
Process

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy

pieces. WISC

2

Outline

● Program vs. Process

● In-Memory Layout of a Process

● Process Stack

● Process Identifier (PID)

● Process Control Block (PCB)

● Process Creation

● Threads

3

Program vs. Process (1/3)

4

● A program

○ A program can create several processes

○ ELF header + program-header table + .text + .data + .bss

○ placed on hard drive

● A process

○ A process is a unique isolated entity

○ Dynamic instruction of code + heap + stack + process state

○ Placed on main memory

Program vs. Process (2/3)

5

Executable file (program)
ELF Header

Program-Header Table

.text

.data

Executable File

.bss

Memory layout (Process)

By Majenko - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=43245083

Storage

program

CPU

Memory

process

registers

Program vs. Process (3/3)

6

● Process
○ When a program is loaded into memory along with all the

resources it needs to operate

○ Each process has a separate memory address space

○ A process runs independently and is isolated from other

processes

○ How do multiple processes share a single CPU?

■ Context switch

■ Require some amount of time for saving and loading

registers, memory, and other resources

Outline

● Program vs. Process

● In-Memory Layout of a Process

● Process Stack

● Process Identifier (PID)

● Process Control Block (PCB)

● Process Creation

● Threads

7

In-Memory Layout of a Process (1/6)

8

● On a 32-bit machine

○ Each process has 4 GB

virtual address

○ 3GB – User

○ 1GB – kernel space

■ Shared among processes

■ Directly mapped to 1GB of

RAM

■ Store kernel code, page tables

In-Memory Layout of a Process (2/6)

9

● Text (code) segment

○ Contains executable instructions of

a program

○ Placed below the heap or stack (why?)

■ Prevent overflows from

overwriting it

○ The text segment is often read-only/

execute (why?)

■ Prevent a program from accidentally being changed

In-Memory Layout of a Process (3/6)

10

● Data segment

○ Initialized data segment

○ Contains global and stack

variables initialized by the programmer

○ Not read-only (why?)

■ The values of variables can be altered

○ Read-only area (RoData)

■ const char *str = “hello world”

○ Read-Write area

■ char s[] = “hello world”

In-Memory Layout of a Process (4/6)

11

● BSS segment

○ Uninitialized data segment

○ This segment starts at the end of

the data segment

○ Contains all global and static variables

that are initialized to zero or don’t have

explicit initialization. E.g. static int i;

○ Read-write area

In-Memory Layout of a Process (5/6)

12

● Stack

○ Locate in the higher memory

addresses right below the OS

kernel space

○ Could switch the stack and heap?

○ Store all the automatic variables

■ Parameters passed as input to the function

■ The caller’s return address

○ A stack pointer register tracks the top of the stack

In-Memory Layout of a Process (6/6)

13

● Heap

○ Dynamic memory allocation usually takes

place

○ Managed by malloc/new, free/delete

○ Use the brk and sbrk system calls to

adjust its size

Outline

● Program vs. Process

● In-Memory Layout of a Process

● Process Stack

● Process Identifier (PID)

● Process Control Block (PCB)

● Process Creation

● Threads

14

Process stacks (1/3)

15

● Kernel vs. user space stack

○ Kernel stack

■ In the kernel space

■ During the syscall, the kernel stack of

the running process is used

■ The size of the kernel stack is configured

during compilation and remain fixed.

● Two pages (8KB) for each thread

○ Why is a separate kernel stack used?

Process stacks (2/3)

16

● Why is a separate kernel stack used?

○ Separation of privileges and security

○ The kernel cannot trust the user space stack

pointer to be valid nor usable

○ Require one set under its control

● Does each process have its own kernel

stack?

○ Each thread has its own kernel stack

Process stacks (3/3)

17

● How to know the size of user space

stack?

○ We can change the user stack rather than

kernel stack

Outline

● Program vs. Process

● In-Memory Layout of a Process

● Process Stack

● Process Identifier (PID)

● Process Control Block (PCB)

● Process Creation

● Threads

18

Process identifier (PID) (1/2)

19

● Process identifier (PID)
○ Each process has a unique PID

○ PIDs in Linux are of type pid_t (32-bit integer)

○ The default maximum number PIDs is 32768

(/proc/sys/kernel/pid_max)

and you can set the value higher on 64-bit systems (up to

222 = 4,194,304 (PID_MAX_LIMIT)

○ The kernel uses a bitmap to keep track of PIDs in use and

assign a unique PID for new processes

○ PID eventually repeats because all the possible numbers

are used up and the next PD rolls or starts over

Process identifier (PID) (2/2)

20

● Which process is PID 0?

○ The sched process

○ Responsible for paging and is a part of the kernel

○ The init process owns PID1 and is responsible for starting and

shutting down the system

PPID stands for Parent

Process ID

Outline

● Program vs. Process

● In-Memory Layout of a Process

● Process Stack

● Process Identifier (PID)

● Process Control Block (PCB)

● Process Creation

● Threads

21

Process Control Block (PCB) (1/2)

22

● Process Control Block (PCB)

○ Used to track the process’s execution status

○ Contains process state, program counter, stack pointer …

○ All this information is used when the process is switched from

one state to another

● What is the process table?

○ The process table is an array of PCBs

○ Contains the information for all of the current processes in the

system

Process Control Block (PCB) (2/2)

23

● Process Control Block (PCB)

○ Pointer: stack pointer

○ Process state

○ Process number: PID

○ Program counter: the address of the next

instruction that is to be executed for the process

○ Register: store the values used when the process is

scheduled to be run

○ Memory limits: page table, segment table

○ Open files list: the list of files opened for a process

Outline

● Program vs. Process

● In-Memory Layout of a Process

● Process Stack

● Process Identifier (PID)

● Process Control Block (PCB)

● Process Creation

● Threads

24

Process Creation (1/4)

25

● Using fork()

system call

Process Creation (2/4)

26

● Making a copy of a process is

calling forking
○ Parent (is the original)

○ Child (is the new process)

○ Child is an exact copy of the parent

● When the fork is invoked
○ All pages are shared between

parent and child

○ Easily done by copying the parent’s

page table
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

Process Creation (3/4)

27

● How can the process of cloning overhead be

reduced?
○ Copy-on-write (COW)

○ When data in any of the shared pages changes, OS intercepts

and makes a copy of the page

○ Thus, parent and child will have different copies of this page

● Why does COW work?
○ Copying each page from parent and child would incur

significant disk swapping -> huge performance penalties

○ Postpone copying of pages as much as possible

Process Creation (4/4)

28

● How COW works ?
○ When forking, the kernel makes COW pages as read-only

○ Any writing to the pages would cause a page fault

○ The kernel detects that it is a COW page and duplicates the page

○ Pages from shared libraries, shared between processes

○ E.g. printf() implements in shared libraries

Some Processes (1/3)

29

● Orphan process
○ Processes that are still running even if their parent process has

been terminated or finished.

○ Why do we have the orphan process?

■ Intentional orphaned: run in the background without any

manual support

■ Unintentional orphaned: when the process crashes or

terminates

Some Processes (2/3)

30

● Zombie process
○ A process which has finished the execution but still has entry in

the process table

○ How are they formed?

■ When a parent fails to wait for its terminated child process

○ How can zombie processes be prevented in a program?

■ Ensuring the parent process waits for its child processes

Some Processes (3/3)

31

● Zombie process

Outline

● Program vs. Process

● In-Memory Layout of a Process

● Process Stack

● Process Identifier (PID)

● Process Control Block (PCB)

● Process Creation

● Threads

32

Thread (1/2)

33

● A thread is the unit of execution within a process

○ Each thread has its own stack

○ All the threads in a process share the heap

○ Threads share the same address space as the process

■ easy to communicate between the threads

Thread (2/2)

34

● A thread is the unit of execution within a process

Takeaway Questions

35

● What is the parent PID of a zombie process?

○ (A) 1

○ (B) 0

○ (C) Can’t be determined

● Which process is the parent of a zombie process whose

parent has terminated?

○ (A) sched

○ (B) init

○ (C) top

Takeaway Questions

36

● Question: the kernel can address 1 GB of

virtual addresses, translating to a maximum of

1 GB of physical memory.

● Answer:

○ 2G/2G, 1G/3G split

○ Physical Address Extension (PAE)

allows processors to access physical

memory up to 64 GB

