
Accelerator Architectures for Machine

Learning (AAML)

Lecture 3: Quantization

Tsung Tai Yeh
Department of Computer Science

National Yang-Ming Chiao Tung University

1

Acknowledgements and Disclaimer

● Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial

Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen,

Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020

Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC

Berkeley, 2020

CS231n Convolutional Neural Networks for Visual Recognition, Stanford

University, 2020

● 6.5940, TinyML and Efficient Deep Learning Computing, MIT

● NVIDIA, Precision and performance: Floating point and IEEE 754

Compliance for NVIDIA GPUs, TB-06711-001_v8.0, 2017

2

Outline

● K-Means-based Quantization

● Linear Quantization

● Binary and Ternary Quantization

3

What is Quantization ?

● Quantization

○ A process that reduces the precision of a digital signal by

converting high-precision data into a lower-precision format

4

Benefits of Quantization

● Reduced memory burden
○ Reduce pressure on memory bandwidth which can improve

output token throughput

● Simplified compute

operations
○ Improve overall

end-to-end latency

performance as a result

of simplified attention

layer computations
5

https://reurl.cc/gYok94

Memory is Expensive !!

● Data movement -> Move memory reference -> More energy

6

Low Bit-Width Operations are Cheap

● Less Bit-Width -> Less energy

7

45 nm Process, Horowitz,

ISSCC, 2014

Energy and Area Cost

8

Operation Energy (pJ) Area(um2)

8b Add 0.03 36

16b Add 0.05 67

32b Add 0.1 137

16b FP Add 0.4 1360

32b FP Add 0.9 4184

16b FP Mult 1.1 1640

32b FP Mult 3.7 7700

32b SRAM Read

(8KB)

5

32b DRAM Read 640

173X

4.7X

45 nm Process, Horowitz, ISSCC, 2014

Could we make the deep learning

efficient by lowering the precision

of data ?

Numeric Data Types

● Fixed-point number

9

IEEE 765 Single Precision Float Point

● Sign determines the sign of the number

● Exponent (8 bit) represent -127 (all 0s) and +128 (all 1s)

● Significand (23 fraction bits), total precision is 24 bits (23 + 1 implicit

leading bit) log10(2
24) ≈ 7.225 digital bit

10

0 0 1 1 1 1 0 0 0 0 1 0

Sign Exponent (8 bits) Mantissa/Fraction (23 bits)

IEEE 765 FP32

11

0 0 1 1 1 1 0 0 0 0 1 0

Sign Exponent (8 bits)

Sign = b31 = 0 ; (-1)0 = 1

e =120; 2(120 - 127) = 2-7

Value = 1 x 2-7 x 1.25 = 0.009765625

Mantissa/Fraction (23 bits)

Numeric Data Type

● Question: What is the decimal “11.375” in FP32 format ?

● The exponent is 3 and biased form

= (3 + 127) = 130 = 1000 0010

12

0.375 x 2 = 0.750 = 0 + 0.750 => b-1 = 0

0.750 x 2 = 1.500 = 1 + 0.500 => b-2 = 1

0.500 x 2 = 1.000 = 1 + 0.000 => b-3 = 1

11.375

= 11 + 0.375

= (1011)2 + (0.011)2

= (1011.011)2

= (1.011011)2 x 23

0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign Exponent (8 bits) Mantissa/Fraction (23 bits)

Floating-Point Number

● Exponent Width -> Range; Fraction Width-> Precision

13

Number Representation

14

S E M

1 8 23

FP32

S E M

1 5 10

FP16

S M

1 31

INT32

S M

1 15

INT16

S M

1 8

INT8

Range

1.2E-38 to 3.4E+38

6.1E-5 to 6.6E+4

2147483648 to 2147483647

−32,768 to 32,767

-128 ~ 127

Reduced Bit Width

15

0 1 0 0 0 0 1 1 0 1 0

Sign Exponent (8 bits) Mantissa/Fraction (23 bits)

0 1 0 0 0 0 0 0

32-bit

float

8-bit

INT

Sign Mantissa/Fraction (7 bits)

Integer

(4-bits)

Fractional

(3-bits)

FP32 vs FP16 vs BF16

Format Bits Exponent Fraction

FP32 32 8 23

FP16 16 5 10

BF16 16 8 7

16

• FP32 – single precision
• With 6-9 significant decimal

digits precision

• FP16 – half precision
• Uses in some neural network

applications

• With 4 significant decimal digits
precision

• BF16
• A truncated FP32

• Allow for fast conversion to
and from an FP32

• With 3 significant decimal digits
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-

high-performance-on-cloud-tpus

Choosing bFloat16

● Motivation
○ The physical size of a hardware multiplier scales with the square of

the mantissa width

○ Mantissa bit length – FP32-> 23 bits, FP16-> 10 bits, BF16:->7 bits

● BF16
○ 8 X smaller than an FP32 multiplier

○ Has the same exponent size as FP32

○ No require special handling (loss scaling) in the FP16 conversion

○ XLA compiler’s automatic format conversion

○ In side the MXU, multiplications are performed in BF16 format

○ Accumulations are performed in full FP32 precision

17

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

Nvidia’s TF32

● Nvidia’s TF32
○ 19-bit (BF19)

○ 1-bit sign, 8-bit exponent

10-bit fraction

○ Fuse BF16 and FP16
■ BF16: 8-bit exponent +

■ FP16: 10-bit fraction

○ Nvidia A100 Tensor Core
■ TF32: 156 TFLOPS

■ FP16/BF16: 312 TFLOPS

18

https://reurl.cc/Omo1dv

FP8 and Tesla CFloat

● FP8 (1-5-2)
○ Large loss in MobileNet v2

○ Hybrid FP8 (HFP8)
■ Use FP(1-4-3) in forward

■ Use FP(1-5-2) in backward

● Tesla Dojo Cfloat (configurable float)
○ Configurable exponent and mantissa

○ Use software to choose appropriate Cfloat format
■ CF16

■ CF8 (1-4-3), CF8 (1-5-2)
19

https://proceedings.neurips.cc/paper/2019/file/65f

c9fb4897a89789352e211ca2d398f-Paper.pdf

Nvidia’s NVFP4

● Nvidia’s NVFP4

○ 1 sign bit, 2 exponent bits, and 1 mantissa bit (E2M1)

○ The value in the format ranges approximately -6 to 6

○ The values in the range could include 0.0, 0.5, 1.0, 1.5, 2, 3, 4,

6 (same for the negative range)

20

https://reurl.cc/gYok94

Nvidia’s NVFP4

● High-precision scaling

○ NVFP4 encodes blocks using E4M3 FP8 precision

○ Enables non-power-of-two scaling factors with fractional precision

21
https://reurl.cc/gYok94

Nvidia’s NVFP4

● High-precision scaling

○ E8M0 = Snaps the scale factor to nearest 2ⁿ

○ E4M3 = Finds one scale factor that makes the block errors

collectively as small as possible

22

https://reurl.cc/gYok94

Nvidia’s NVFP4

● Quantize model weights to 4-bits

○ The analysis showcases the 1% or less accuracy degradation

23

https://reurl.cc/gYok94

How to Determine Bit Width on DNN ?

● For accuracy, DNN operations decide bit width to achieve

sufficient precision

● Which DNN operations affect the accuracy ?
○ For inference: weights, activations, and partial sums

○ For training: weights, activations, partial sums, gradients, and

weight update

■ post-training quantization (PTQ)

● A model compression technique that converts a pre-

trained, full-precision model into a lower-precision

model without needing to retrain or fine-tune it
24

Takeaway Questions

● What are advantages to use BF16 instead of FP16 ?
○ (A) Fast conversion from FP32

○ (B) Get more precise value

○ (C) Represent few different values

● What are benefits to use lower precision data type on

neural network ?
○ (A) Reduce the latency of DNN models

○ (B) Save the memory space

○ (C) Lower the power consumption of the accelerator

25

K-Means-based Weight Quantization

● Storage

○ Integer Weights; Floating-Point Codebook

● Computation

○ Floating-Point Arithmetic

26

K-Means-based Weight Quantization

27

K-Means-based Weight Quantization

● Fine-tuning

Quantized Weights

○ Reduce the

quantization

error

28

K-Means-based Weight Quantization

● Weights are decompressed using a lookup table during runtime inference

● Only saves storage cost of a neural network model

● All the computation and memory access are still floating-point

29

What is Linear Quantization ?

● An affine mapping of integers to real numbers

● Storage: Integer Weights; Computation: Integer Arithmetic

30

Linear Quantization

● An affine mapping of integers to real numbers (r = S(q - Z))

31

Linear Quantization

32

● An affine mapping of integers to real numbers (r = S(q - Z))

Scale of Linear Quantization

● An affine mapping of integers to real numbers (r = S(q - Z))

33

Scale of Linear Quantization

● An affine mapping of integers to real numbers (r = S(q - Z))

34

Zero Point of Linear Quantization

● An affine mapping of integers to real numbers (r = S(q - Z))

35

Zero Point of Linear Quantization

● An affine mapping of integers to real numbers (r = S(q - Z))

36

Asymmetric Linear Quantization

● Full range mode

37

Symmetric Linear Quantization

● Restricted range mode

38

Asymmetric vs. Symmetric

39

Binary/Ternary Quantization

● Could we push the quantization precision to 1 bit?

40

Binary/Ternary Quantization

● If weights are quantized to +1 and -1

41

Binarization

42

Minimizing Quantization Error in Binarization

43

Binary Net

● Binary Connect

○ Weights {-1, 1} (Bipolar binary),

Activation 32-bit float

○ Accuracy loss: 19 % on AlexNet

● Binarized Neural Networks

○ Weights {-1, 1}, Activations {-1, 1}

○ Both of operands are binary, the multiplication turns into an XNOR

○ Accuracy loss: 29.8 % on AlexNet

44
Courbariaux., NeurIPS, 2015

for each i in width:

C += A[row][i] * B[i][col]
for each i in width:

C += popcount(XNOR(A[row][i], B[i][col]))

Popcount (110010001) = 4

Case Study: Binary Multiplication

● A = 10010, B = 01111 (0 is really -1 here)

● Dot product:

○ A * B = (1 * -1) + (-1 * 1) + (-1 * 1) + (1 * 1) + (-1 * 1) = -3

● P = XNOR (A, B) = 00010, popcount(P) = 1

● Result = 2 * P – N, where N is the total number of bits

● 2 * P – N = 2 * 1 – 5 = -3

45https://sushscience.wordpress.com/2017/10/01/understanding-binary-neural-networks/

XNOR-Net

● If both activations and weights are binarized

46

XNOR-Net

● If both activations and weights are binarized

47

XNOR-Net

● If both activations and weights are binarized

48

XNOR-Net

● If both activations and weights are binarized

49

XNOR-Net

● If both activations and weights are binarized

50

XNOR-Net

● If both activations and weights are binarized

51

XNOR-Net

● Minimizing quantization error in binarization

52

XNOR-Net

53

BitNet

54

● FP16 activation and 1.58 bit weights – Transformer-based model

● Lookup table (LUT) calculations

What do we Learn from Quantization?

● Quantization can improve DNN computational throughput while

maintaining accuracy

● Layers on DNN models can be offered with different bit widths

● Varying bit width requires the support of the hardware

● No systematic approach to figure out the proper bit width in

layers of DNN models

● What else ?

55

Takeaway Questions

● What are purposes of data quantization ?

○ (A) Constrain the value of inputs to a set of discrete values

○ (B) Create more values

○ (C) Improve the degree of parallelism on DNN training

● Why training requires large bit width ?

○ (A) The training needs to compute more data

○ (B) Avoid the value underflow and overflow

○ (C) Gradient and weight update have a larger range

56

