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Outline

● K-Means-based Quantization

● Linear Quantization

● Binary and Ternary Quantization
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What is Quantization ?

● Quantization

○ A process that reduces the precision of a digital signal by 

converting high-precision data into a lower-precision format
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Benefits of Quantization

● Reduced memory burden
○ Reduce pressure on memory bandwidth which can improve 

output token throughput

● Simplified compute 

operations
○ Improve overall 

end-to-end latency 

performance as a result 

of simplified attention 

layer computations
5

https://reurl.cc/gYok94



Memory is Expensive !!

● Data movement -> Move memory reference -> More energy

6



Low Bit-Width Operations are Cheap

● Less Bit-Width -> Less energy
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45 nm Process, Horowitz, 

ISSCC, 2014



Energy and Area Cost
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Operation Energy (pJ) Area(um2)

8b Add 0.03 36

16b Add 0.05 67

32b Add 0.1 137

16b FP Add 0.4 1360

32b FP Add 0.9 4184

16b FP Mult 1.1 1640

32b FP Mult 3.7 7700

32b SRAM Read 

(8KB)

5

32b DRAM Read 640

173X

4.7X

45 nm Process, Horowitz, ISSCC, 2014

Could we make the deep learning 

efficient by lowering the precision 

of data ?



Numeric Data Types

● Fixed-point number
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IEEE 765 Single Precision Float Point

● Sign determines the sign of the number

● Exponent (8 bit) represent -127 (all 0s) and +128 (all 1s)

● Significand (23 fraction bits), total precision is 24 bits (23 + 1 implicit 

leading bit) log10(2
24) ≈ 7.225 digital bit
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0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign Exponent (8 bits) Mantissa/Fraction (23 bits)



IEEE 765 FP32

11

0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign Exponent (8 bits)

Sign = b31 = 0 ; (-1)0 = 1

e  =120; 2(120 - 127) = 2-7

Value = 1 x 2-7 x 1.25 = 0.009765625   

Mantissa/Fraction (23 bits)



Numeric Data Type

● Question: What is the decimal “11.375” in FP32 format ?

● The exponent is 3 and biased form

= (3 + 127) = 130 = 1000 0010

12

0.375 x 2 = 0.750 = 0 + 0.750 => b-1 = 0

0.750 x 2 = 1.500 = 1 + 0.500 => b-2 = 1

0.500 x 2 = 1.000 = 1 + 0.000 => b-3 = 1

11.375 

= 11 + 0.375 

= (1011)2 + (0.011)2

= (1011.011)2

= (1.011011)2 x 23

0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign Exponent (8 bits) Mantissa/Fraction (23 bits)



Floating-Point Number

● Exponent Width -> Range; Fraction Width-> Precision
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Number Representation
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S E M

1      8                    23

FP32

S E M

1   5            10

FP16

S M

1                 31

INT32

S M

1            15

INT16

S M

1       8

INT8

Range

1.2E-38 to 3.4E+38

6.1E-5 to 6.6E+4

2147483648 to 2147483647

−32,768 to 32,767

-128 ~ 127



Reduced Bit Width
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0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign Exponent (8 bits) Mantissa/Fraction (23 bits)

0 1 0 0 0 0 0 0

32-bit 

float

8-bit 

INT

Sign Mantissa/Fraction (7 bits)

Integer

(4-bits)

Fractional

(3-bits)



FP32 vs FP16 vs BF16

Format Bits Exponent Fraction

FP32 32 8 23

FP16 16 5 10

BF16 16 8 7
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• FP32 – single precision
• With 6-9 significant decimal

digits precision

• FP16 – half precision
• Uses in some neural network

applications

• With 4 significant decimal digits
precision

• BF16
• A truncated FP32

• Allow for fast conversion to
and from an FP32

• With 3 significant decimal digits
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-

high-performance-on-cloud-tpus



Choosing bFloat16

● Motivation
○ The physical size of a hardware multiplier scales with the square of 

the mantissa width

○ Mantissa bit length – FP32-> 23 bits, FP16-> 10 bits, BF16:->7 bits

● BF16
○ 8 X smaller than an FP32 multiplier

○ Has the same exponent size as FP32

○ No require special handling (loss scaling) in the FP16 conversion

○ XLA compiler’s automatic format conversion

○ In side the MXU, multiplications are performed in BF16 format

○ Accumulations are performed in full FP32 precision
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https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus



Nvidia’s TF32

● Nvidia’s TF32
○ 19-bit (BF19)

○ 1-bit sign, 8-bit exponent

10-bit fraction

○ Fuse BF16 and FP16
■ BF16: 8-bit exponent +

■ FP16: 10-bit fraction

○ Nvidia A100 Tensor Core
■ TF32: 156 TFLOPS

■ FP16/BF16: 312 TFLOPS
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https://reurl.cc/Omo1dv



FP8 and Tesla CFloat

● FP8 (1-5-2)
○ Large loss in MobileNet v2

○ Hybrid FP8 (HFP8)
■ Use FP(1-4-3) in forward

■ Use FP(1-5-2) in backward

● Tesla Dojo Cfloat (configurable float)
○ Configurable exponent and mantissa

○ Use software to choose appropriate Cfloat format
■ CF16

■ CF8 (1-4-3), CF8 (1-5-2) 
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https://proceedings.neurips.cc/paper/2019/file/65f

c9fb4897a89789352e211ca2d398f-Paper.pdf



Nvidia’s NVFP4

● Nvidia’s NVFP4

○ 1 sign bit, 2 exponent bits, and 1 mantissa bit (E2M1)

○ The value in the format ranges approximately -6 to 6

○ The values in the range could include 0.0, 0.5, 1.0, 1.5, 2, 3, 4, 

6 (same for the negative range)
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https://reurl.cc/gYok94



Nvidia’s NVFP4

● High-precision scaling

○ NVFP4 encodes blocks using E4M3 FP8 precision

○ Enables non-power-of-two scaling factors with fractional precision

21
https://reurl.cc/gYok94



Nvidia’s NVFP4

● High-precision scaling

○ E8M0 = Snaps the scale factor to nearest 2ⁿ

○ E4M3 = Finds one scale factor that makes the block errors 

collectively as small as possible
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https://reurl.cc/gYok94



Nvidia’s NVFP4

● Quantize model weights to 4-bits

○ The analysis showcases the 1% or less accuracy degradation

23

https://reurl.cc/gYok94



How to Determine Bit Width on DNN ?

● For accuracy, DNN operations decide bit width to achieve 

sufficient precision

● Which DNN operations affect the accuracy ?
○ For inference: weights, activations, and partial sums

○ For training: weights, activations, partial sums, gradients, and 

weight update

■ post-training quantization (PTQ)

● A model compression technique that converts a pre-

trained, full-precision model into a lower-precision 

model without needing to retrain or fine-tune it
24



Takeaway Questions

● What are advantages to use BF16 instead of FP16 ?
○ (A) Fast conversion from FP32

○ (B) Get more precise value

○ (C) Represent few different values

● What are benefits to use lower precision data type on 

neural network ?
○ (A) Reduce the latency of DNN models

○ (B) Save the memory space

○ (C) Lower the power consumption of the accelerator
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K-Means-based Weight Quantization

● Storage

○ Integer Weights; Floating-Point Codebook

● Computation

○ Floating-Point Arithmetic
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K-Means-based Weight Quantization
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K-Means-based Weight Quantization

● Fine-tuning 

Quantized Weights

○ Reduce the

quantization 

error
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K-Means-based Weight Quantization

● Weights are decompressed using a lookup table during runtime inference

● Only saves storage cost of a neural network model

● All the computation and memory access are still floating-point

29



What is Linear Quantization ?

● An affine mapping of integers to real numbers

● Storage: Integer Weights; Computation: Integer Arithmetic
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Linear Quantization

● An affine mapping of integers to real numbers (r = S(q - Z))
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Linear Quantization
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● An affine mapping of integers to real numbers (r = S(q - Z))



Scale of Linear Quantization

● An affine mapping of integers to real numbers (r = S(q - Z))
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Scale of Linear Quantization

● An affine mapping of integers to real numbers (r = S(q - Z))
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Zero Point of Linear Quantization

● An affine mapping of integers to real numbers (r = S(q - Z))

35



Zero Point of Linear Quantization

● An affine mapping of integers to real numbers (r = S(q - Z))
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Asymmetric Linear Quantization

● Full range mode
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Symmetric Linear Quantization

● Restricted range mode
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Asymmetric vs. Symmetric
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Binary/Ternary Quantization

● Could we push the quantization precision to 1 bit?
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Binary/Ternary Quantization

● If weights are quantized to +1 and -1
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Binarization
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Minimizing Quantization Error in Binarization
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Binary Net

● Binary Connect

○ Weights {-1, 1} (Bipolar binary), 

Activation 32-bit float

○ Accuracy loss: 19 % on AlexNet

● Binarized Neural Networks

○ Weights {-1, 1}, Activations {-1, 1}

○ Both of operands are binary, the multiplication turns into an XNOR

○ Accuracy loss: 29.8 % on AlexNet

44
Courbariaux., NeurIPS, 2015

for each i in width:

C += A[row][i] * B[i][col]
for each i in width:

C += popcount(XNOR(A[row][i], B[i][col]))

Popcount (110010001) = 4



Case Study: Binary Multiplication

● A = 10010, B = 01111 (0 is really -1 here)

● Dot product: 

○ A * B = (1 * -1) + (-1 * 1) + (-1 * 1) + (1 * 1) + (-1 * 1)  = -3

● P = XNOR (A, B) = 00010, popcount(P) = 1

● Result = 2 * P – N, where N is the total number of bits

● 2 * P – N = 2 * 1 – 5 = -3

45https://sushscience.wordpress.com/2017/10/01/understanding-binary-neural-networks/



XNOR-Net

● If both activations and weights are binarized
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XNOR-Net

● If both activations and weights are binarized
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XNOR-Net

● If both activations and weights are binarized
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XNOR-Net

● If both activations and weights are binarized
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XNOR-Net

● If both activations and weights are binarized
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XNOR-Net

● If both activations and weights are binarized
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XNOR-Net

● Minimizing quantization error in binarization
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XNOR-Net
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BitNet
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● FP16 activation and 1.58 bit weights – Transformer-based model

● Lookup table (LUT) calculations



What do we Learn from Quantization?

● Quantization can improve DNN computational throughput while 

maintaining accuracy

● Layers on DNN models can be offered with different bit widths

● Varying bit width requires the support of the hardware

● No systematic approach to figure out the proper bit width in 

layers of DNN models

● What else ?
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Takeaway Questions

● What are purposes of data quantization ?

○ (A) Constrain the value of inputs to a set of discrete values 

○ (B) Create more values

○ (C) Improve the degree of parallelism on DNN training

● Why training requires large bit width ?

○ (A) The training needs to compute more data

○ (B) Avoid the value underflow and overflow

○ (C) Gradient and weight update have a larger range 
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