

Accelerator Architectures for Machine Learning (AAML)

Lecture 3: Quantization

Tsung Tai Yeh

Department of Computer Science

National Yang-Ming Chiao Tung University

Acknowledgements and Disclaimer

- Slides was developed in the reference with
 Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial
 Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen,
 Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC
 Berkeley, 2020
 CS231n Convolutional Neural Networks for Visual Recognition, Stanford
 University, 2020
- 6.5940, TinyML and Efficient Deep Learning Computing, MIT
- NVIDIA, Precision and performance: Floating point and IEEE 754
 Compliance for NVIDIA GPUs, TB-06711-001_v8.0, 2017

Outline

- K-Means-based Quantization
- Linear Quantization
- Binary and Ternary Quantization

What is Quantization?

Quantization

 A process that reduces the precision of a digital signal by converting high-precision data into a lower-precision format

Original Image

16-Color Image

Images are in the public domain.

Benefits of Quantization

Reduced memory burden

Reduce pressure on memory bandwidth which can improve output token throughput
 Evolution of Performance Across GPU Generations

Simplified compute operations

 Improve overall end-to-end latency performance as a result of simplified attention layer computations

Memory is Expensive !!

Data movement -> Move memory reference -> More energy

Low Bit-Width Operations are Cheap

Less Bit-Width -> Less energy

Energy and Area Cost

Could we make the deep learning efficient by lowering the precision of data?

Operation	Energy (pJ)	Area(um²)
8b Add	0.03	36
16b Add	0.05	67
32b Add	0.1	137
16b FP Add	0.4	1360
32b FP Add	0.9	4184
16b FP Mult	1.1	1640 4.7 X
32b FP Mult	3.7	7700 4.77
32b SRAM Read (8KB)	5	
32b DRAM Read	640 45 nm P	rocess, Horowitz, ISSCC, 2014

173X

Numeric Data Types

Fixed-point number

IEEE 765 Single Precision Float Point

- Sign determines the sign of the number
- Exponent (8 bit) represent -127 (all 0s) and +128 (all 1s)
- **Significand** (23 fraction bits), total precision is 24 bits (23 + 1 implicit leading bit) $\log_{10}(2^{24}) \approx 7.225$ digital bit

$$value = (-1)^{sign} \times 2^{(e-127)} \times (1 + \sum_{i=1}^{23} b_{(23-i)} 2^{-i})$$

IEEE 765 FP32

Sign Exponent (8 bits) Mantissa/Fraction (23 bits)
$$value = (-1)^{sign} \times 2^{(e-127)} \times (1 + \sum_{i=1}^{23} b_{(23-i)} 2^{-i})$$
 Sign = b31 = 0 ; (-1)⁰ = 1 e =120; $2^{(120-127)} = 2^{-7}$

$$1.b_{22}b_{21}...b_0 = \left(1 + \sum_{i=1}^{n} b_{(23-i)}2^{-i}\right) = 1 + 2^{-2} = 1.25$$

Value = $1 \times 2^{-7} \times 1.25 = 0.009765625$

Numeric Data Type

Question: What is the decimal "11.375" in FP32 format?

```
11.375

= 11 + 0.375

= (1011)<sub>2</sub> + (0.011)<sub>2</sub>

= (1.011.011)<sub>2</sub> x 2<sup>3</sup>

0.375 x 2 = 0.750 = 0 + 0.750 => b<sub>-1</sub> = 0

0.750 x 2 = 1.500 = 1 + 0.500 => b<sub>-2</sub> = 1

0.500 x 2 = 1.000 = 1 + 0.000 => b<sub>-3</sub> = 1
```

The exponent is 3 and biased form

$$= (3 + 127) = 130 = 1000 0010$$

Floating-Point Number

Exponent Width -> Range; Fraction Width-> Precision

Number Representation

Range

1.2E-38 to 3.4E+38

6.1E-5 to 6.6E+4

2147483648 to 2147483647

-32,768 to 32,767

-128 ~ 127

Reduced Bit Width

FP32 vs FP16 vs BF16

FP32 – single precision

With 6-9 significant decimal digits precision

FP16 – half precision

Uses in some neural network applications

 With 4 significant decimal digits precision

BF16

- A truncated FP32
- Allow for fast conversion to and from an FP32
- With 3 significant decimal digits

Format	Bits	Exponent	Fraction
FP32	32	8	23
FP16	16	5	10
BF16	16	8	7

Choosing bFloat16

Motivation

- The physical size of a hardware multiplier scales with the square of the mantissa width
- Mantissa bit length FP32-> 23 bits, FP16-> 10 bits, BF16:->7 bits

BF16

- 8 X smaller than an FP32 multiplier
- Has the same exponent size as FP32
- No require special handling (loss scaling) in the FP16 conversion
- XLA compiler's automatic format conversion
- In side the MXU, multiplications are performed in BF16 format
- Accumulations are performed in full FP32 precision

Nvidia's TF32

Nvidia's TF32

- 19-bit (BF19)
- 1-bit sign, 8-bit exponent10-bit fraction
- Fuse BF16 and FP16
 - BF16: 8-bit exponent +
 - FP16: 10-bit fraction
- Nvidia A100 Tensor Core
 - TF32: 156 TFLOPS
 - FP16/BF16: 312 TFLOPS

https://reurl.cc/Omo1dv

FP8 and Tesla CFloat

- FP8 (1-5-2)
 - Large loss in MobileNet v2
 - Hybrid FP8 (HFP8)
 - Use FP(1-4-3) in forward
 - Use FP(1-5-2) in backward

c. Trans-precision of FP32 models		
FP32 Model	Baseline	FP8 1-5-2
MobileNet_v2 ImageNet	71.81	52.51
ResNet50 ImageNet	76.44	75.31
DensetNet121 ImageNet	74.76	73.64
MaskRCNN	33.58	32.83
$COCO^{\dagger}$	29.27	28.65
† Box and Ma	ask average n	recision

- Tesla Dojo Cfloat (configurable float)
 - Configurable exponent and mantissa
 - Use software to choose appropriate Cfloat format
 - CF16
 - CF8 (1-4-3), CF8 (1-5-2)

Nvidia's NVFP4

- 1 sign bit, 2 exponent bits, and 1 mantissa bit (E2M1)
- The value in the format ranges approximately -6 to 6
- The values in the range could include 0.0, 0.5, 1.0, 1.5, 2, 3, 4,
 6 (same for the negative range)

Table 1: Numbers represented in FP4-E2M1 with NaN and Inf (IEEE 754 standard) and Numbers represented in FP4-E2M1 without NaN and Inf (Our design).

UINT4	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
FP4 w/ NaN&Inf FP4 w/o NaN&Inf					2 2	3	Inf 4	NaN 6				-1.5 -1.5		-3 -3	Inf -4	NaN -6

High-precision scaling

- NVFP4 encodes blocks using E4M3 FP8 precision
- Enables non-power-of-two scaling factors with fractional precision

E8MO: Power of Two Scale

High-precision scaling

- E8M0 = Snaps the scale factor to nearest 2ⁿ
- E4M3 = Finds one scale factor that makes the block errors collectively as small as possible

Quantize model weights to 4-bits

The analysis showcases the 1% or less accuracy degradation

How to Determine Bit Width on DNN?

- For accuracy, DNN operations decide bit width to achieve sufficient precision
- Which DNN operations affect the accuracy?
 - For inference: weights, activations, and partial sums
 - For training: weights, activations, partial sums, gradients, and weight update
 - post-training quantization (PTQ)
 - A model compression technique that converts a pretrained, full-precision model into a lower-precision model without needing to retrain or fine-tune it

Takeaway Questions

- What are advantages to use BF16 instead of FP16?
 - (A) Fast conversion from FP32
 - (B) Get more precise value
 - (C) Represent few different values
- What are benefits to use lower precision data type on neural network?
 - (A) Reduce the latency of DNN models
 - (B) Save the memory space
 - (C) Lower the power consumption of the accelerator

Storage

Integer Weights; Floating-Point Codebook

Computation

Floating-Point Arithmetic

weights (32-bit float)

(0- 10-11-11-11-11-11-11-11-11-11-11-11-11-1							
2.09	-0.98	1.48	0.09				
0.05	-0.14	-1.08	2.12				
-0.91	1.92	0	-1.03				
1.87	0	1.53	1.49				

Fine-tuningQuantized Weights

Reduce the quantization error

- Weights are decompressed using a lookup table during runtime inference
- Only saves storage cost of a neural network model
- All the computation and memory access are still floating-point

What is Linear Quantization?

- An affine mapping of integers to real numbers
- Storage: Integer Weights; Computation: Integer Arithmetic

Binary	Decimal
01	1
00	0
11	-1
10	-2

quantization e	rror
----------------	------

0.05	0.09	0.41	0.09
0.05	-0.14	-0.01	-0.02
0.16	-0.22	0	0.04
0.27	0	0.46	0.42

Linear Quantization

Linear Quantization

Scale of Linear Quantization

$$r_{\text{max}} = S \left(q_{\text{max}} - Z \right)$$

$$r_{\text{min}} = S \left(q_{\text{min}} - Z \right)$$

$$\downarrow$$

$$r_{\text{max}} - r_{\text{min}} = S \left(q_{\text{max}} - q_{\text{min}} \right)$$

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

Scale of Linear Quantization

An affine mapping of integers to real numbers (r = S(q - Z))

$q_{ m min}$ $q_{ m max}$	
	
$-2 - 1 \ 0 \ 1$	

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	О	1.53	1.49

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

Decimal

0

01 00

11

10

$$= \frac{2.12 - (-1.08)}{1 - (-2)}$$
$$= 1.07$$

Zero Point of Linear Quantization

$$r_{\min} = S \left(q_{\min} - Z \right)$$

$$\downarrow$$

$$Z = q_{\min} - \frac{r_{\min}}{S}$$

$$\downarrow$$

$$Z = \text{round} \left(q_{\min} - \frac{r_{\min}}{S} \right)$$

Zero Point of Linear Quantization

An affine mapping of integers to real numbers (r = S(q - Z))

	2
$q_{ m min}$ $q_{ m max}$	
$-2 - 1 \ 0 \ 1$	

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$Z = q_{\min} - \frac{r_{\min}}{S}$$

$$\begin{array}{c|cccc}
\hline
01 & 1 \\
00 & 0 \\
\hline
11 & -1 \\
10 & -2 & = -1
\end{array}$$
 = round(-2 - $\frac{-1.08}{1.07}$)

Decimal

Asymmetric Linear Quantization

Full range mode

Bit Width	q _{min}	Qmax
2	-2	1
3	-4	3
4	-8	7
N	-2N-1	2N-1_1

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$S = \frac{r_{\min}}{q_{\min} - Z} = \frac{-|r|_{\max}}{q_{\min}} = \frac{|r|_{\max}}{2^{N-1}}$$

- use full range of quantized integers
- example: PyTorch's native quantization, ONNX

Symmetric Linear Quantization

Restricted range mode

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$S = \frac{r_{\text{max}}}{q_{\text{max}} - Z} = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{|r|_{\text{max}}}{2^{N-1} - 1}$$

Bit Width	q min	q max
2	-2	1
3	-4	3
4	-8	7
N	-2N-1	2 ^{N-1} -1

 example: TensorFlow, NVIDIA TensorRT, Intel DNNL

Asymmetric vs. Symmetric

Asymmetric Linear Quantization

- · The quantized range is fully used.
- The implementation is more complex, and zero points require additional logic in hardware.

Symmetric Linear Quantization

- The quantized range will be wasted for biased float range.
 - Activation tensor is non-negative after ReLU, and thus symmetric quantization will lose 1 bit effectively.
- The implementation is much simpler.

Binary/Ternary Quantization

Could we push the quantization precision to 1 bit?

$$y_i = \sum_j W_{ij} \cdot x_j$$

= 8×5 + (-3)×2 + 5×0 + (-1)×1

input	weight	operations	memory	computation
R	R	+ ×	1×	1×

=					×	5
	8	-3	5	-1		2
						0
						1

Binary/Ternary Quantization

If weights are quantized to +1 and -1

$$y_i = \sum_j W_{ij} \cdot x_j$$
$$= 5 - 2 + 0 - 1$$

input	weight	operations	memory	computation
\mathbb{R}	\mathbb{R}	+ ×	1×	1×
\mathbb{R}	\mathbb{B}	+ -	~32× less	~2× less

Binarization

Deterministic Binarization

directly computes the bit value based on a threshold, usually 0, resulting in a sign function.

$$q = \operatorname{sign}(r) = \begin{cases} +1, & r \ge 0 \\ -1, & r < 0 \end{cases}$$

Stochastic Binarization

- use global statistics or the value of input data to determine the probability of being -1 or +1
 - e.g., in Binary Connect (BC), probability is determined by hard sigmoid function $\sigma(r)$

$$q = \begin{cases} +1, & \text{with probability } p = \sigma(r) \\ -1, & \text{with probability } 1-p \end{cases}, \quad \text{where } \sigma(r) = \min(\max(\frac{r+1}{2}, 0), 1)$$

harder to implement as it requires the hardware to generate random bits when quantizing.

Minimizing Quantization Error in Binarization

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$\mathbf{W}^{\mathbb{B}} = \operatorname{sign}(\mathbf{W})$$
$$\alpha = \frac{1}{n} \|\mathbf{W}\|_{1}$$

binary weights (1-bit)

1	7	1	1
1	-1	-1	1
-1	1	1	-1
1	1	1	1

1	-1	1	1
1	-1	-1	1
-1	1	1	-1
1	1	1	1

AlexNet-based Network	ImageNet Top-1 Accuracy Delta
BinaryConnect	-21.2%
Binary Weight Network (BWN)	0.2%

$$\|\mathbf{W} - \mathbf{W}^{\mathbb{B}}\|_F^2 = 9.28$$

scale (32-bit float)

X 1.05 =
$$\frac{1}{16} \|\mathbf{W}\|_1$$

$$\|\mathbf{W} - \alpha \mathbf{W}^{\mathbb{B}}\|_F^2 = 9.24$$

Binary Net

Binary Connect

- Weights {-1, 1} (Bipolar binary),
 Activation 32-bit float
- Accuracy loss: 19 % on AlexNet

Binarized Neural Networks

- Weights {-1, 1}, Activations {-1, 1}
- Both of operands are binary, the multiplication turns into an XNOR
- Accuracy loss: 29.8 % on AlexNet

I for each i in width:

$$C += A[row][i] * B[i][col]$$

AITOIL					
	Α	В	Out		
	0	0	1		
	1	0	0		
	0	1	0		
	1	1	1		

for each i in width:

Case Study: Binary Multiplication

- A = 10010, B = 01111 (0 is really -1 here)
- Dot product:

$$\circ$$
 A * B = (1 * -1) + (-1 * 1) + (-1 * 1) + (1 * 1) + (-1 * 1) = -3

- P = XNOR (A, B) = 00010, popcount(P) = 1
- Result = 2 * P N, where N is the total number of bits
- 2 * P N = 2 * 1 5 = -3

$$y_i = \sum_j W_{ij} \cdot x_j$$
= 1×1 + (-1)×1 + 1×(-1) + (-1)×1
= 1 + (-1) + (-1) + (-1) = -2

$$y_i = \sum_j W_{ij} \cdot x_j$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

W	X	Y=WX
1	1	1
1	-1	-1
-1	-1	1
-1	1	-1

bw	b _X	XNOR(b _w , b _x)
1	1	1
1	0	0
0	0	1
0	1	0

$$y_{i} = \sum_{j} W_{ij} \cdot x_{j}$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

$$= 1 + 0 + 0 + 0 = 1$$
?

W	X	Y=WX	
1	1	1	
1	-1	-1	
-1	-1	1	
-1	1	-1	

bw	b _X XNOR(b _W , b _X		
1	1	1	
1	0	0	
0	0	1	
0	1	0	

$$y_{i} = \sum_{j} W_{ij} \cdot x_{j}$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

$$= 1 + 0 + 0 + 0 = 1 \times 2$$

$$\uparrow_{+2}$$

$$+ -4$$
Assuming -1 -1 -1 -1 -1 -1 -2

W	X	Y=WX	
1	1	1	
1	-1	-1	
-1	-1	1	
-1	1	-1	

bw	b _X	XNOR(bw, bx)	
1	1	1	
1	0	0	
0	0	1	
0	1	0	

If both activations and weights are binarized

$$y_i = -n + 2 \cdot \sum_j W_{ij} \operatorname{xnor} x_j \rightarrow y_i = -n + \operatorname{popcount} (W_i \operatorname{xnor} x) \ll 1$$

= -4 + 2 × (1 xnor 1 + 0 xnor 1 + 1 xnor 0 + 0 xnor 1)
= -4 + 2 × (1 + 0 + 0 + 0) = -2

→ popcount: return the number of 1

W	X	Y=WX	
1	1	1	
1	-1	-1	
-1	-1	1	
-1	1	-1	

bw	b _X	XNOR(b _W , b _X)
1	1	1
1	0	0
0	0	1
0	1	0

$$y_i = -n + \text{popcount}(W_i \times xnor x) \ll 1$$

= -4 + popcount(1010 \times nor 1101) \leftleq 1
= -4 + popcount(1000) \leftleq 1 = -4 + 2 = -2

input	weight	operations	memory	computation
R	\mathbb{R}	+ ×	1×	1×
R	В	+ -	~32× less	~2× less
B	B	xnor,	~32× less	~58× less

					×	1
	1	-1	1	-1		1
						-1
						1

Minimizing quantization error in binarization

Neural Network	Overtination	Bit-V	ImageNet	
	Quantization	w	A	Top-1 Accuracy Delta
	BWN	1	32	0.2%
AlexNet	BNN	1	1	-28.7%
	XNOR-Net	1	1	-12.4%
GoogleNet	BWN	1	32	-5.80%
	BNN	1	1	-24.20%
ResNet-18	BWN	1	32	-8.5%
	XNOR-Net	1	1	-18.1%

^{*} BWN: Binary Weight Network with scale for weight binarization

^{*} BNN: Binarized Neural Network without scale factors

^{*} XNOR-Net: scale factors for both activation and weight binarization

BitNet

- FP16 activation and 1.58 bit weights Transformer-based model
- Lookup table (LUT) calculations

What do we Learn from Quantization?

- Quantization can improve DNN computational throughput while maintaining accuracy
- Layers on DNN models can be offered with different bit widths
- Varying bit width requires the support of the hardware
- No systematic approach to figure out the proper bit width in layers of DNN models
- What else?

Takeaway Questions

- What are purposes of data quantization?
 - (A) Constrain the value of inputs to a set of discrete values
 - (B) Create more values
 - (C) Improve the degree of parallelism on DNN training
- Why training requires large bit width?
 - (A) The training needs to compute more data
 - (B) Avoid the value underflow and overflow
 - (C) Gradient and weight update have a larger range