
Paging

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy

pieces. WISC

2

Outline

● Paging

○ Multi-level page table

○ Demand paging

○ The inverted page table

○ Page sharing

3

Page table (linear structure)

● Page table (linear structure) can be vary

large !
○ 32-bit address (232 bytes), 4KB (212 bytes)

pages, 4B PT entry

○ The number of page is (232/212 = 220),

○ One page table size is 220 x 4 bytes = 4MB

per process

○ Hundreds of processes -> Hundreds of MB

for PT

4https://pages.cs.wisc.edu/~remzi/OSTEP/vm-smalltables.pdf

Bigger pages

● A 32-bit address, but increase page size from 4KB to 16KB

○ Each PTE is 4 bytes and now we have 218 entries in our page table

○ The total size of a page table is (218 x 4 bytes = 1MB)

○ The page table size (4MB in case 4 KB page size)

● What problems are shown with this approach ?

○ Internal fragmentation (big pages lead to waste within each

page)

5

Virtual page number (VPN) Page offset (PO)

32-bit

18-bit 14-bit

Page size

● Arguments for larger page size

○ Leads to a smaller page table

○ May be more efficient for disk access (block size of disk)

○ Larger page size – TLB entries capture more addresses per

entry, so there are fewer misses, with the “right” locality

○ x86 page sizes: 4KB, 2MB, 4MB …

● Arguments for smaller page size

○ Conserve storage space – less fragmentation

6
https://people.cs.pitt.edu/~childers/CS2410/slides/lect-virtual-memory.pdf

Multi-level page tables

● Turn page table into a tree (hierarchy) structure

○ Divide page table (PT) into page sized chunks

○ Hold only the part of PT where PT entries are valid

○ Directory points to portions of the PT

○ Directory says where to find PT or that chunk is invalid

7

Multi-level page table (cont.)

● Multi-level page table

○ Chop up the page table into

page-sized units

○ Page directory tells where a

page of the page table is

■ A number of page directory

entries (PDE)

■ A page frame number (PFN),

and a valid bit

8
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-smalltables.pdf

Multi-level page table (cont.)

● What are the advantages

of multi-level page table?

○ Only allocate “using”

page-table space

○ Compact and supports

sparse address space

9

1 100

0

0

1 107

V Page

1 r 10

0

1 r 12

1 rw 13

V Flags Page

0

0

1 rw 39

1 rw 40

V Flags Page

Page table

Multi-level paging table (cont.)

10

http://people.ee.duke.edu/~sorin/prior-courses/ece152-spring2008/lectures/6.9-memory.pdf

Important formula for paging table

● Number of entries in page table

○ (virtual address space size) / (page size) = number of pages

● Virtual address space size

○ 2n Bytes

● Size of page table

○ (Number of entries in page table) x (size of PTE)

11

Case study of multi-level paging table

● How many levels of page tables would be required ?
○ A virtual memory system with physical memory of 8 GB, a page size

of 8 KB, 46 bit virtual address, and PTE size is 4 B

● Initially
○ Page size = 8 KB = 213 B

○ Virtual address space size = 246 B

○ PTE = 4 B = 22 B

○ Number of pages or number of entries in page table

= 246 B / 213 B = 233

○ Size of page table = 233 x 22 B = 235 B

12

Case study of multi-level paging table (cont.)

● How many levels of page tables would be required ?
○ A virtual memory system with physical memory of 8 GB, a

page size of 8 KB, 46 bit virtual address, and PTE size is 4 B

● Now, size of page table > page size (235 B > 213 B)
○ Create one more level

○ Number of page tables in last level

235 B / 213 B = 222

○ Size of page table [second last level]

○ 222 x 22 B = 224 B

13

Case study of multi-level paging table (cont.)

● How many levels of page tables would be required ?
○ A virtual memory system with physical memory of 8 GB, a

page size of 8 KB, 46 bit virtual address, and PTE size is 4 B

● Now, size of page table > page size (224 B > 213 B)
○ Create one more level [third last level]

○ Number of page tables in second last level

= 224 B / 213 B = 211

○ Size of page table [third last level]=

= 211 x 22 B = 213 B = page size

14

Virtual memory

● Do we need to load all blocks into

memory before the process starts

executing ?

○ No !!

○ Some code may not even be

executed

● How to reduce the loading of

unnecessary pages ?

15
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/4_Memory.pdf

Demand paging

● Demand paging
○ Pages are loaded from disk to RAM, only when needed

● Why demand paging ?
○ Reducing I/O

○ More users and decrease the number of memory requests

● Pure demand paging
○ When no pages are loaded into memory initially, pages generates

page faults. No prediction !!

● Pre-paging
○ Predict which pages will be used and swap them into the RAM

16

Demand paging

● How does demand paging work ?

○ Using present bit in process page table to indicate if the block

is in RAM or not

○ The process issues a page fault interrupt if an accessed page

is not present in RAM

○ The OS loads the page into RAM and mark the present bit to 1

○ The OS removes another block from RAM if no pages on RAM

are free

17

Demand paging implementation

● Keep copy of process’s pages on disk, some are in RAM
○ Extend page table to include “present” and “valid”

○ Access to “page out” data by using trap

● Inside the trap handler
○ Access pages that are temporarily paged out to disk

○ Allocate a physical page frame to hold contents (might require

another page to be paged out)

○ Copy data from disk to allocated page frame (slow!!)

○ Update page table entry

○ OS schedules processes

18

Effective access times (EAT)

● EAT is used to measure the performance of demand

paging

● Parameter

○ p: page fault rate; ma: memory access time; pft: page fault

time

○ EAT: (1 – p) x ma + p x pft

● Discussion

○ The EAT is proportional to page fault time

19

Effective access times (EAT)

● What is average access latency ?
○ L1 cache: 2 cycles
○ L2 cache: 10 cycles
○ Main memory: 150 cycles
○ Disk: 10 ms -> 30, 000, 000 cycles on 3.0 GHz processor

● Assume access having following characteristics:
○ 98% handled by L1 cache
○ 1% handled by L2 cache
○ 0.99% handled by DRAM
○ 0.01% cause page fault
○ What’s the average access latency ?

20

Effective access times (EAT)

● Assume access having following characteristics:
○ 98% handled by L1 cache

○ 1% handled by L2 cache

○ 0.99% handled by DRAM

○ 0.01% cause page fault

○ What’s the average access latency ?
● Average access latency:

○ (0.98 x 2) + (0.01 x 10) + (0.99 x 150) + (0.0001 x 30,000,000) =

1.96 + 0.1 + 1.485 + 3000 = about 3000 cycles / access

● Need LOW page fault rates to sustain performance !!

21

More issues

● Page selection policy

○ When do we load a page ?

● Page replacement policy

○ What pages do we swap to disk to make room for new pages ?

○ When do we swap pages out to disk ?

22

Page selection policy

● Demand paging

○ Load page in response to access (page fault)

● Pre-paging (prefetching)

○ Predict what pages will be accesses in near future

○ Prefetch pages in advance of access

○ Problems

■ Hard to predict accurately

■ Mispredictions can cause useful pages to be replaced

23

Page replacement policies

● Random

● FIFO (first in, first out)
○ Throw out oldest pages

● Optimal
○ Throw out page used farthest in the future

● LRU (least recently used)
○ Throw out page not used in the longest time

● NFU (not frequently used)
○ Do not throw out recently used pages

24

Demand paging issues

● Performance

○ Need lots of locality -> otherwise run at disk speeds

■ If most accesses are to data already in DRAM -> great !

■ Spatial locality: often access “nearby” addresses

■ Temporal locality: Often re-access same addresses again and

again

○ How to resume a process ?

■ Re-execute instruction? Only if no side effects !

○ Run other processes / threads while serving the page fault

25

Belay’s Anomaly

● Belay’s anomaly
○ For some replacement algorithms

○ MORE pages in main memory can lead to MORE page faults !!

● Example:
○ FIFO replacement policy

○ Reference string: A B C D A B E A B C D E

○ Three pages -> 9 faults

○ Four pages -> 10 faults

○ Adding more memory might not help for page faults in some

replacement algorithms

26

Thrashing

● Working set
○ Collection of memory currently being used by a process

● Thrashing
○ If all working sets do not fit in memory

○ One “hot” page replaces another

○ Percentage of accesses that generate page faults skyrockets

● Typical solutions
○ “swap out” entire processes

○ Invoked when page fault rate exceeds some bound

○ Linux invokes the out-of-memory (OOM) killer

27

Inverted page tables

● Multi-level page table
○ The number of levels is increased as the size of virtual

memory address space grows

○ Given 64-bits address space, 4-KB page size, a PTE of 4

bytes, each page table can store 1024 entries

○ 6 (ceil(52/10)) levels are required

○ 6 memory accesses for each address translation

● Observation of the inverted page table
○ Size of physical memory is much smaller

28

Inverted page table

● Simple Inverted page table
○ The number of page table entries (PTE)

= the number of physical frames

○ Each PTE contain the pair <process

ID, virtual page #>

○ Translate a virtual address, compare

each <process ID, virtual page #> against

each entry

○ If a match is found, the inverted page table

index is used to obtain physical address

29

VA

page #

Proces

s ID

P
h
y
s
ic

a
l a

d
d

re
s
s

Inverted page table

● Hashed inverted page table

○ Finding a match may require to scan

through entire table – simple inverted

page table

○ Using hashed function to map virtual

page # to PTE of the inverted page table

30

VA page #
Offse

t

Virtual address

Hash

function

VA

page #

Proces

s ID

Frame # Offset

Inverted page table

Sharing pages

31

• How to share memory?

• Entries in different process
page tables map to the same
PPN

• Each process can have its
own registers and data

• There can be only one
copy of data kept in physical
memory, such as shared library

• Each process’s page table maps
onto the same PPN

Conclusion

● Multi-level page table
○ Reduce the page table

● Demand paging
○ Reduce I/O, load data from disk to memory when it is needed

● Effective access time (EAT)
○ Measure the performance of demand paging

● Page replacement
● Inverted page table

● Page sharing

32

