern-based pruning: N:M sparsity
o N:M sparsity means that in each contiguous M elements, N of
them is pruned
o A classic case is 2:4 sparsity (50% sparsity)
o Itis supported by NVIDIA's Ampere GPU, 2X speedup

non-zero 2-bit

values indices
Dense Matrix 2:4 Sparse Matrix Compressed Matrix

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

15



National Yang Ming Chiao Tung University

X

L)

[

o Pattern-based pruning: N:M sparsity

O

Z
Zliy
a14 Computer Architecture & System Lab

Pruning at Different Granularities

Usually maintains accuracy
Network Data Set Metric Dense FP16 Sparse FP16
ResMet-50 ImageNet Top-1 761 76.2
ResMeXt-101_32x8d ImageNet Top-1 73 79.3
Xception ImageNet Top-1 79.2 79.2
SSD-RN50 Ccocoz2017 bbAP 24.8 24.8
MaskRCNN-RNS0 COC02017 bbAP 37.9 37.9
EN-DE WMT'14 BLEU 28.2 28.5
91.9 91.9

FairSeq Transformer
SQuAD v1.1 F1

BERT-Large
Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

16
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Pruning at Different Granularities

o« Channel pruning
- Reduce channel numbers (leading to an neural network with
smaller # of channels) -> speedup
o Con: smaller compression ratio

Sparsity=0.3 I B  Sparsity=0.5
Sparsity=0.3 [N B Sparsity=0.3
Sparsity=0.3 [ < 1 Sparsity=0.7
Sparsity=0.3 [N B Sparsity=0.2

Sparsity=0.3 I B Sparsity=0.3

Uniform Shrink Channel Prune

17
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Pruning Criterion

« What synapses and neurons should we prune ?
o The less important parameters should be removed
o What is the less important parameter in a neural network?

o, Example
\. y =.fk(zl"'~';fs+b) f( -)=RelLU(-), W= [IO, -8, 0. 1]
Wit _,, = y = ReLU(10x5 — 8x; + 0.1x,)

WX,
/ « If one weight will be removed, which one?

18
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Magnitude-based Pruning

e Magnitude-based pruning
o Considers weights with large absolute values are more important
than other weights

_ _ _ Importance = | W|
o Remove weights with small magnitudes
fmap filter fmap filter
1111 -8 3|2 1(1(1 -81 3|2
1111 x|1[-3[-2]| =4 11111 %x)0|-3[-2| =g
1111 1(1]1 1(1]1 0100 | gror=-4

Without Pruning Magnitude-based Pruning

19



Xtz National Yang Ming Chiao Tung University
s‘f}iﬁ'"e Computer Architecture & System Lab
Magnitude-based Pruning

« Row-wise pruning
o The L1-norm magnitude can be defined as

Importance = Z |w;|, where W® is the structural set S of parameters W

€S
Example
3 | 2 L1-norm [3]+|-2| 5 010
1 5 Row-wise 11]+|-5] 6 1 -5
Weight Importance Pruned Weight

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurlPS 2015]

20
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Magnitude-based Pruning

e A heuristic pruning criterion
o The Lp-norm magnitude can be defined as

P
||W(S)||p = | w, |'”) , where W) is a structural set of parameters
ies
Example
V13
3 | -2 L2-norm YT V13 010
. 26
1 | -5 Row-wise Y e J26 1 | -5
Weight Importance Pruned Weight

Learning Structured Sparsity in Deep Neural Networks [Wen et al., NeurlPS 2016]
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Feature-Based Pruning

o Feature-based pruning
o Pruning based on the impact of the output feature map
> Achieve higher accuracy than magnitude-based pruning
o Complex evaluating the impact of the weights

fmap filter fmap filter
1111 -8 3|2 1(1]1 8|00
L{1]1]|*|1]-3]-2] =4 1{1]1|*[1]0]0]| =4
1]1(1] [1]1]1 1{2(1] |2({2]1]Erorzo

Without Pruning Feature-based Pruning

22
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Pruning Neurons

« When removing neurons from a neural network model
o The less useful neurons are removed

Weight Matrix

Neuron Pruning
in Linear Layer

Channel Pruning ,
in Convolution Layer vy

FER 1 B
SSSipvless iy opsss
E
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Percentage-of-Zero-Based Pruning

e RelU activation will generate zeros in the output activation

e The Average Percentage of Zero activations (APoZ) can be exploited to
measure the importance of the neurons

Width = 4

Width = 4
0 (0.1/0.5/ 1] |0.1]0.5/0 | O 00|08 0 0.5/ 0 (0.2/0.1] |0.1]0.5/0 | 0 0 (0.8/0.1/ 0
< t <+ |
Output 111.2/0.6/0.3/0.2| |0.2/0.3| 0| 1| |0.7| 0 |0.6/|0.1 rlojo21.2 0 0|08/01|02/0|0(0.3
Activations § 0 05/ 0|03 |0.1{0 |0 |05 [1.2| 1|0 0.2 51.2 0 {0.2/0.3| (0.1} 0 |0.1{1.0/ | O |0.4]| 0 |0.5
02/ 0| 0 |0.8/ |0.1/0.6/0.7/0.1| |0.5] 0 |0.3|0.5 0.2/04/0 /0| 02/0 10/ 0|02 0|03 0
Channel =3 Batch = 2 Channel =3
Average Percentage of Zeros (APoZ2) = 2+6 :1 = ST :E e 6+3 :E
2-4-4 32 2.4-4 32 2:4-4 32
Channel 0 Channel 1 Channel 2

24
Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures [Hu et al., ArXiv 2017]
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Percentage-of-Zero-Based Pruning

e The Average Percentage of Zero activations (APoZ) can be exploited to
measure the importance of the neurons
e The neuron with smaller APoZ is more important

Width = 4 Width = 4
0 0.1/0.5( 1 | |0.1/05/0 |0 0|0 080 0.5/ 0 |0.2/0.1| [0.1]05/0 | 0 008010
= =
'11.2|0.6/0.3|0.2| |0.2/0.3| 0 0.7| 0 |0.6|0.1 "10(0.2/1.2] 0 008 0(1]|[02 0|0]0.3
Output £ £
Activations g 0 05 003 |01/0|0|05 [1.2|1 0|02 51.2 0 10.2/0.3 (0.1 0 |0.1/1.0| | O |0.4| 0 |0.5
0.2/ 0| 0 0.8/ |0.1/0.6/0.7/0.1 |0.5| 0 |0.3]|0.5 02|04/ 0|0 |0.2/0 1.0/0 | |02/0 (03 0
Channel = 3 Batch = 2 Channel = 3
5+6 11 5+7 12 14
A P t fZ APoZ =——=—||=—=—| | = = —
verage Percentage of Zeros (APoZ) T et o >
Channel 0 Channel 1 hannel

Netwaork Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures [Hu et al., ArXiv 2017]
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Takeaway Questions

« How does feature-based pruning work?
> (A) Removing weights with small magnitudes
o (B) Pruning through complex evaluation
> (C) Removing inputs with small magnitudes

« What are goals of neural network pruning ?
o Less number of weights
o Less number of inputs
o Less bits per weights

26
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Takeaway Questions

« What are benefits of network pruning ?
> (A) Reduce the size of input data
o (B) Small size of filter data
o (C) Shorten the time to complete the DNN model
Inference
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Pruning Ratio

o How should we find per-layer pruning ratios ?
o Non-uniform pruning is better than uniform shrinking

X Pruning (AMC)
T [ <
3 70.0
g 69.5 -
R | :
< = 3
EEEEERR I < o
© " Uniform Scaling
T ] Z °] .
% 68.0 -
Uniform Shrink ~ Channel Prune E_L.
1=
50 TID 1i0

Latenég/ (ms)
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Finding Pruning Ratios

o Analyze the sensitivity of each layer
o Pruning ratios are varied across different layers
o Some layers are more sensitive (e.g., first layer, why?)
- Some layers are more redundant
> Need to perform sensitivity analysis to determine the per-layer
pruning ratio

29
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Finding Pruning Ratios

« The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
« Pick a layer L; in the model

« Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)

« Observe the accuracy degrade AAcc. for each pruning ratio

Accuracy (%)

100
!

86
72
58

44

The higher pruning rate
o L0 The more accuracy loss

30
10%

20% 30% 40% 50% 60% 70% 80% 90%
Pruning Rate (Percentage of Weights Pruned Away)

AAcc

30
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Finding Pruning Ratios
» The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
« Pick alayer L, in the model
* Prune the layer L; with pruning ratio » € {0,0.1,0.2,...,0.9} (or other strides)

+ Observe the accuracy degrade AAcc.. for each pruning ratio
* Repeat the process for all layers

100
J‘ O O 0“_:8—_‘_.____:____0—__0‘___‘0‘-.,,_

S 86 o —~
E; 72
o
5 53 O L0 O L1
] o L2 L3
< 4 514 oL5

30

10% 20% 30% 40% 50% 60% 70% 80% 90%
Pruning Rate (Percentage of Weights Pruned Away)
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Finding Pruning Ratios

» The process of Sensitivity Analysis (" VGG-11 on CIFAR-10 dataset)
« Pick a layer L; in the model

« Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)

* Observe the accuracy degrade AAccf, for each pruning ratio
* Repeat the process for all layers

—_
o
o

(0]
(o]

Accuracy (%)
N

58 o L0 ©O L1
o L2 L3
4| o4 o L5

30
10% 20% 30% 40% 50% 60% 70% 80% 90%

Pruning Rate (Percentage of Weights Pruned Away)

32
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Finding Pruning Ratios

* The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
» Pick a layer L; in the model
* Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)
« Observe the accuracy degrade AAcc. for each pruning ratio
* Repeat the process for all layers

Some layers are less sensitive to pruning

100 [
86
72

58 L1

Accuracy (%)

O
O
44 Fo Fo

30
10% 20% 30% 40% 50% 60% 70% 80% 90%

Pruning Rate (Percentage of Weights Pruned Away)
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Finding Pruning Ratios
» The process of Sensitivity Analysis (" VGG-11 on CIFAR-10 dataset)
« Pick a layer L; in the model
* Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)

« Observe the accuracy degrade AAcc. for each pruning ratio
* Repeat the process for all layers

100 |
e 86
> 72 Some layers are more sensitive to pruning
©
5 58| ©LO0O © L1
3 ol2 ©L3
< 4| 514 olL5
30

10% 20% 30% 40% 50% 60% 70% 80% 90%
Pruning Rate (Percentage of Weights Pruned Away)

34



Xtz National Yang Ming Chiao Tung University
%‘.‘i‘l? Computer Architecture & System Lab
Finding Pruning Ratios

* The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
« Pick a layer L; in the model

« Prune the layer L; with pruning ratio » € {0,0.1,0.2,...,0.9} (or other strides)

* Observe the accuracy degrade AAccf. for each pruning ratio
* Repeat the process for all layers

 Pick a degradation threshold 7" such that the overall pruning rate is desired

Accuracy (%)

100
tJ> O O .

86
72 threshold T
58 o L0 o L1

o L2 L3
4 | o 14 o L5
30

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pruning Rate (Percentage of Weights Pruned Away)

35
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Finding Pruning Ratios

* The process of Sensitivity Analysis (" VGG-11 on CIFAR-10 dataset)
+ Pick a layer L; in the model
« Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)

« Observe the accuracy degrade AAcc. for each pruning ratio
* Repeat the process for all layers

» Pick a degradation threshold 7" such that the overall pruning rate is desired

100&
R N —.
3.. 72 threshold T E '
@© ; I
5 58 o L0 o L1 . . ; :
3 P L3 Pruning rates: i i
< 4] 514 oL5 L
0 ; ;

10% 20% 30% 40% 50% 60% 70% 80% 90%
36

Pruning Rate (Percentage of Weights Pruned Away)
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Automatic Pruning

e Given an overall compression ratio, how do we choose per-layer
pruning ratios ?
o Sensitivity analysis ignores the interaction between layers
o Conventionally, such process relies on human expertise and trails and
errors

37
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AMC: AutoML for Model Compression

o Pruning as a reinforcement learning problem

Model Compression by Human:
Labor Consuming, Sub-optimal

\Reward = -Error;

\ction: Compress with

® °
A ~N
@ ° J
@ o o Critic
& e
Original NN Compressed NN l
AMC Engine Actor
° e
op i — Embedding
© ¢ s e
@ L 4
® ®
Aotk il i Agent: DDPG

Model Compression by Al:
Automated, Higher Compression Rate, Faster

Embedding si=[N,C{H,W,i...]

Sparsity ratio a(e.g. 50%)

ar
-V

AMC: AutoML for Model Compression and Acceleration on Mobile Devices [He et al., ECCV 2018]

Layer t+1 3

?%

Layer t
50%

Layer t-1 3

30%

Environment: Channel Pruning

38
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AMC: AutoML for Model Compression

« AMC uses the following steps for the reinforcement

learning problem
- State: 11 features (including layer indices, channel numbers,
kernel sizes, FLOPs, ...)
> Action: A continuous number (pruning ratio) a € [0,1)
o Agent: Deep Deterministic Policy Gradient (DDPG) agent,
because it supports continuous action output

- Reward: R— —Error, if satisfies constrains
| —oo0, if not

39
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AMC: AutoML for Model Compression

I ResNet50 Density Pruned by Human Expert

m ResNet50 Density Pruned by AMC (the lower the better)
/

/

A_/ % AutoML

(smaller the better)

Human*

Density
#Non-zero weights/total#weights

Convl ResBlock1l ResBlock?2 ResBlock3 ResBlock4 FC Total

40



X ,4"\ National Yang Ming Chiao Tung University
Hyt# Computer Architecture & System Lab

AMC: AutoML for Model Compression

Top-1 - Speedup Memory
1x 20.1MB

MAC
70.6% 119.0ms
1.8x 14.3MB

Model

569M

64.4ms
2.0x 13.2MB

70.2% 59.7ms
1.7x 14.8MB

272M
68.4% 69.5ms

1.0 MobileNet

285M 70.5%

0.75 MobileNet 325M
* Measured with TF-Lite on Samsung Galaxy S7 Edge, which has Qualcomm Snapdragon SoC
Single core, Batch size = 1(mobile, latency oriented)
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Summary of Neural Network Pruning

Introduction to pruning

o What is the purpose of pruning ?
Determine the pruning granularity

o Fine-grain, channel-level pruning ....
Determine the pruning criterion

o What synapses/neurons should we prune ?
Determine the pruning ratio

o What should target sparsity be for each layer
Fine-tune/train pruned neural network

o How to improve performance of pruned models

42
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Takeaway Questions

e How to find prune ratios appropriately ?
o (A) Randomly guess
o (B) Sensitivity analysis
o (C) Refer to the ratio in the batch normalization
e What are potential techniques used by automatic pruning ?
o (A) Word embedding
o (B) Iterative training
o (C) Reinforcement learning

43



