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Program vs. Process (1/3)
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● A program

○ A program can create several processes 

○ ELF header + program-header table + .text + .data + .bss

○ placed on hard drive

● A process

○ A process is a unique isolated entity 

○ Dynamic instruction of code + heap + stack + process state 

○ Placed on main memory



Program vs. Process (2/3)
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Program vs. Process (3/3)
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● Process
○ When a program is loaded into memory along with all the 

resources it needs to operate

○ Each process has a separate memory address space

○ A process runs independently and is isolated from other 

processes

○ How do multiple processes share a single CPU?

■ Context switch

■ Require  some amount of time for saving and loading 

registers, memory, and other resources
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In-Memory Layout of a Process (1/6)
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● On a 32-bit machine

○ Each process has 4 GB

virtual address

○ 3GB – User

○ 1GB – kernel space

■ Shared among processes

■ Directly mapped to 1GB of

RAM

■ Store kernel code, page tables



In-Memory Layout of a Process (2/6)
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● Text (code) segment

○ Contains executable instructions of

a program

○ Placed below the heap or stack (why?)

■ Prevent overflows from 

overwriting it

○ The text segment is often read-only/

execute (why?)

■ Prevent a program from accidentally being changed



In-Memory Layout of a Process (3/6)
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● Data segment

○ Initialized data segment

○ Contains global and stack

variables initialized by the programmer

○ Not read-only (why?)

■ The values of variables can be altered

○ Read-only area (RoData)

■ const char *str = “hello world”

○ Read-Write area

■ char s[ ] = “hello world”



In-Memory Layout of a Process (4/6)
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● BSS segment

○ Uninitialized data segment

○ This segment starts at the end of

the data segment

○ Contains all global and static variables

that are initialized to zero or don’t have

explicit initialization. E.g. static int i;

○ Read-write area



In-Memory Layout of a Process (5/6)
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● Stack

○ Locate in the higher memory 

addresses right below the OS

kernel space

○ Could switch the stack and heap?

○ Store all the automatic variables

■ Parameters passed as input to the function

■ The caller’s return address

○ A stack pointer register tracks the top of the stack



In-Memory Layout of a Process (6/6)
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● Heap

○ Dynamic memory allocation usually takes

place

○ Managed by malloc/new, free/delete

○ Use the brk and sbrk system calls to 

adjust its size
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Process stacks (1/3)
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● Kernel vs. user space stack

○ Kernel stack

■ In the kernel space

■ During the syscall, the kernel stack of 

the running process is used

■ The size of the kernel stack is configured

during compilation and remain fixed. 

● Two pages (8KB) for each thread

○ Why is a separate kernel stack used?



Process stacks (2/3)
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● Why is a separate kernel stack used?

○ Separation of privileges and security

○ The kernel cannot trust the user space stack

pointer to be valid nor usable

○ Require one set under its control

● Does each process have its own kernel

stack?

○ Each thread has its own kernel stack



Process stacks (3/3)
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● How to know the size of user space

stack?

○ We can change the user stack rather than 

kernel stack
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Process identifier (PID) (1/2)
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● Process identifier (PID)
○ Each process has a unique PID

○ PIDs in Linux are of type pid_t (32-bit integer)

○ The default maximum number PIDs is 32768 

(/proc/sys/kernel/pid_max)

and you can set the value higher on 64-bit systems (up to 

222 = 4,194,304 (PID_MAX_LIMIT)

○ The kernel uses a bitmap to keep track of PIDs in use and 

assign a unique PID for new processes

○ PID eventually repeats because all the possible numbers 

are used up and the next PD rolls or starts over



Process identifier (PID) (2/2)
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● Which process is PID 0?

○ The sched process

○ Responsible for paging and is a part of the kernel

○ The init process owns PID1 and is responsible for starting and 

shutting down the system

PPID stands for Parent 

Process ID
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Process Control Block (PCB) (1/2)
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● Process Control Block (PCB)

○ Used to track the process’s execution status

○ Contains process state, program counter, stack pointer …

○ All this information is used when the process is switched from 

one state to another

● What is the process table?

○ The process table is an array of PCBs

○ Contains the information for all of the current processes in the 

system



Process Control Block (PCB) (2/2)
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● Process Control Block (PCB)

○ Pointer: stack pointer

○ Process state

○ Process number: PID

○ Program counter: the address of the next 

instruction that is to be executed for the process

○ Register: store the values used when the process is 

scheduled to be run

○ Memory limits: page table, segment table

○ Open files list: the list of files opened for a process
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Process Creation (1/4)
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● Using fork() 

system call



Process Creation (2/4)
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● Making a copy of a process is 

calling forking
○ Parent (is the original)

○ Child (is the new process)

○ Child is an exact copy of the parent

● When the fork is invoked
○ All pages are shared between

parent and child

○ Easily done by copying the parent’s

page table
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



Process Creation (3/4)
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● How can the process of cloning overhead be 

reduced?
○ Copy-on-write (COW)

○ When data in any of the shared pages changes, OS intercepts 

and makes a copy of the page

○ Thus, parent and child will have different copies of this page

● Why does COW work?
○ Copying each page from parent and child would incur 

significant disk swapping -> huge performance penalties

○ Postpone copying of pages as much as possible 



Process Creation (4/4)
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● How COW works ?
○ When forking, the kernel makes COW pages as read-only

○ Any writing to the pages would cause a page fault

○ The kernel detects that it is a COW page and duplicates the page

○ Pages from shared libraries, shared between processes

○ E.g. printf() implements in shared libraries



Some Processes (1/3)
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● Orphan process
○ Processes that are still running even if their parent process has 

been terminated or finished. 

○ Why do we have the orphan process?

■ Intentional orphaned: run in the background without any 

manual support

■ Unintentional orphaned: when the process crashes or 

terminates



Some Processes (2/3)
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● Zombie process
○ A process which has finished the execution but still has entry in 

the process table

○ How are they formed?

■ When a parent fails to wait for its terminated child process

○ How can zombie processes be prevented in a program?

■ Ensuring the parent process waits for its child processes



Some Processes (3/3)
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● Zombie process
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Thread (1/2)
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● A thread is the unit of execution within a process

○ Each thread has its own stack

○ All the threads in a process share the heap

○ Threads share the same address space as the process

■ easy to communicate between the threads



Thread (2/2)
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● A thread is the unit of execution within a process



Takeaway Questions
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● What is the parent PID of a zombie process?

○ (A) 1

○ (B) 0

○ (C) Can’t be determined

● Which process is the parent of a zombie process whose 

parent has terminated?

○ (A) sched

○ (B) init

○ (C) top



Takeaway Questions
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● Question: the kernel can address 1 GB of 

virtual addresses, translating to a maximum of 

1 GB of physical memory.

● Answer: 

○ 2G/2G, 1G/3G split

○ Physical Address Extension (PAE) 

allows processors to access physical 

memory up to 64 GB


