

Accelerator Architectures for Machine Learning (AAML)

Lecture 4: Model Pruning

Tsung Tai Yeh

Department of Computer Science

National Yang-Ming Chiao Tung University

Acknowledgements and Disclaimer

- Slides was developed in the reference with
 Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial
 Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen,
 Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC
 Berkeley, 2020
 CS231n Convolutional Neural Networks for Visual Recognition, Stanford
 University, 2020
- 6.5940, TinyML and Efficient Deep Learning Computing, MIT
- NVIDIA, Precision and performance: Floating point and IEEE 754
 Compliance for NVIDIA GPUs, TB-06711-001_v8.0, 2017

Outline

- Neural Network Pruning
- Pruning granularity
- Pruning criterion
- Pruning ratio
- Fine-tune/train pruned neural network

Pruning Happens in Human Brain

Neural Network Pruning

Reduce the network connections

Small weight while maintaining training accuracy

50 Trillion Synapses 1000 Trillion Synapses

New born

500 Trillion Synapses

Teenager

Christopher A Walsh, Peter Huttenlocher (1931 - 2013). Nature, 502(7470), 2013

Approaches to Reduce Model Sizes

Weight sharing

Trained quantization

Quantization

- Quantizing the weight and activation
- Fine-tune in floating-point format
- Reduce to fixed-point format

2.03, 2.11, 1.98, 1.94 2.0 32 bit 8 x less 4 bit memory footprint

What is Neural Network Pruning?

Neural Network Pruning

- Reducing the parameter counts
 of neural networks while
 maintaining model training
 accuracy
- Create more zeros in weights
- Reduce the size of weights through data compression

Neural Network Pruning

Challenge: Which weight values can become zero?

Neural Network Pruning

Make neural network smaller by removing synapses and neurons

Neural Network		MACs		
	Before Pruning	After Pruning	Reduction	Reduction
AlexNet	61 M	6.7 M	9×	3×
VGG-16	138 M	10.3 M	12×	5×
GoogleNet	7 M	2.0 M	3.5×	5 ×
ResNet50	26 M	7.47 M	3.4×	6.3 ×
SqueezeNet	1 M	0.38 M	3.2×	3.5 ×

Pruning in the Industry

Hardware support for sparsity

EIE [Han et al., ISCA 2016]

ESE [Han et al., FPGA 2017]

SpArch [Zhang et al., HPCA 2020] SpAtten [Wang et al., HPCA 2021]

2:4 sparsity in A100 GPU 2X peak performance, 1.5X measured BERT speedup

Neural Network Pruning

In general, we could formulate the pruning as follows:

$$\arg\min_{\mathbf{W}_P} L(\mathbf{x}; \mathbf{W}_P)$$

subject to

$$\|\mathbf{W}_p\|_0 < N$$

- L represents the objective function for neural network training;
- x is input, W is original weights, W_P is pruned weights;
- $\|\mathbf{W}_p\|_0$ calculates the #nonzeros in W_P , and N is the target #nonzeros.

A simple example of 2D weight matrix

Fine-grained/Unstructured

- More flexible pruning index choice
- Hard to accelerate (irregular)

Coarse-grained/Structured

- Less flexible pruning index choice (a subset of the fine-grained case)
- Easy to accelerate (just a smaller matrix!)

The case of convolutional layers

- The weights of convolutional layers have 4 dimensions $[c_o, c_i, k_h, k_w]$:
 - c_i: input channels (or channels)
 - c_o: output channels (or filters)
 - k_h : kernel size height
 - k_w : kernel size width
- The 4 dimensions give us more choices to select pruning granularities

The case of convolutional layers

Some of the commonly used pruning granularities

like Tetris:)

Fine-grained pruning

- Flexible pruning indices
- Large compression ratio (flexibly find redundant weight)

Can deliver speedup on some customized hardware (EIE), but not

GPU

Neural Network	#Parameters			
	Before Pruning	After Pruning	Reduction	
AlexNet	61 M	6.7 M	9×	
VGG-16	138 M	10.3 M	12×	
GoogleNet	7 M	2.0 M	3.5 ×	
ResNet50	26 M	7.47 M	3.4×	

Pattern-based pruning: N:M sparsity

- N:M sparsity means that in each contiguous M elements, N of them is pruned
- A classic case is 2:4 sparsity (50% sparsity)
- It is supported by NVIDIA's Ampere GPU, 2X speedup

Pattern-based pruning: N:M sparsity

Usually maintains accuracy

Network	Data Set	Metric	Dense FP16	Sparse FP16
ResNet-50	ImageNet	Top-1	76.1	76.2
ResNeXt-101_32x8d	ImageNet	Top-1	79.3	79.3
Xception	ImageNet	Top-1	79.2	79.2
SSD-RN50	C0C02017	bbAP	24.8	24.8
MaskRCNN-RN50	C0C02017	bbAP	37.9	37.9
FairSeq Transformer	EN-DE WMT'14	BLEU	28.2	28.5
BERT-Large	SQuAD v1.1	F1	91.9	91.9

Channel pruning

- Reduce channel numbers (leading to an neural network with smaller # of channels) -> speedup
- Con: smaller compression ratio

Pruning Criterion

- What synapses and neurons should we prune?
 - The less important parameters should be removed
 - What is the less important parameter in a neural network?

Example

$$f(\cdot) = \text{ReLU}(\cdot), \ W = \begin{bmatrix} 10, -8, 0.1 \end{bmatrix}$$

 $\Rightarrow y = \text{ReLU}(10x_0 - 8x_1 + 0.1x_2)$

If one weight will be removed, which one?

Magnitude-based Pruning

Magnitude-based pruning

 Considers weights with large absolute values are more important than other weights

Remove weights with small magnitudes

Importance = |W|

filter

fmap				
1	1	1		
1	1	1		
1	1	1		

Without Pruning

tmap				
1	1	1		
1	1	1		
1	1	1		

Magnitude-based Pruning

*

Magnitude-based Pruning

Row-wise pruning

The L1-norm magnitude can be defined as

$$Importance = \sum_{i \in S} |w_i|, \text{ where } \mathbf{W}^{(S)} \text{ is the structural set } S \text{ of parameters } \mathbf{W}$$

Example

Weight Importance Pruned Weight

Magnitude-based Pruning

A heuristic pruning criterion

The Lp-norm magnitude can be defined as

$$\|\mathbf{W}^{(S)}\|_p = \left(\sum_{i \in S} |w_i|^p\right)^{\frac{1}{p}}$$
, where $\mathbf{W}^{(S)}$ is a structural set of parameters

Example

Weight Importance Pruned Weight

Feature-Based Pruning

Feature-based pruning

- Pruning based on the impact of the output feature map
- Achieve higher accuracy than magnitude-based pruning
- Complex evaluating the impact of the weights

Feature-based Pruning

Pruning Neurons

- When removing neurons from a neural network model
 - The less useful neurons are removed

Percentage-of-Zero-Based Pruning

- ReLU activation will generate zeros in the output activation
- The Average Percentage of Zero activations (APoZ) can be exploited to measure the importance of the neurons

Output Activations

Channel = 3

Batch = 2

Channel = 3

Average Percentage of Zeros (APoZ)

$$= \frac{5+6}{2\cdot 4\cdot 4} = \frac{11}{32}$$
Channel 0

$$= \frac{5+7}{2\cdot 4\cdot 4} = \frac{12}{32}$$
Channel 1

$$= \frac{6+8}{2\cdot 4\cdot 4} = \frac{14}{32}$$
Channel 2

Percentage-of-Zero-Based Pruning

- The Average Percentage of Zero activations (APoZ) can be exploited to measure the importance of the neurons
- The neuron with smaller APoZ is more important

Channel = 3

Batch = 2

Channel = 3

Average Percentage of Zeros (APoZ)

$$=\frac{5+6}{2\cdot 4\cdot 4}=\frac{11}{32}$$
Channel 0

$$=\frac{5+7}{2\cdot 4\cdot 4}=\frac{12}{32}$$
Channel 1

Takeaway Questions

- How does feature-based pruning work?
 - (A) Removing weights with small magnitudes
 - (B) Pruning through complex evaluation
 - (C) Removing inputs with small magnitudes
- What are goals of neural network pruning?
 - Less number of weights
 - Less number of inputs
 - Less bits per weights

Takeaway Questions

- What are benefits of network pruning?
 - (A) Reduce the size of input data
 - (B) Small size of filter data
 - (C) Shorten the time to complete the DNN model inference

Pruning Ratio

- How should we find per-layer pruning ratios?
 - Non-uniform pruning is better than uniform shrinking

Analyze the sensitivity of each layer

- Pruning ratios are varied across different layers
- Some layers are more sensitive (e.g., first layer, why?)
- Some layers are more redundant
- Need to perform sensitivity analysis to determine the per-layer pruning ratio

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0,0.1,0.2,...,0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0,0.1,0.2,...,0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0,0.1,0.2,...,0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0,0.1,0.2,...,0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0,0.1,0.2,...,0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0,0.1,0.2,...,0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers
 - Pick a degradation threshold T such that the overall pruning rate is desired

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0,0.1,0.2,...,0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers
 - Pick a degradation threshold T such that the overall pruning rate is desired

Automatic Pruning

- Given an overall compression ratio, how do we choose per-layer pruning ratios?
 - Sensitivity analysis ignores the interaction between layers
 - Conventionally, such process relies on human expertise and trails and errors

Pruning as a reinforcement learning problem

- AMC uses the following steps for the reinforcement learning problem
 - State: 11 features (including layer indices, channel numbers, kernel sizes, FLOPs, ...)
 - \circ **Action:** A continuous number (pruning ratio) $a \in [0,1)$
 - Agent: Deep Deterministic Policy Gradient (DDPG) agent,
 because it supports continuous action output
 - Reward: $R = \begin{cases} -\text{Error}, & \text{if satisfies constrains} \\ -\infty, & \text{if not} \end{cases}$

Model	MAC	Top-1	Latency*	Speedup	Memory
1.0 MobileNet	569M	70.6%	119.0ms	1x	20.1MB
AMC (50% FLOPs)	285M	70.5%	64.4ms	1.8x	14.3MB
AMC (50% Time)	272M	70.2%	59.7ms	2.0x	13.2MB
0.75 MobileNet	325M	68.4%	69.5ms	1.7x	14.8MB

^{*} Measured with TF-Lite on Samsung Galaxy S7 Edge, which has Qualcomm Snapdragon SoC Single core, Batch size = 1(mobile, latency oriented)

Summary of Neural Network Pruning

- Introduction to pruning
 - What is the purpose of pruning?
- Determine the pruning granularity
 - Fine-grain, channel-level pruning
- Determine the pruning criterion
 - What synapses/neurons should we prune ?
- Determine the pruning ratio
 - What should target sparsity be for each layer.
- Fine-tune/train pruned neural network
 - How to improve performance of pruned models

Takeaway Questions

- How to find prune ratios appropriately?
 - (A) Randomly guess
 - (B) Sensitivity analysis
 - (C) Refer to the ratio in the batch normalization
- What are potential techniques used by automatic pruning?
 - (A) Word embedding
 - (B) Iterative training
 - (C) Reinforcement learning