

Accelerator Architectures for Machine Learning (AAML)

Lecture 1: Basics of Al Accelerator

Tsung Tai Yeh

Department of Computer Science

National Yang-Ming Chiao Tung University

Acknowledgements and Disclaimer

Slides was developed in the reference with Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020 CS231n Convolutional Neural Networks for Visual Recognition, Stanford University, 2020

Outline

- Dennard Scaling vs Dark Silicon
- Artificial Neural Network (ANN)
- Spiking Neural Network (SNN)
- Neuromorphic architectures
- Digital vs Analog Accelerators

Why do we need accelerators?

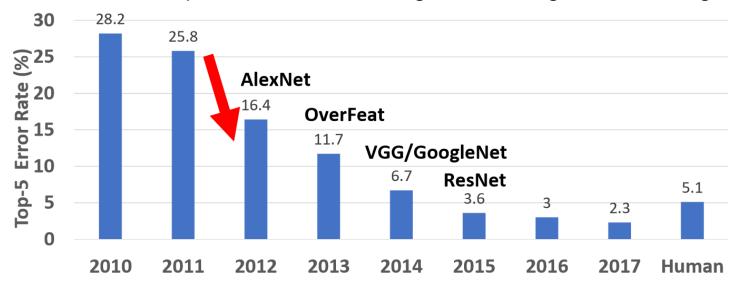
- Previously
 - We focused on designing general-purpose processors
- Why do accelerators have become attractive in recent years?
 - Dennard Scaling has ended
 - Dennard Scaling allowed voltage to shrink with transistor size
 - Without Dennard Scaling, we need to find other ways to keep power in check

Dark Silicon

- Not turn on all transistors on the chip
- The success of application's accelerators (encryption, compression ...)
- Applications only use subset of processors/accelerators at a time, such a heterogeneous architecture meets dark silicon phenomenon

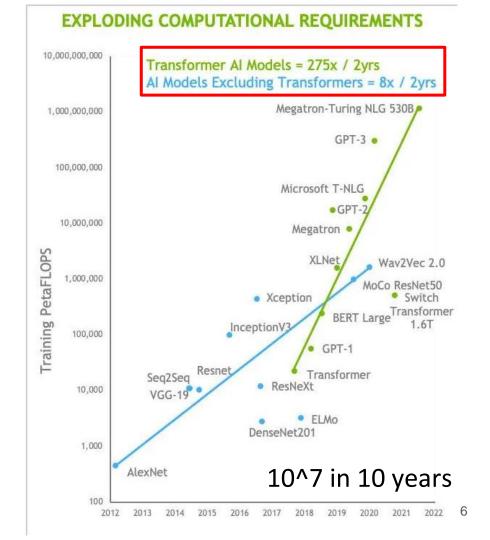
Why Deep Neural Network become popular?

DNN model outperforms human-being on the ImageNet Challenge



Computations of DNN

- Deep Neural Network is getting large
 - Large model parameters
 - Palm-E (540B)
 - GPT-MoE (1.8T)
 - Why do we need such a large model?

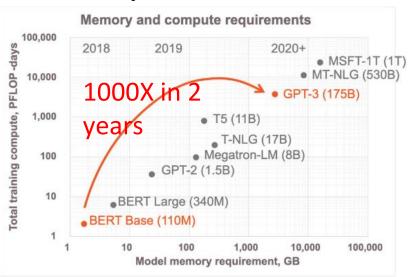


Large Language Model

- A language model is a mathematical mapping
 - Text -> embedding vector ("representation")
 - Embedding vectors encode meaning of texts i.e. dog [1,0,0]
 - Train such a model via next-word prediction on a large corpus of text data as the lossy compression
 - 1000B text token -> 30B model parameters
 - Empirically, LLMs behaves as human as the model size increases

Unsustainable ML Model Growth

- We need a better way to grow models more efficiently
- Get the advantages of larger models but with substantially less compute and memory resources



Sparsity might be one of answer

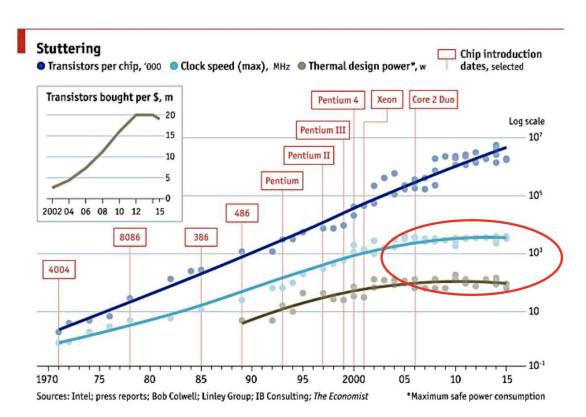
Hardware trends

- Stagnant single and multi-thread performance on general-purpose cores
- What do accelerators matter?
 - Dark silicon (emphasis on power-efficient throughput)
 - End of scaling
- Emergence of machine learning
 - Facilitate the pervasive of hardware acceleration as machine learning emerges as a solution for "everything".

Commercial Hardware for Machine Learning

- Google TPU (inference and training)
- Nvidia Tensor/transformer cores (Ampere, Hopper)
- Microsoft Brainwave and Catapult
- Intel Loihi NPU
- Cambricon
- Graphcore (training)
- Cerebras (Training)
- Tesla (FSD, Dojo)
- ...

Increasing transistors is not getting efficient



General purpose
processor is not getting
faster and powerefficient because of
Slowdown of Moore's
Law and Dennard
Scaling

Dennard Scaling

- Dennard scaling allowed voltage to shrink with transistor size
 - E.g. 180 nm -> 1.8 V, 130 nm -> 1.3 V
 - All 4 cores (45 nm) can be worked in full speed
 - Could all 8 cores (28 nm) be worked in full speed, too? Why?

Power = alpha x CFV² alpha: percent time switched

C: capacitance

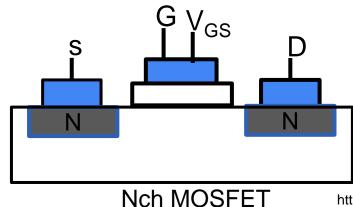
F: Frequency

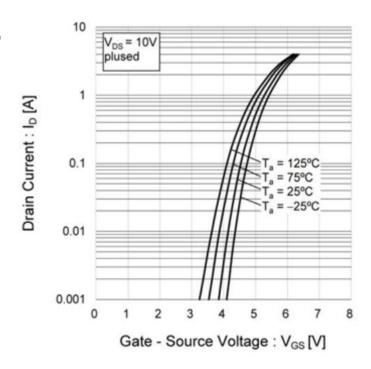
V: Voltage

- 1. Typically, the transistor size reduces K (~1.4) times
- 2. In the same chip area, the number of transistor increases K² times, the frequency increases K times
- The size of capacitance shrinks K times as the reduction of transistor size, and the voltage reduces K² times
- So, we can boost performance of the chip without any compensation of the power

Voltage threshold of MOSFET

- Temperature affects the value of V_{GS} and I_D
 - \circ Ta = 25 d, I_D = 1A and Ta = 75 d, I_D = 1.5 A when fixing V_{GS}
 - Due to V_{GS (TH)} constraint, difficult to keep reducing voltage to be proportional to the transistor size below 28 nm





What can we do?

Dark silicon

 Below 28 nm, the voltage (V) is hard to be changed **Power** = alpha x CFV² alpha: percent time switched

C: capacitance

F: Frequency

V: Voltage

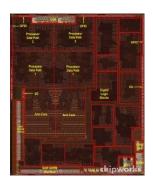
- \circ K² = (transistor size as capacitance size) K x frequency (K)
- The power increases K² times
- Therefore, not turn on all transistor on the chip
- What is the percentage of inactive transistors?
- o 20 nm: 33%, 16 nm: 45%, 10 nm: 56%, 7 nm: 75%, 5 nm: 80%

Dim silicon

Turn all transistor on at low clock speeds

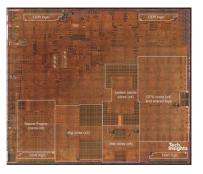
Heterogeneous SoC

- Post-Moore era and dark silicon
 - A suite of accelerators on chip are rising
 - Applications will only use a subset of processors/accelerators at a time
 - Such a heterogeneous architecture is compatible with dark silicon



2010 Apple A4
65 nm TSMC 53 mm²
4 accelerators

2014 Apple A8
20 nm TSMC 89 mm²
28 accelerators

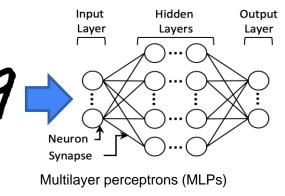


2019 Apple A127 nm TSMC 83 mm²42 accelerators

Artificial Neural Network (ANN)

Most machine learning algorithms

- Perceptron or artificial neuron
- Receiving synchronous inputs, and performs math, then produce outputs
- Measuring the "strength" (z) of weighted inputs
- Z = x1 * w1 + x2 * w2 where (x is the input of the neuron, w is the weight (determined by training))
- Activation function a = f(z) to decide if a neuron should fire or not
- Training performs back-propagation with gradient descent

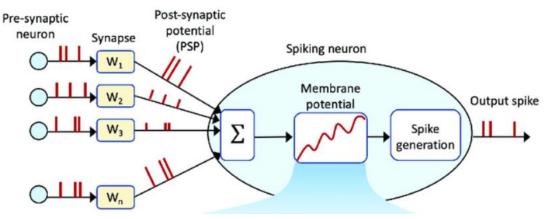


Probability: 0.8

Probability: 0.3

Spiking Neural Network (SNN)

- Spiking neurons resembles chemical reactions in our brains
 - A neuron has a certain potential that represents inputs received
 - The potential rises and falls depending on the relative importance of those inputs and leaks away when no receiving inputs
 - When the potential reaches a threshold, the neuron fires
 - All inputs/outputs are in the form of binary spikes



ANN vs. SNN

ANN

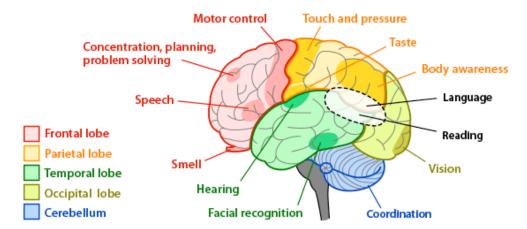
- Perceptron, 8-bit or 16-bit multiplications, complex activation functions
- High accuracy, supervised learning (inference and training)

SNN

- Don't achieve very high accuracies, not well understood
- A neuron has state that is a more powerful construct for applications that have a notion of time, e.g. video and language analysis
- Carry a large amount of information in a few bits
- Unsupervised learning

Uncover Your Brain

- The computer as a brain that comprises specialized accelerators
- Low power the brain consumes only about 20W
- Fault tolerant the brain loses neurons all the time



Yang, Eric. Think Dinner. Mac Evolution, 1998

Neuromorphic architectures

- Architectures inspired by neuron behavior
- Two major flavors
 - Artificial Neural Network (ANN)
 - Operations on perceptrons
 - Spiking Neural Network (SNN)
 - Mimic operations in the brain
- Two major implementation styles
 - Digital
 - Analog

Neuromorphic Hardware

Emulating the human brain

- Low power the brain consumes only 20 W
- Fault tolerant the brain loses neurons all the time
- No programming required the brain learns by itself

Examples:

SpiNNaker, Spikey, TrueNorth

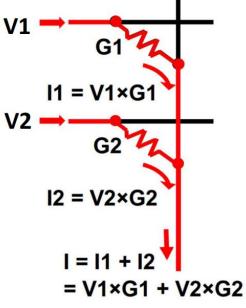
Digital vs. Analog

A single analog device

- Perform multiple multi-bit operations
- Analog has challenges, e.g., noise/precision
- The current in a wire or the charge in a capacitor represent a rational number
- Perform addition by merging the currents in two wires
- Multiplication can be represented by the current that emerges when a voltage is applied to a conductor
- Instability as temperature changes, currents change

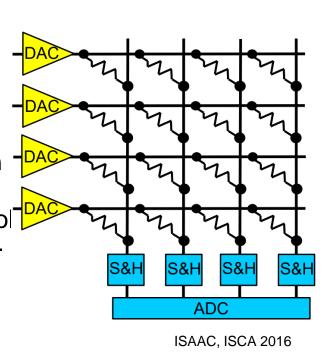
Digital device

Use CMOS transistors and gates, exclusively deal with 0s and 1s



Crossbar for vector-matrix multiplication

- A grid of resistances and horizontal and vertical wires
 - The input voltages are provided on the horizontal wires (wordlines)
 - Each column represents a different neuron
 - Each column computes a different dotproduct based on conductances in that col
 - Analog current is sent through an analog-todigital converter (ADC).
 - S&H is the sample-and-hold circuit that feeds signals sequentially to the ADC



Challenges of analog devices

High ADC/DAC area/energy

- Long stay in analog needs expensive analog buffering, introduces significant noise that accumulates across network layers
- Some ADC overheads increase exponentially with resolution
 - The number of bits coming out of a bitline is a function of the bits of info in the voltage (v)
 - The bits of info in the weight (w)
 - The number of rows (R) being added
- To increase the parallelism and storage density high v, w, and R
 - Demanding an expensive high-resolution ADC
- SNN is amenable to analog, why?

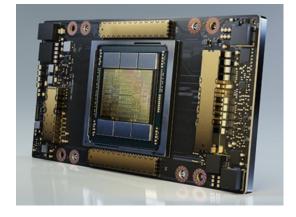
Digital (I) GPU

	Nvidia V100 GPU (2019)	Nvidia A100 GPU (2020)
Transistor count	21 billion	54 billion
FP32 performance	15.7 TFLOP/s	19.5 TFLOP/s
Tensor FP32	125 TFLOP/s	156 TFLOP/s
TDP	300 W	250 W
Die size	815 mm ²	862 mm ²
	TSMC 12 nm	TSMC 7 nm

2.57 X

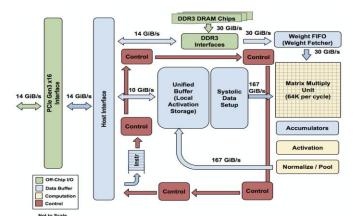
1.24 X

1.25 X



Digital (II) Google Tensor Processing Unit (TPU)

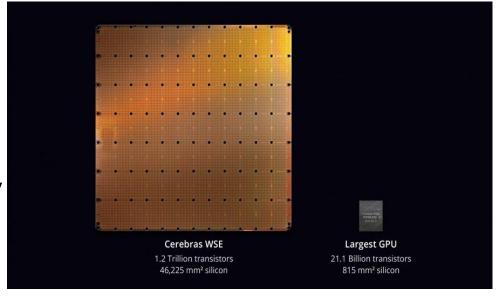
- Systolic-array accelerator
 - V1: Inference only
 - V2: Training with bfloat
 - V3: 2X powerful than v2
- Edge TPU
 - Coral Dev Board
 - 4 TOPS
 - 2 TOPS/Watt
 - Support TensorFlow Lite



https://cloud.google.com/tpu/docs/tpus

Digital (III) Cerebras: Wafer-Scale DL Engine

- Largest DL Chip Ever Built!!
- 46225 mm² (WoW !!)
- 1.2 trillion transistor
- 400,000 optimized AI cores
- 18 GB on-chip memory
- TSMC 16 nm process



In summary

Learning from History

- Neural network (NN) booms, but fades away when it ceases to be fashionable -> support vector machines (SVM) took over
- General-purpose processors and GPU quickly outpace ASICs

Today

- NNs > SVM
- GPPs and GPUs will stagnate in performance, but ML is hot
- ML accelerators (hardware + ML software perspective) include many implementation operations
- Neuroscience + emerging technology

Takeaway Questions

- What does dark silicon tell us?
 - (A) We should turn all transistor on at low clock speeds
 - (B) We cannot turn on all transistors on a chip
 - (C) Allowed voltage to shrink with transistor size
- Why does SNN have the potential for low-energy computations and communication?
 - (A) Skipping connections
 - (B) Complex SNN computation
 - (C) Not involve in multiplications or complex activation functions

Takeaway Questions

- What are the challenges of analog accelerators?
 - (A) High ADC/DAC area and energy
 - (B) Limited parallelism
 - (C)Non-programmable