

ML Compiler on Heterogenous Computer Architecture

Tsung Tai Yeh

Department of Computer Science

National Yang-Ming Chiao Tung University

Acknowledgements and Disclaimer

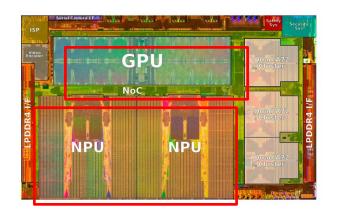
- Slides was developed in the reference with CS 15-779, Advanced Topics in Machine Learning Systems (LLM Edition), CMU, 2025
- AI System: https://github.com/Infrasys-AI/AISystem

Outline

- Heterogeneous Computer Architecture
 - CPU+GPU
 - CPU+ASIC
- ML Compiler
 - MLIR
 - IREE
- MegaKernel + Mirage on GPU
 - Domain-Specific Language

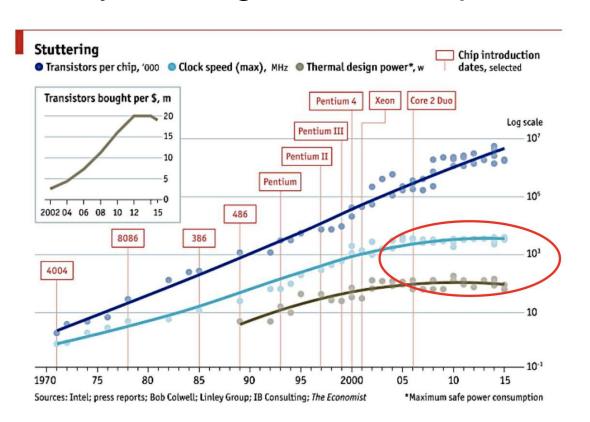
What is heterogeneous SoC?

- Heterogenous computer architecture
 - A chip contains CPU and multiple specialized functional units



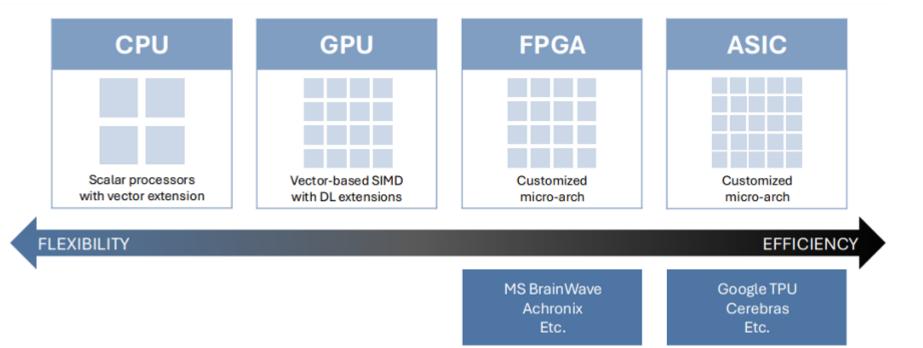
Chip	Tesla - FSD Chip	Qualcomm - Snapdragon 865 (Galaxy S20, March 6 2020)
Technology Node	Samsung 14 nm process	TSMC's advanced 7nm (N7P)
СРИ	3x (4-core) Cortex-A72	4x Cortex-A77, 4x Cortex-A55 (4 high power, 4 low power)
GPU	Custom GPU, 0.6 TFLOPS @ 1 Ghz	Adreno 650, 1.25 TFLOPS @ 700 MHz -ish
NPU (AI accelerator)	2x Tesla NPU, each 37 TOPS (total 74 TOPS)	Hexagon 698 @ 15 TOPS
Memory (Cache)	2x 32MB SRAM for NPUs	1 MB L2, 4 MB L3, and 3 MB system wide cache
Memory (RAM)	8GB LPDDR4X, 2x 64-bit, Bandwidth 111 GB/s	16GB LPDDR5, 4x 16-bit , Bandwidth 71.30 GB/s
ISP (Image signal processor)	24-bit? 1 billion pixels per second	Spectra 480, dual 14-bit CV-ISP 2 Gpixel/s, H.265 (HEVC)
Secure Processing Unit	"Security system", verify code has been signed by Tesla.	Qualcomm SPU230, EAL4+ certified

Why heterogeneous computer architecture?

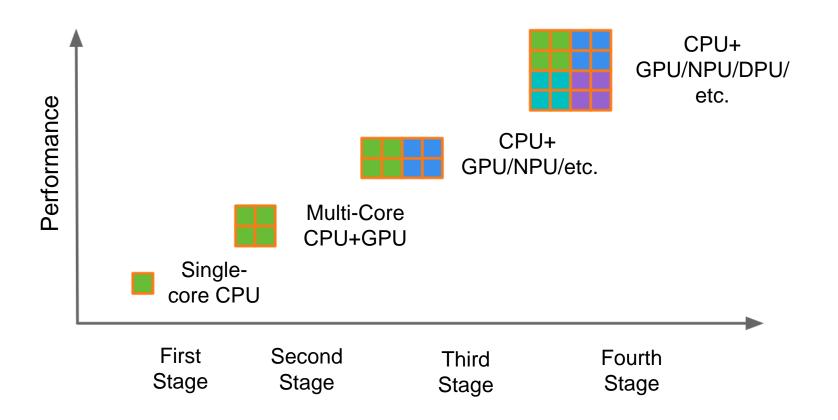


General purpose processor is not getting faster and power-efficient because of Slowdown of Moore's Law and Dennard Scaling

Why heterogeneous computer architecture?

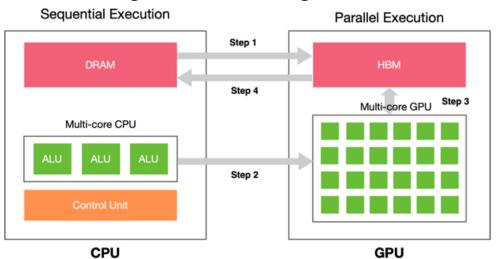


Evolution of Computer Architecture



Hetero Computer Architecture (CPU + GPU)

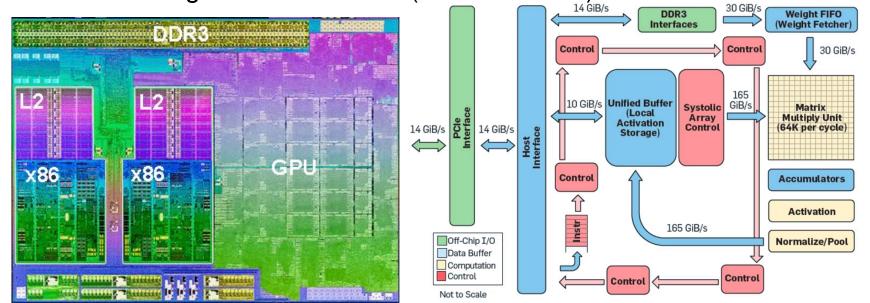
- Step 1: CPU sends data from its host memory to device memory
- Step 2: CPU asks GPU to begin the execution
- Step 3: GPU sends results back to the CPU
- What are advantages when using this hetero. architecture?



Hetero Computer Architecture (CPU + ASIC)

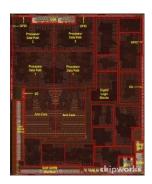
- Two types of heterogeneous computer architecture
 - Discreated CPU+ASIC (separated DRAM)

Integrated CPU+ASIC (shared DRAM)



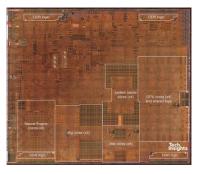
Hetero Computer Architecture (CPU+ASIC)

- Post-Moore era and dark silicon
 - A suite of accelerators on chip are rising
 - Applications will only use a subset of processors/accelerators at a time
 - Such a heterogeneous architecture is compatible with dark silicon



2010 Apple A4
65 nm TSMC 53 mm²
4 accelerators

2014 Apple A8
20 nm TSMC 89 mm²
28 accelerators

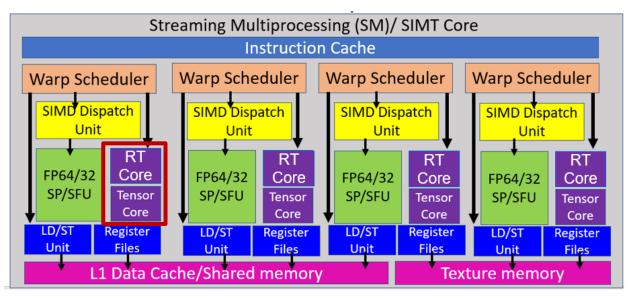


2019 Apple A127 nm TSMC 83 mm²42 accelerators

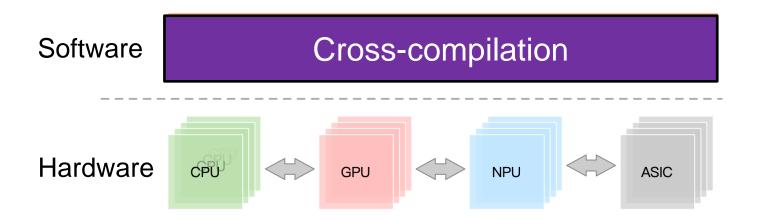
Hetero Computer Architecture (GPU)

GPU includes FP, SFU (Special Functional Unit), Ray Tracing

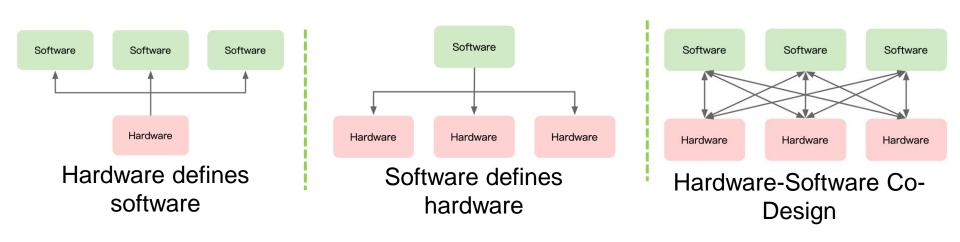
(RT) Core, and Tensor Core



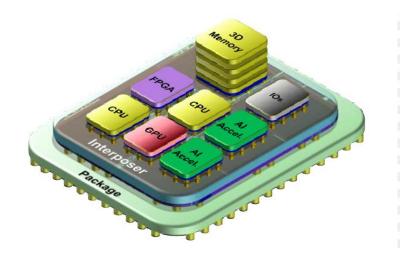
- Program Compilation
 - o Programming model?
 - Data/Kernel mapping/partition?
 - Concurrent execution?

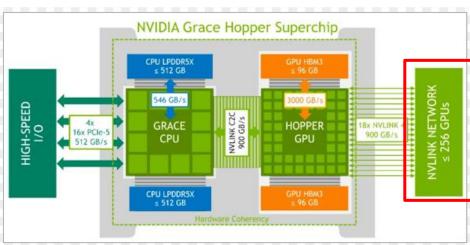


Program Compilation

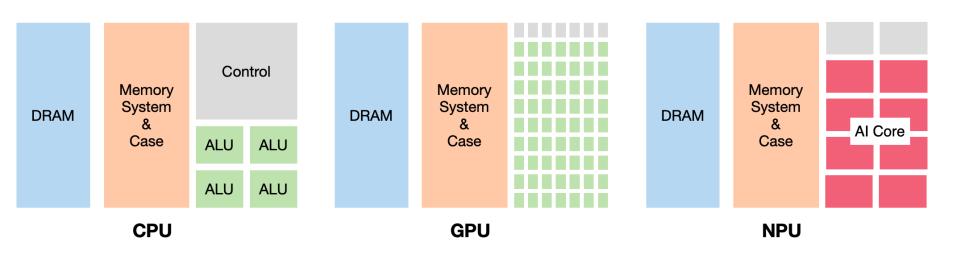


- Hardware
 - Packaging on Chiplet
 - Network-on-Chip (NoC)
 - Photonic Integrated Circuit





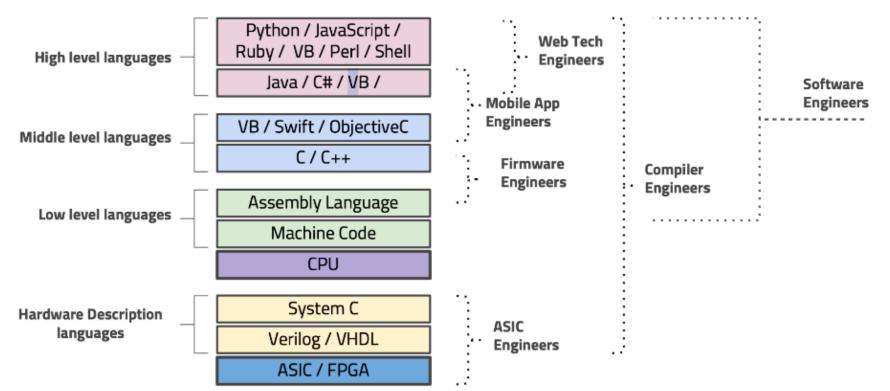
Trade-off the performance and flexibility



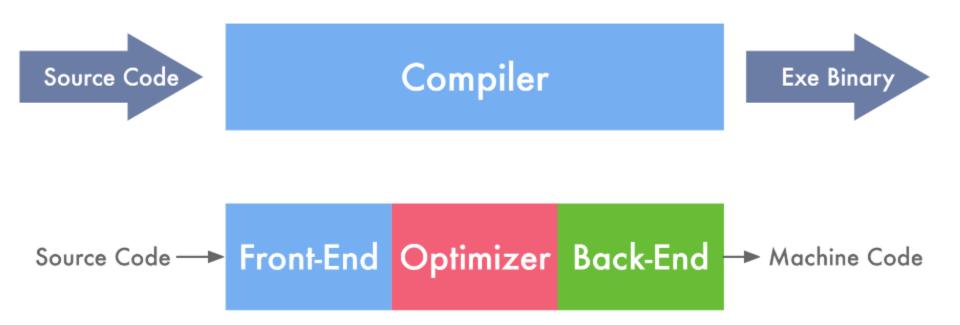
Takeaway Questions

- How to improve the performance of processor?
 - (A) Increase the size of cache
 - (B) Add specialized engines in the processor
 - (C) Utilize high bandwidth memory (HBM)
- What are benefits of heterogeneous computer architecture?
 - (A) Improve energy efficiency of the processor
 - (B) Facilitate parallel computing
 - (C) Reduce memory access latency

Computer Language Stacks



Compiler Basics



LLVM Compiler Architecture

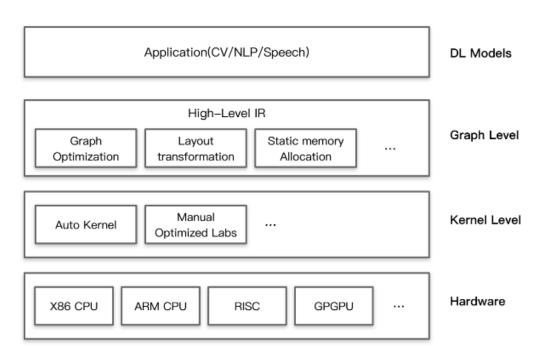


LLVM Compiler Architecture

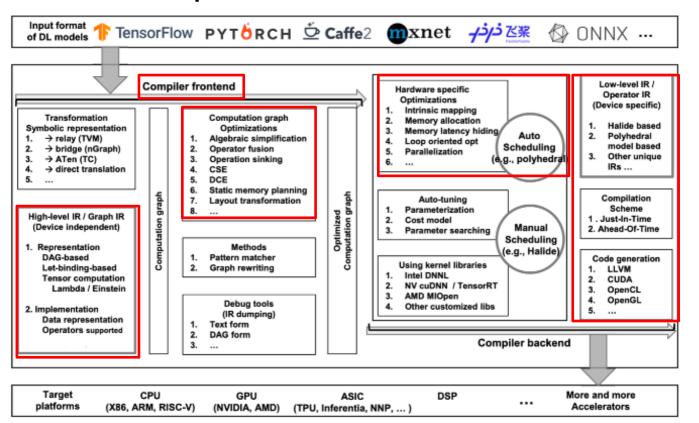


What is Al Compiler?

Translate the operators of ML models to hardware



What is Al Compiler?



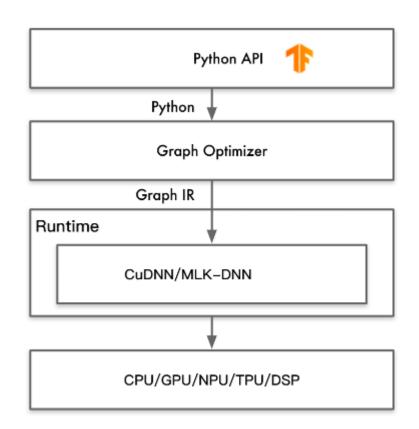
Al Compiler: Stage I

ML Model graph

- Static model graphPython->Onnx
- Graph rewrite/Optimizer

Performance

- Op kernel libraries (cuDNN, CMSIS-NN ...)
- More performance improve using Op scheduling, tiling, fusion



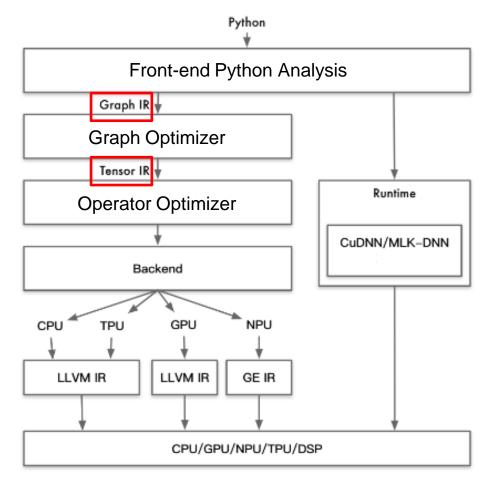
Al Compiler: Stage II

ML Model graph

- Transforms PyTorch expression into IR
- Optimizes Tensor IR

Performance

- Operator lowering
- Inter-op optimization
- Static/dynamic graphs
- Not only rely on the customized Op Lib



Al Compiler Frontend

Front-end compilation

- Goal
 - Parse model graphs from different AI system frameworks
 - Transforms model graphs into IR

Tasks

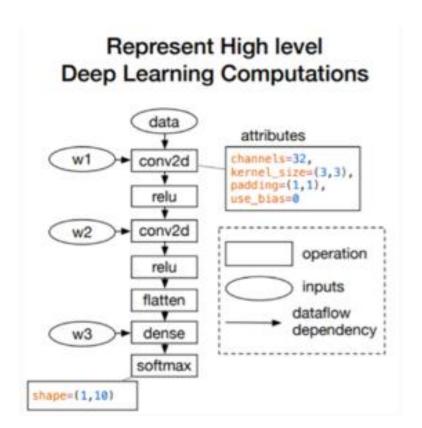
- Input format of ML models ((TensorFlow, PyTorch, ONNX ...)
- Transformation: transform model into united expression
 - TVM Relay, PyTorch Aten (TorchScript)
- High-level IR/Graph IR
 - Hardware independent
 - Operator/Tensor expression

Al Compiler Frontend

- Front-end compilation
 - Tasks
 - Computational Graph Optimizations
 - Algebraic simplification
 - Operator Fusion
 - Operator Sinking
 - Static memory planning
 - Tensor Layout transformation

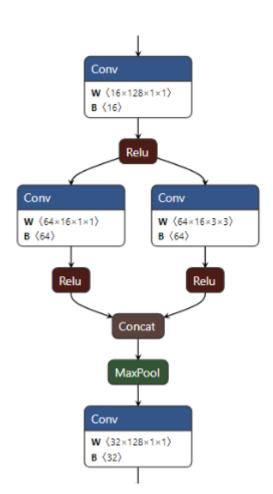
Al Compiler High-Level IR

- Layer-level IR
 - Express ML model structure as a calculation graph
 - High-level abstraction
 - Optimization
 - DSE, operator fusion..
 - Cross-platform

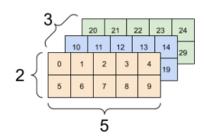


Graph IR

- Express ML model as a computation graph
- Tensor
- Operator
- Dependency



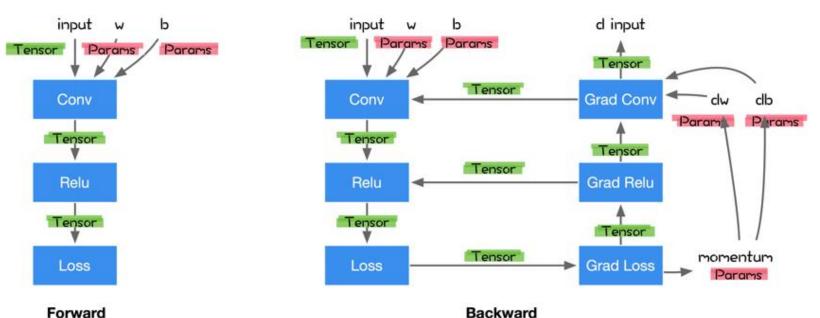
2 { 1.0 2.0 3.0 4.0 5.0 6.0



- Tensor
 - Shape [2, 3, 4, 5]
 - 。 [N, C, H, W] [N, H, W, C]
 - Type [int, float, string, ...]
- Operator
 - Algebra operator
 - Pre-defined operators

Add	Log	While
Sub	MatMul	Merge
Mul	Conv	BroadCast
Div	BatchNorm	Reduce
Relu	Loss	Мар
Floor	Sigmoid	

- Directed Acyclic Graph (DAG)
 - Operator, Tensor, control flow (For/While), dependency

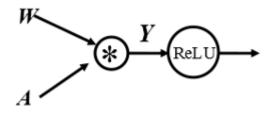


30

- Static Computational Graph
 - Al system framework (e.g. TensorFlow) parses API used to describe ML model
 - Fixed before execution
 - Use static data structure to describe model graph topology

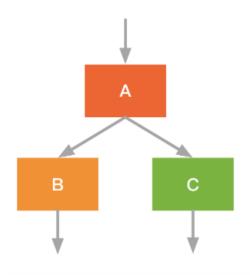
```
class Network(nn.Cell):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.dense_relu_sequential = nn.SequentialCell(
nn.Dense(28*28, 512),
nn.ReLU())

def construct(self, x):
x = self.flatten(x)
logits = self.dense_relu_sequential(x)
return logits
```

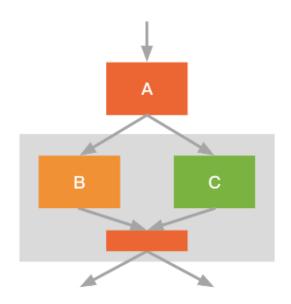


- Dynamic Computational Graph
 - Built on-the-fly as operations are performed
 - Define-by-run offers greater flexibility
 - Good for handling complex and variable-structured data
 - Time-series data: audio
 - Graph data: social networks
 - Multi-modal data: combinations of different variablestructured data types

Operator fusion

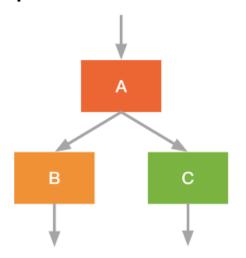


A is called twice

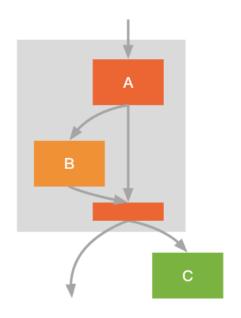


A is called once Buffer A's output

Operator fusion

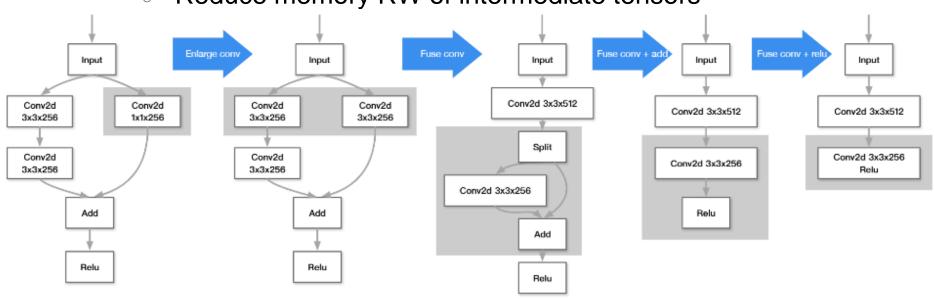


Three kernel calls (A, B, C)



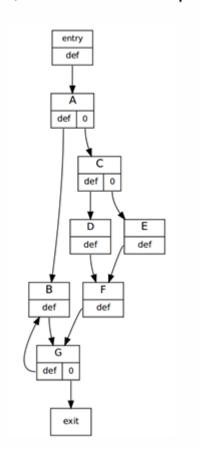
Reuse the intermediate data buffer

- Operator fusion
 - Reduce memory RW of intermediate tensors



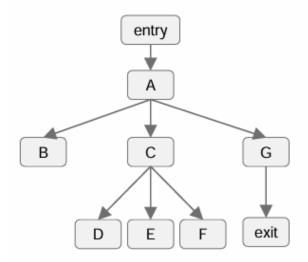
- How to fuse operators ?
 - TVM dominator tree (In a DAG)
 - Dominator
 - Node X dominates node Y iff all paths from the entry to Y go through X.
 - Node A dominates node C (A dom C)

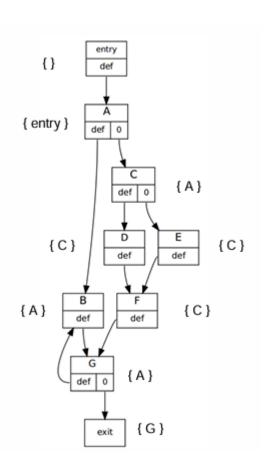
CFG (Control Flow Graph)



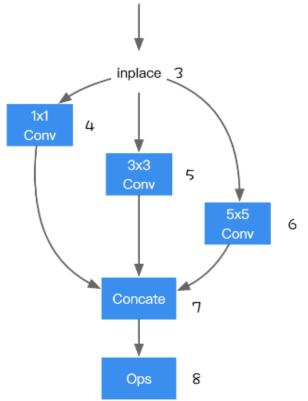
- How to fuse operators ?
 - TVM dominator tree (In a DAG)

Dominator Tree:

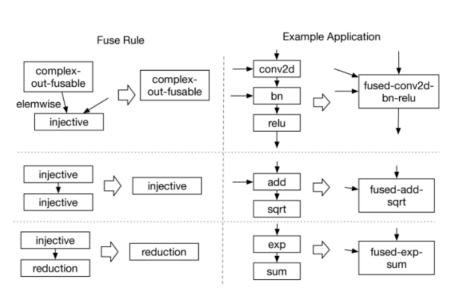




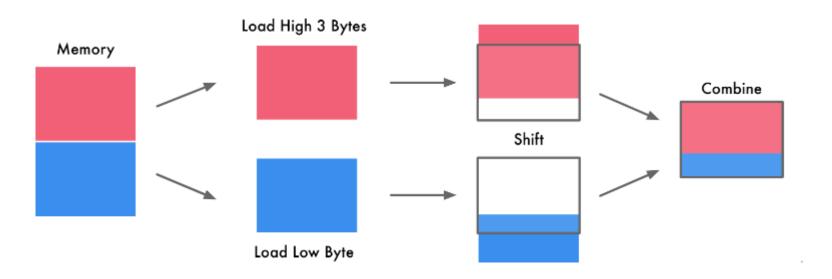
- The purpose of dominator tree
 - Check the path of each node to dominator node
 - Fuses the node that does not affect the rest of nodes
 - How to create a dominate tree?
 - Create DFS tree based on DAG
 - Create DOM (dominator) tree
 - Examine a group of nodes to check if multiple nodes can be fused



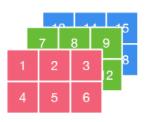
- Rule of operator fusion
 - Injective (one-to-one map): Add, pointwise
 - Reduction: sum/max/min
 - Complex-out-fusable
 - : conv2D
 - Opaque (cannot be fused): sort



- Data layout alignment
 - Unaligned tensor data will increase the memory transactions

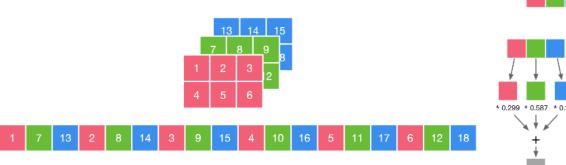


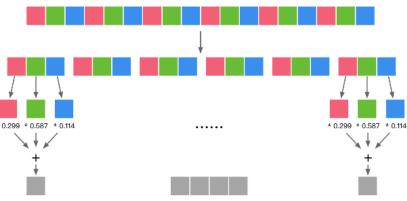
- Data layout (N, C, H, W)
 - N: batch; N: Height; W: width; C: Channels
 - NCHW: arrange data in the same channel in the a consecutive memory space
 - Good for the computations of GPU (data parallel)



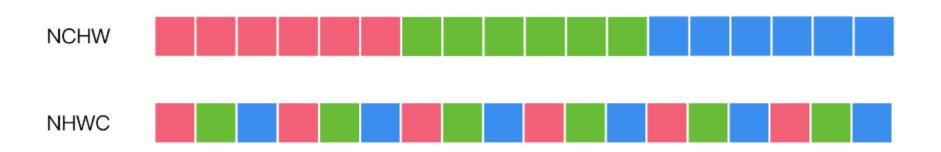
 1
 2
 3
 4
 5
 6
 6
 7
 8
 9
 19
 11
 12
 13
 14
 15
 16
 ...

- Data layout (N, H, W, C)
 - NHWC: arrange the data having the same location in different channels in a consecutive memory space e.g. Conv1x1





- Data layout (N, C, H, W)
 - PyTorch on NPU/GPU uses NCHW data layout
 - TensorFlow use NHWC data layout

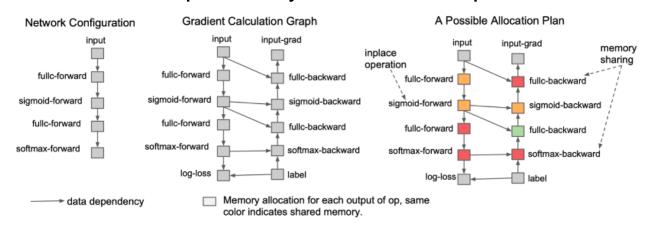


- Memory optimization
 - Attention memory usage for a deep Transformer (64 layer and 4 heads), recomputed during the backward pass
 - BERT (768 hidden layers) and needs 73GB memory when the batch size is 64

Data type	Stored	Recomputed
1024 text tokens (several paragraphs)	1.0 GB	16 MB
32×32×3 pixels (CIFAR-10 image)	9.6 GB	151 MB
64×64×3 pixels (Imagenet 64 image)	154 GB	2.4 GB
24,000 samples (~2 seconds of 12 kHz audio)	590 GB	9.2GB

- Memory optimization
 - Static memory allocation
 - Parameters, constant, output
 - Allocate memory in the model initialization stage
 - Dynamic memory allocation
 - Output tensor, workspace tensor (intermediate tensor)
 - Allocate memory (dynamic: varying batch size, static: fixed batch size)

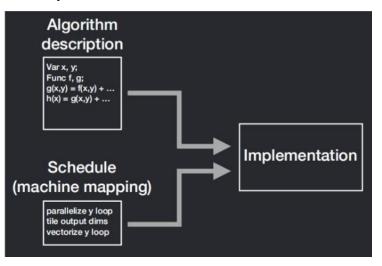
- Memory optimization
 - Inplace operation: overwrite when the next operator is element-wise operator
 - Memory sharing: the size of both operators is the same and no data dependency in these two operators



AI Compiler Low-Level IR

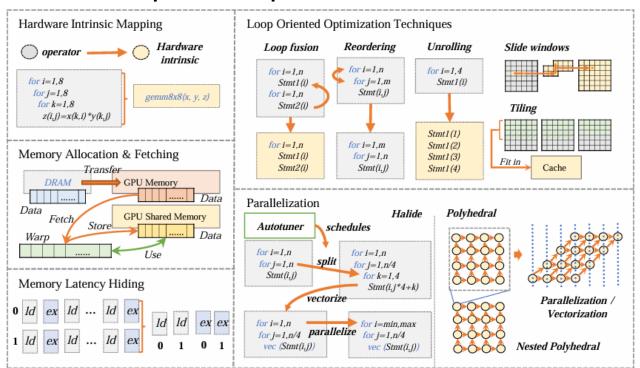
Low-level IR

- Describes the computation of a ML model in a more <u>fine-grained representation</u> than that in high-level IR
- Enable the target-dependent optimization
- Halide-based IR
 - Separation of comp.
 and schedule
 - Choose the best schedule to specific target platform

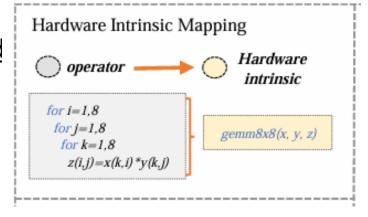


- Back-end compilation
 - Goal
 - Transform ML graph to specific hardware
 - Code generation: LLVM/CUDA/OpenCL ...
 - Tasks
 - Hardware Specific Optimization
 - Memory allocation
 - Parallelization
 - Scheduling
 - Auto Scheduling: polyhedral, Halide

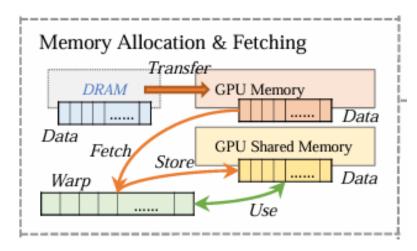
Hardware-specific optimizations



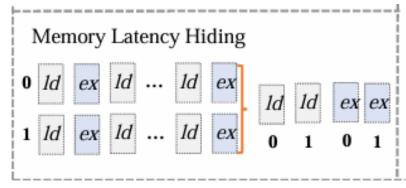
- Hardware intrinsic mapping
 - Transform a certain set of low-level IR to kernels
 - TVM extensible tensorization
 - Declare the behavior of hardware intrinsic and lowering the rule for intrinsic mapping
 - Enable compiler
 backend <u>apply optimized</u>
 <u>micro-kernels to a</u>
 <u>specific pattern of</u>
 operations



- Memory allocation and fetching
 - E.g. GPU memory <u>hierarchy requires efficient memory</u> <u>allocation and fetching techniques for improving data locality</u>
 - TVM memory scope
 - Tag a compute stage as shared or thread-local
 - Shared: generates code with shared memory allocation
 - Properly insert memory barrier



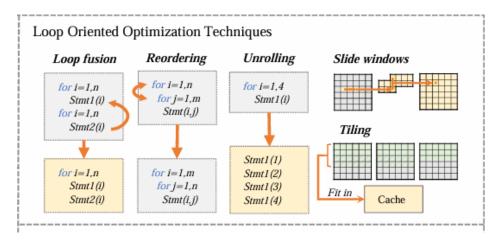
- Memory latency hiding
 - Reordering the execution pipeline
 - In TPU-Accel with decoupled access-execute (DAE)
 - Backend needs to perform scheduling and fine-grained sync to produce the correct and efficient code
 - TVM virtual threading schedule primitive
 - Virtually parallelized threads
 - Barriers + operations = a single instruction stream



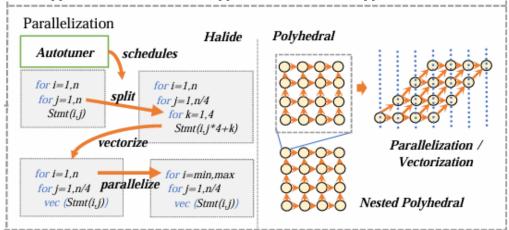
- Loop oriented optimization
 - Loop fusion
 - fuse loops with the same boundaries for better data

reuse

- Sliding window
 - Compute values when needed
 - Store them for data reuse until they no longer required



- Parallelization
 - Halide uses a <u>schedule primitive called parallel</u>
 - Specify the parallelized dimension of the loops
 - Nested polyhedral model detect hierarchy parallelization among levels of tiling and striding

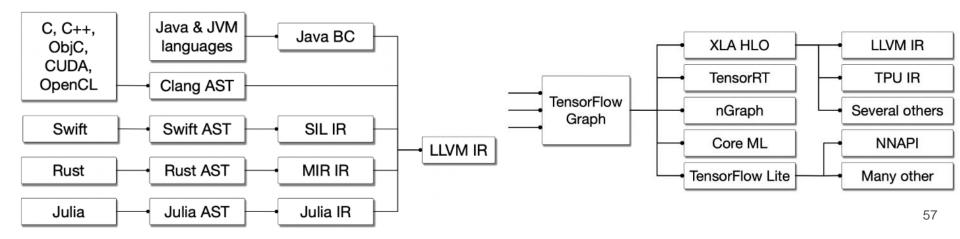


- Back-end compilation
 - Tasks
 - Auto-tuning
 - Parameterization cost model
 - Using kernel libraries
 - NVIDIA cuDNN/TensorRT, AMD MIOpen
 - Low-level IR/ Operator IR
 - Halide IR
 - Compilation scheme
 - Just-In-Time (JIT), Ahead-Of-Time (AOT)

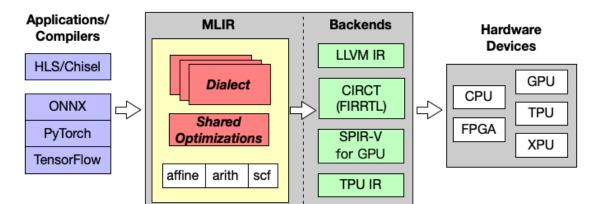
Takeaway Questions

- What are jobs of AI compiler?
 - (A) Handle tensor memory allocation
 - (B) Reorder the execution of the DL operators
 - (C) Generate assembly codes
- How does Al compiler improve the data reuse on the local memory?
 - (A) Use the NCHW data layout
 - (B) Operator fusion
 - (C) Operator lowering

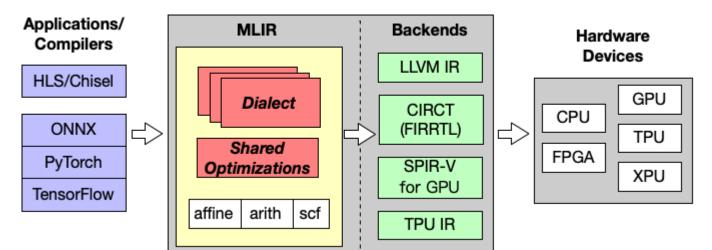
- Most high-level languages have their own AST
- ML graphs compilation process is fragmented
- MLIR allows developers to <u>use a unified codebase/framework</u> to do their optimizations and <u>develop some optimizations for multiple inputs</u>



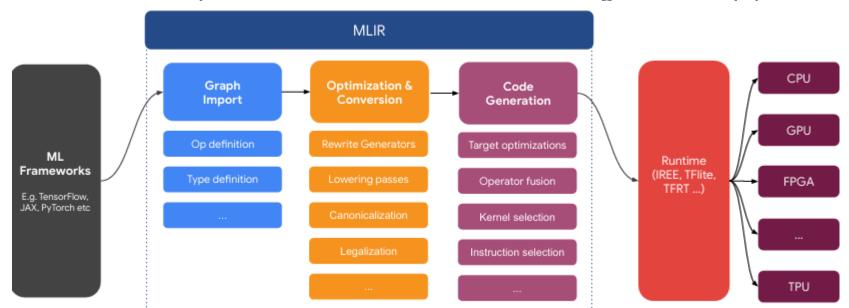
- MLIR's input
 - applications, compilers, C program, etc.
- Within MLIR
 - Implement multiple Dialects for distinct inputs
 - Use Dialect to deal with tensors



- Once we have an optimal IR
 - MLIR can lower it onto the backends such as LLVM for CPU ...
 - If the targeting hardware is FPGA, TPU, need vendor-tools for final compilation

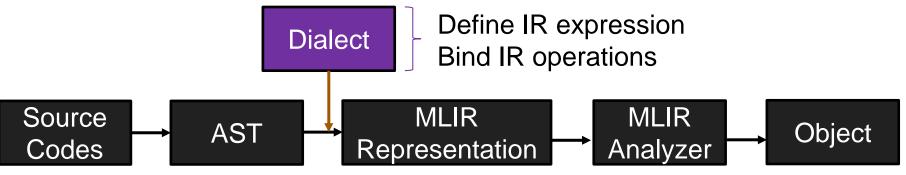


- MLIR Compiler Infrastructure
 - A set of optimization/code conversion/code generation pipeline



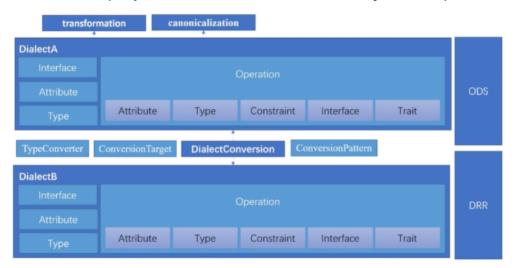
MLIR Dialect

- One way to express IR from other specific IRs
- Every IR can be transformed in the corresponding MLIR dialect
- Each programming language's dialect (Tensor dialect, HLO dialect, LLM IR dialect) is inherent from mlir::Dialect
- AST (Abstract Syntax Tree)



MLIR Dialect

- DRR(Dynamic Reconstructed Radiography) transform different dialect
- ODS(Operation Definition System) define operation



- · 'acc' Dialect
- · 'affine' Dialect
- 'amdgpu' Dialect
- · 'amx' Dialect
- · 'arith' Dialect
- · 'arm neon' Dialect
- 'arm_sve' Dialect
- 'ArmSME' Dialect

- MLIR Operation
 - Output: %tensor
 - Operation: toy.transpose
 - Input: %tensor
 - Transform tensor <2x3xf64> to tensor <3x2xf64>
 - The location of transpose is in "example/file/path", line 12, 1st word

```
    Operations
```

- gpu.all reduce (gpu::AllReduceOp)
- gpu.alloc_(gpu::AllocOp)
- o gpu.barrier (gpu::BarrierOp)
- o gpu.binary (gpu::BinaryOp)
- gpu.block dim_(gpu::BlockDimOp)
- o gpu.block id (gpu::BlockIdOp)
- gpu.cluster_block_id_(gpu::ClusterBlockIdOp)

%t_tensor = "toy.transpose"(%tensor) {inplace = true} : (tensor<2x3xf64>) -> tensor<3x2xf64> loc("example/file/path":12:1)

Simple Matmul Kernel

```
M = 2 # Rows in arg0
          # Columns in arg0, Rows in arg1
K = 2816
N = 1280 # Columns in arg1
# Matrix multiplication with f16 -> f32 promotion
for i in range (M):
   for j in range(N):
      acc = 0.0 # float32 accumulator
      for k in range(K):
          a = float(arg0[i][k]) # f16 -> f32
          b = float(arg1[k][j]) # f16 -> f32
          acc += a * b
      result[i][j] = acc # store result as float32
```

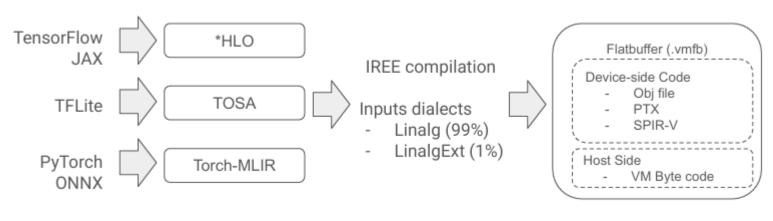
matmul.mlir

```
\#map = affine map < (d0, d1, d2) \rightarrow (d0, d2) >
\#map1 = affine map < (d0, d1, d2) \rightarrow (d2, d1) >
\#map2 = affine map < (d0, d1, d2) -> (d0, d1) >
func.func @matmul(%arg0: tensor<2x2816xf16>, %arg1: tensor<2816x1280xf16>) -> tensor<2x1280xf32> {
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<2x1280xf32>
 %1 = linalq.fill ins(%cst : f32) outs(%0 : tensor<2x1280xf32>) -> tensor<2x1280xf32>
 %2 = linalq.generic {indexing maps = [#map, #map1, #map2], iterator types = ["parallel", "parallel",
"reduction"]} ins(%arg0, %arg1 : tensor<2x2816xf16>, tensor<2816x1280xf16>) outs(%1 : tensor<2x1280xf32>) {
 ^bb0(%in: f16, %in 0: f16, %out: f32):
   %3 = arith.extf %in : f16 to f32
   %4 = arith.extf %in 0 : f16 to f32
   %5 = arith.mulf %3, %4 : f32
   %6 = arith.addf %out, %5 : f32
  linalq.yield %6 : f32
 } -> tensor<2x1280xf32>
 return %2 : tensor<2x1280xf32>
```

IREE – Intermediate Representation Execution Environment

IREE

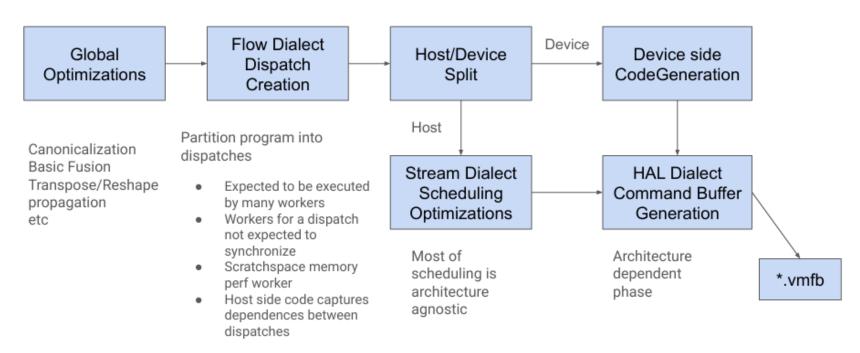
- A MLIR-based compiler for ML programs
- Takes ML workloads from various frontends (PyTorch ..) and execute on different backends (x86, Arm, NVIDIA GPUs, AMD GPUs ..)



66

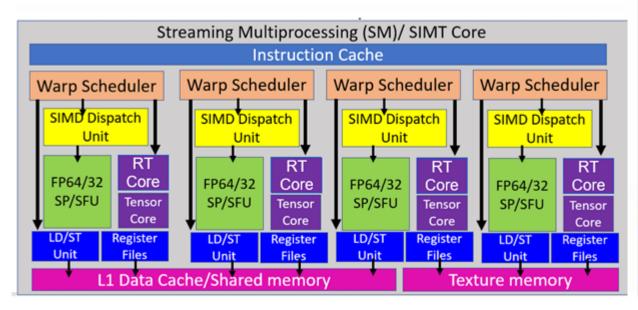
IREE – Intermediate Representation Execution Environment

IREE Compiler Design

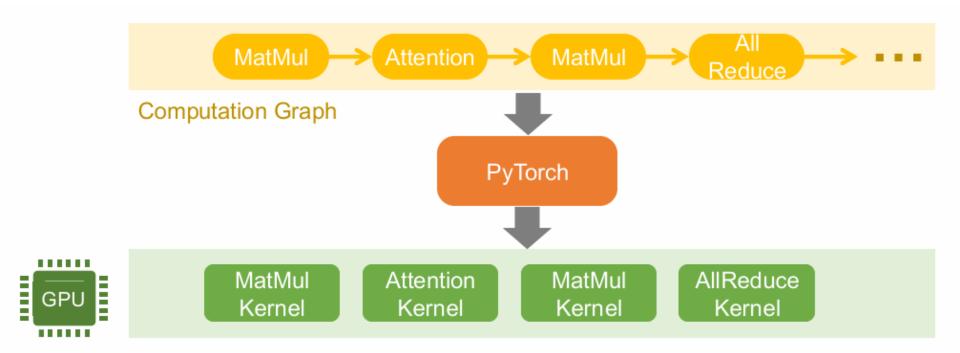


Mega-Kernel on the GPU

 GPU includes multiple specialized engines (CUDA core, Tensor core ..)



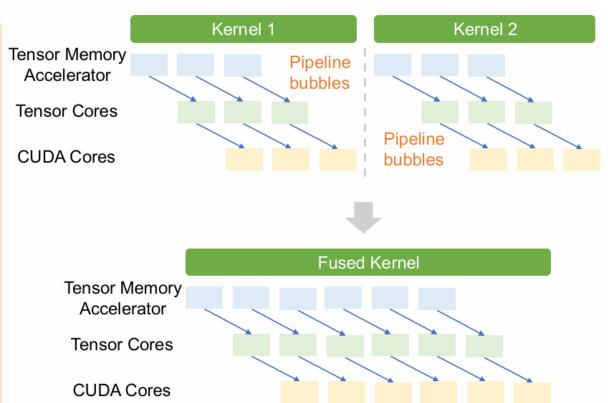
Existing Kernel-Per-Operator Approach



Limitations

No Inter-Layer Pipelining

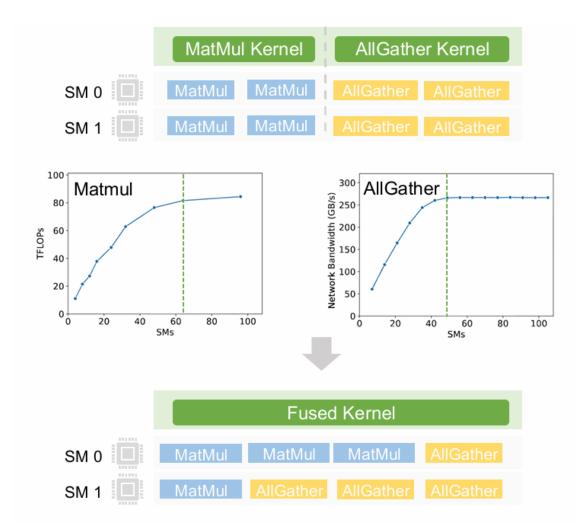
Kernel barriers prevent interlayer pipelining



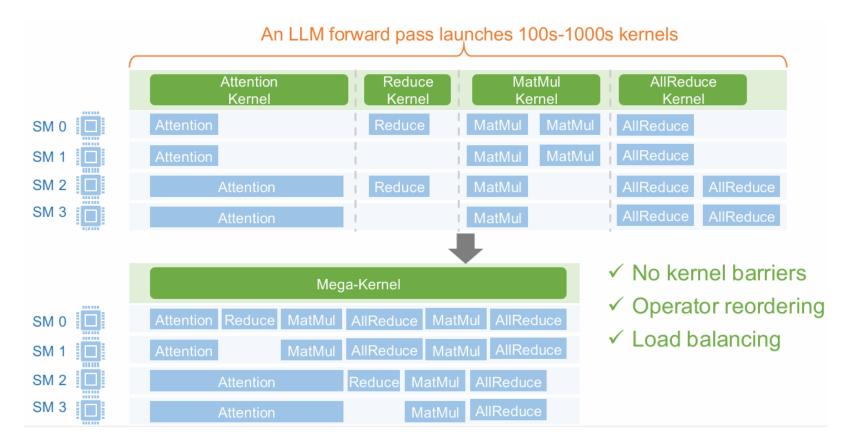
Limitations

No Overlapping

Coarse-grained dependency prevents comp. & comm. overlap



Kernel-Per-Operator v.s. Mega-Kernel



Key Challenges of Mega-Kernel

1. How to manage dependency?

Task Graph

No kernel barriers in mega-kernel

2. How to handle dynamism?

Continuous batching, prefill/decode, paged/radix attention, speculative decoding

In-Kernel Parallel Runtime

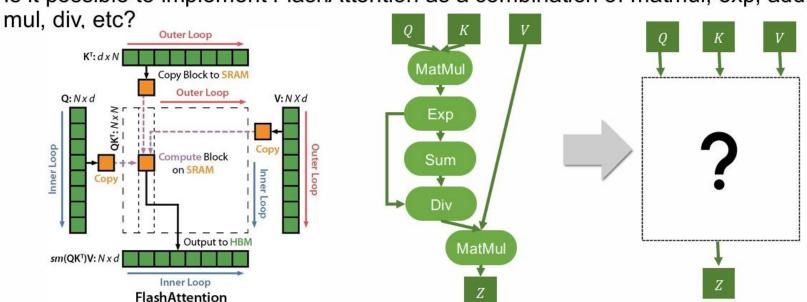
3. How to optimize performance? Mirage Superoptimizer*

Existing compilers target individual kernels

Mirage: A SuperOptimizer for ML

Can we represent FlashAttention as a graph optimization?

Is it possible to implement FlashAttention as a combination of matmul, exp, add,

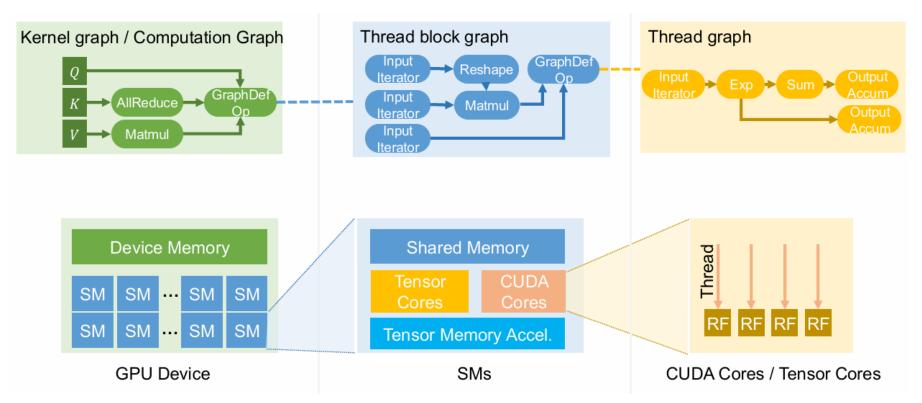


Mirage: A SuperOptimizer for ML

 Key idea: automatically generate highly-optimized GPU kernels for DNNs

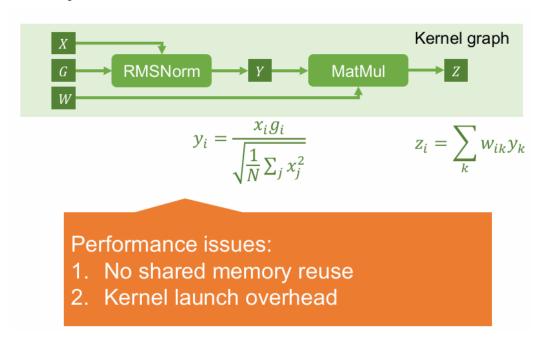
- Less engineering effort: thousands lines of CUDA code → a few lines of Python code in Mirage
- Better performance: outperform existing systems by 1.1-3.5x
- Faster adaptation: day-0 support for new models; no manual effort

Hierarchical Graph Representation



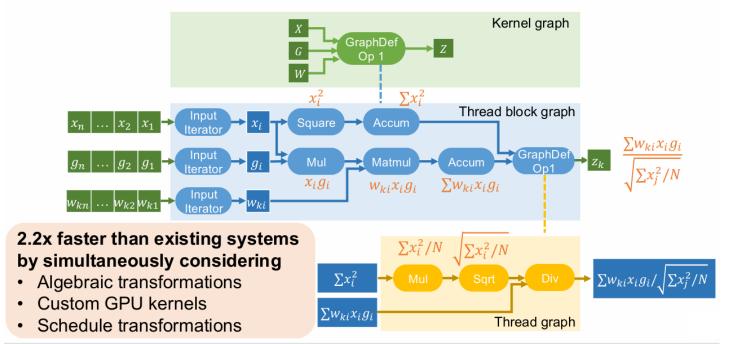
Example: RMSNorm & MatMul in LLMs

 Existing systems launch two kernels since Y does not fit in shared memory



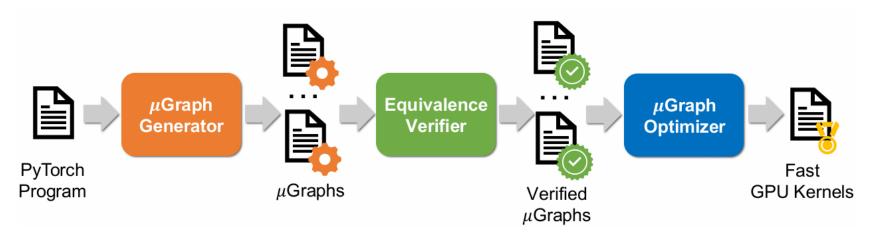
µGraph for RMSNorm & MatMul

 Existing systems launch two kernels since Y does not fit in shared memory



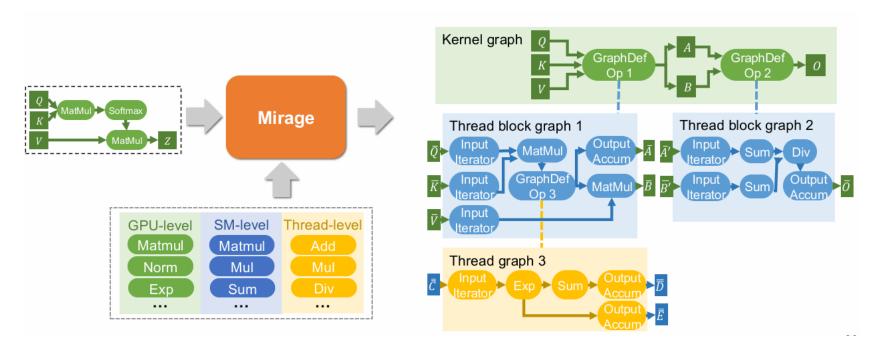
High-Performance µGraph

- Key Challenges to discover High-performance µGraph
 - How to generate potential µGraph?
 - How to verify their correctness?
 - Mirage system



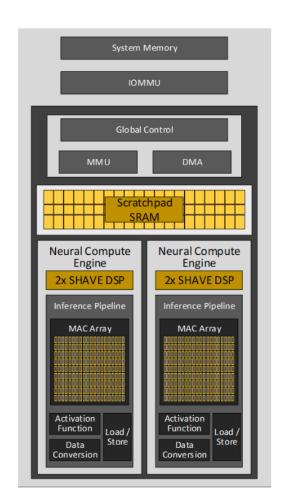
Hardware-Customized µGraphs

 Find µGraphs similar to expert-written implementations for attention on NVIDIA A100 GPU



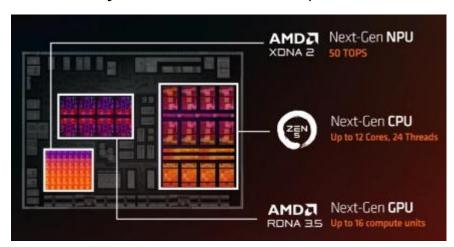
Neural Processing Unit (NPU)

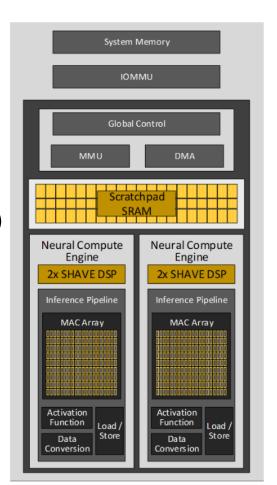
- Intel NPU
 - Hardware Acceleration Blocks
 - Handle GEMM,CONV ...
 - Streaming Hybrid Architecture Vector Engines (SHAVE)
 - Perform parallel computing for general needs
 - DMA Engines
 - Moving data between DRAM and software-managed cache



Heterogeneity on ASIC

- NPU
 - MAC engine + Specialized engines
- CPU on AI PC
 - AMD Ryzen AI Pro 300 (CPU+NPU+GPU)





Takeaway Questions

- What are jobs of MLIR?
 - (A) Operator definition
 - (B) Operator lowering
 - (C) Instruction selection
- What are benefits of MegaKernel?
 - (A) Overlapping GPU specialized engine execution
 - (B) GPU register reuse
 - (C) Decrease the kernel launch overhead

Future of AI Compiler

- Future of AI compiler
 - In model inference
 - Ahead-of-Time (AoT) compilation
 - In model training
 - Just-in-Time (JIT) compilation
- The form of IR
 - Need one IR that can support diverse programming language and ML frameworks
 - Good for cross-platform

Future of AI Compiler

- Auto-parallelization
 - Automatic execute ML models through different parallelization approaches
 - Distributed computing (Model training)
 - Parallel computing in one chip
- Auto Code/kernel generation
 - Not only Domain-Specific Language (DSL)
 - Match diverse hardware platforms