

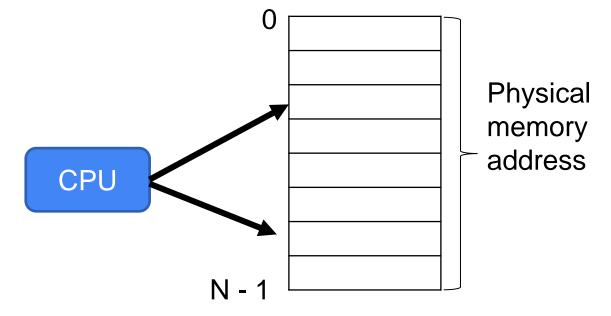
Virtual Memory

IOC5226 Operating System Capstone

Tsung Tai Yeh Department of Computer Science National Yang Ming Chiao Tung University

Acknowledgements and Disclaimer

- Slides were developed in the reference with
 - MIT 6.828 Operating system engineering class, 2018
 - MIT 6.004 Operating system, 2018
 - Remzi H. Arpaci-Dusseau etl., Operating systems: Three easy pieces. WISC


Outline

- Virtual memory
 - Address translation
- Paging
 - Page table
 - Translation lookaside buffer (TLB)

A system with physical memory only

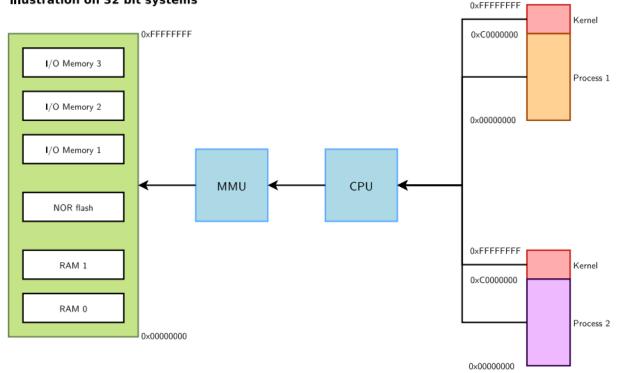
 CPU's load or store addresses used directly to access memory

Problems of physical memory addressing

- Physical memory is of **limited size**
- Programmer needs to manage physical memory space
 - Inconvenient & difficult
 - Harder when you have multiple processes

Challenges

- Code and data relocation
- Protection and isolation between multiple processes
- Sharing of physical memory space


Virtual memory

- Virtual memory
 - The illusion of a large address space while having a small physical memory
 - Only a portion of the virtual address space lives in the physical address space at any amount of time
 - Programmer doesn't worry about managing physical memory
 - Address generated by each instruction in a program is a "virtual address"
- Virtual memory requires both HW + SW support
 - Can cached in special hardware structures call translation lookaside buffers (TLBs)

Physical and virtual memory

Illustration on 32 bit systems

Physical addresses

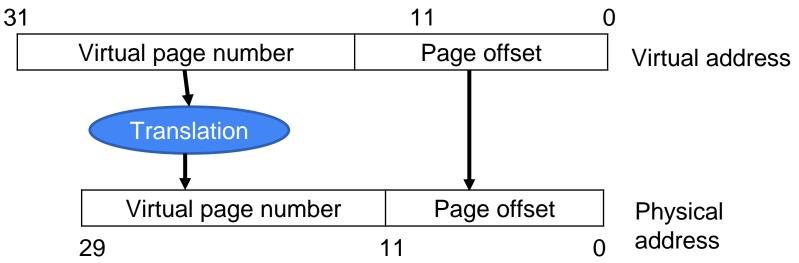
Virtual addresses

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

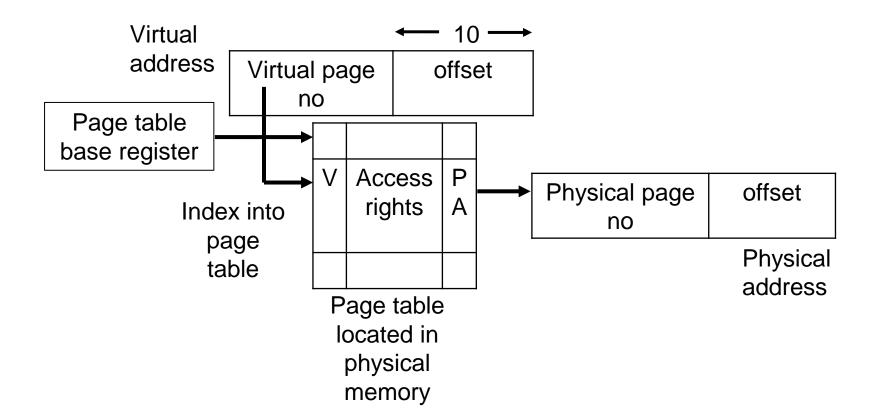
Advantages of virtual memory

- Illusion of having more physical memory
- Multiple programs share the physical memory
 - Permit sharing without knowing other programs
 - Division of memory among programs is automatic

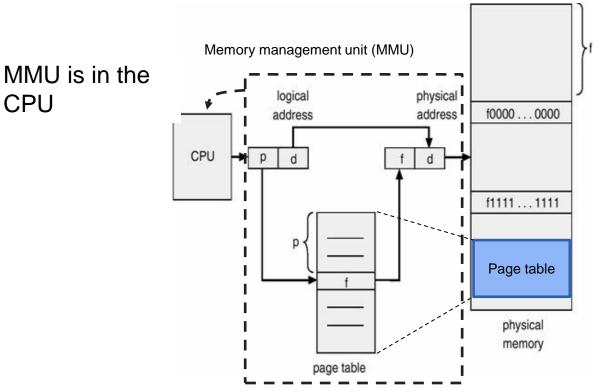
Program relocation


- Program addresses can be mapped to any physical location
- Physical memory does not have to be contiguous
- Protection
 - Per process protection can be enforced on pages

A system with virtual memory (page based)


Address translation

4GB virtual memory, 1GB physical memory, page size is 4KB (2¹²) with 2¹⁸ physical pages



Page tables for address translation

Page memory management

Source: Operating System Concepts by Abraham Silberschatz, Greg Gagne, Peter B. Galvin

Virtual pages, physical frames

- Virtual address space divided into pages
- Physical address space divided into frames
- A virtual page is mapped to
 - A physical frame if the page is in the physical memory
 - A location in the disk, otherwise

Page table

- Stores the mapping of virtual pages to physical frames
- Page table is in the main memory

Outline

- Virtual memory
 - Address translation
- Paging
 - Page table
 - Translation lookaside buffer (TLB)

Paging

- Why does segmentation cause fragmentation?
 - Variable-sized segments
- Solution -> paging !
 - All "chunks" be the same size (typically 512 8 K bytes)
 - Call chunks be "pages" rather than "segments"
 - Allocation is done in terms of full page-aligned pages -> no bounds
 - MMU maps virtual page numbers to physical page numbers

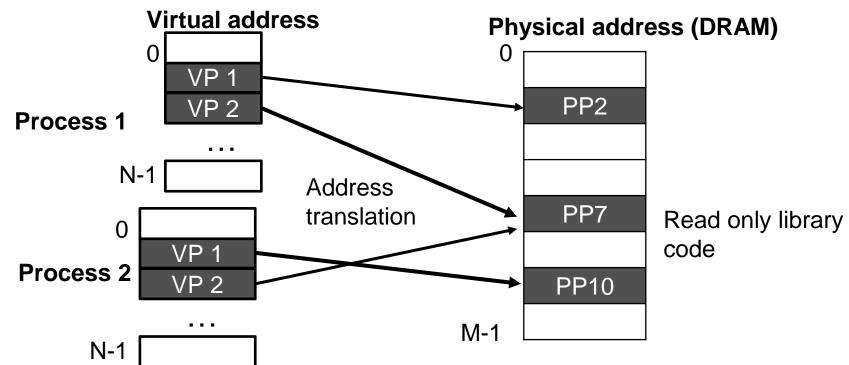
Paging (cont.)

- Modern hardware and OS use paging
- Pages are like segments, but fixed size
 - The bounds register goes away
 - External fragmentation goes away
- Since pages are small (4 or 8 KB, often), a lot of them
 - So page table has to go into RAM
 - Page table might be huge
 - Accessing the page table requires a memory reference by the hardware to perform the translation

How does the paging help ?

• How does the paging help ?

- No external fragmentation
- No forced holes in virtual address space
- Easy translation -> everything aligned on power-of-2 addresses
- Easy for OS to manage/allocate free memory pool


• What problems are introduced ?

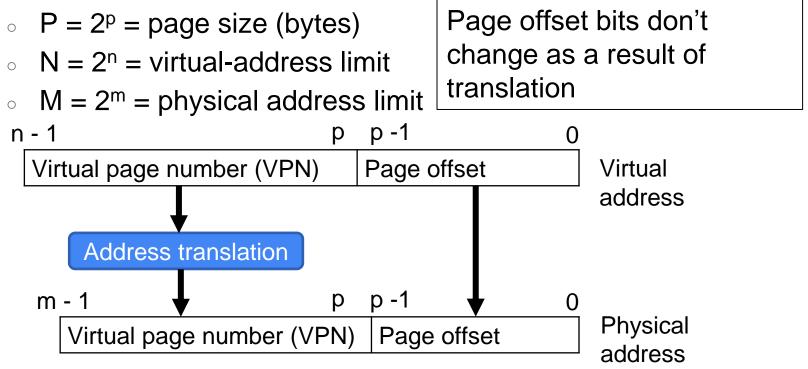
- What if you do not need entire page ? -> internal fragmentation
- Page table may be large
- How can we do fast translation if not stored in processor?
- How big should you make your pages ?

Page table is per process

• Each process has its own virtual address space

The page table

- Each process has a separate page table
 - A "page table register" points to the current process's page table
 - The page table is indexed with the virtual page number (VPN)
 - Each entry contains a valid bit, and a physical page number (PPN)
 - The PPN is concatenated with the page offset to get the physical address

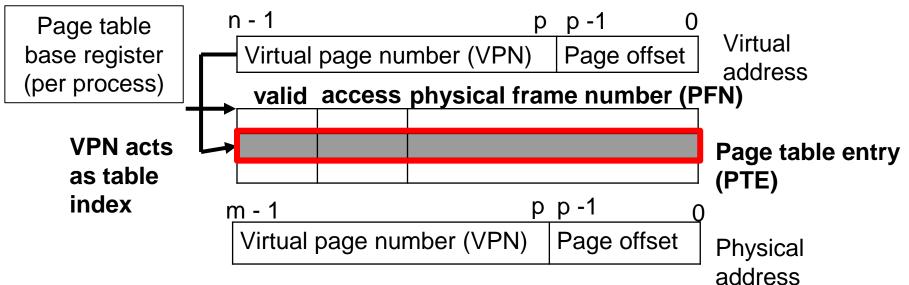


Physical address

Page table

• Parameters

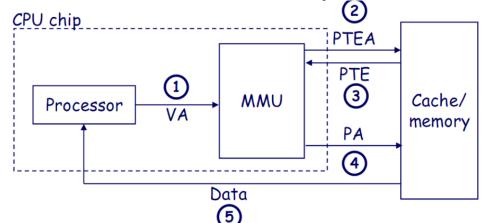
19


Page table (cont.)

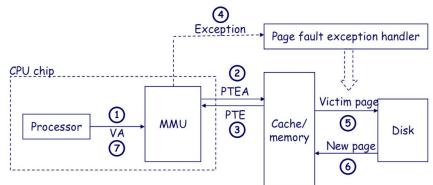
• Each process has a separate page table

• VPN forms index into page table (points to a page table entry)

20


If valid = 0, then page not in memory (page fault)

Page hit


- 1) Processor sends virtual address to MMU
- 2 3) MMU fetches PTE from page table in memory
- 4) MMU sends physical address to L1 cache
- 5) L1 cache sends data word to processor

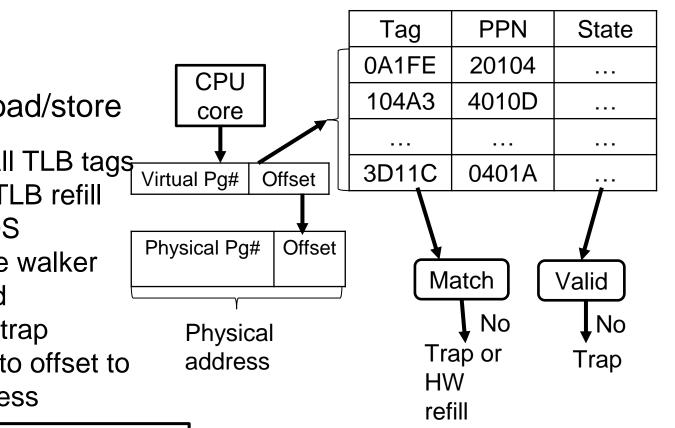
Page fault

- 1) Process sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is 0, so MMU triggers page fault exception
- 5) Handler identifies victim, and if dirty pages it out to disk
- 6) Handler pages in new page and updates PTE in memory
- 7) Handler returns to original process, restarting faulting instruction

What is in a page table entry (PTE)?

- Page table is the "tag store" for the physical memory
- PTE is the "tag store entry" for a virtual page in memory
 - **A present bit ->** whether this page is in physical memory or on disk
 - A protection bit -> enable access control and protection
 - A dirty bit -> whether page has been modified since it was brought into memory
 - A reference bit -> track whether a page has been accessed

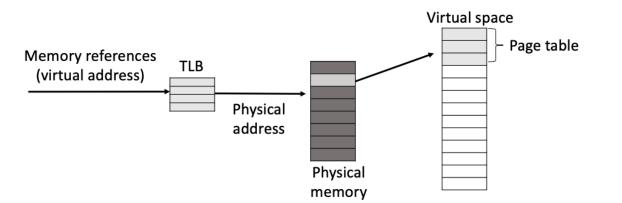
Slow paging


- Require a large amount of mapping information
 - The mapping information is stored in physical memory
 - Paging logically requires an extra memory lookup for each virtual address generated by the program
 - Going to memory for translation information before every instruction fetch
 - **Explicit load or store** is prohibitively slow

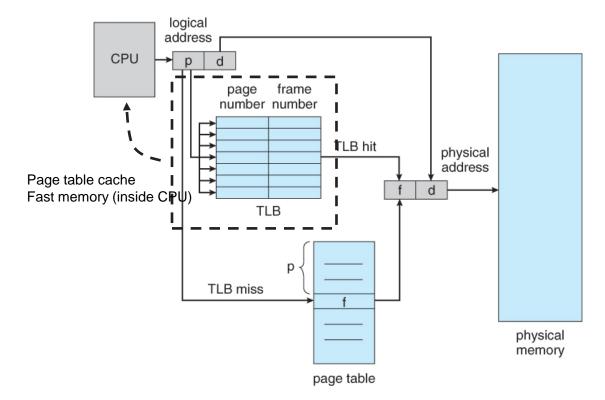
Paging unit

- CPU issues load/store
- 1. Compare VPN to all TLB tags
- 2. If no match, need TLB refill a. SW -> trap to OS
 - b. HW -> HW table walker
- 3. Check if VA is valid a. if not, generate trap
- 4. Concatenate PPN to offset to form physical address

Does all needs to be very fast ?



Translation lookaside buffer (TLB)


Translation lookaside buffer (TLB)

- Reduce memory reference time if page tables stored in hardware
- A hardware cache of popular virtual-to-physical address translation
- Caching of the page table

Paging with TLB

Source: Operating System Concepts by Abraham Silberschatz, Greg Gagne, Peter B. Galvin

TLB (cont.)

- What are typical TLB sizes and organization ?
 - Usually small: 16 512 entries
 - Fully associative, sub-cycle access latency
 - Lookup is by virtual address
 - Return physical address + other info
 - TLB misses take 10-100 cycles
 - Search the entire TLB in parallel to find the desired translation
 - Why is TLB often fully associative ?
- What happens when fully-associative is too slow ?
 - Put a small (4 16 entry) direct-mapped cache in front
 - Called a "TLB slice"

TLB organization

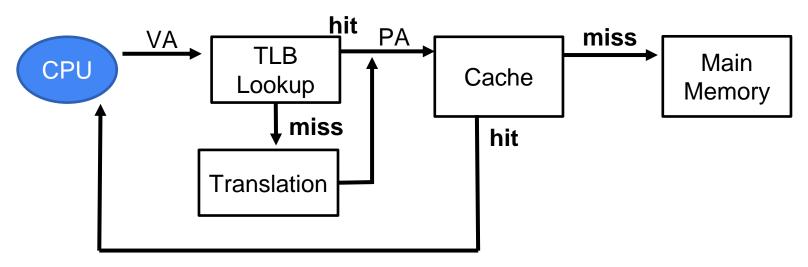
- TLB entry
 - Tag is virtual page and data is PTE for that tag
 - **Dirty** is marked when the page has been written to
 - Coherence bit determines how a page is cached by the hardware
 - Valid bit tells the hardware if there is a valid translation
 - Address space identifier (ASID) as a process identifier (PID)

TLB organization

• TLB entry

Virtual address	Physical address	Dirty	Coherence	Valid	Access	ASID
0xFA00	0x0003	Y	N	Y	R/W	34
0x0040	0x0010	Ν	Y	Y	R	0

National Yang Ming Chiao Tung University Computer Architecture & System Lab


TLB control flow algorithm

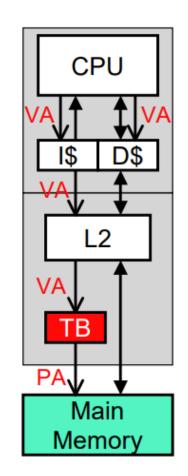
1	VPN = (VirtualAddress & VPN_MASK) >> SHIFT					
2	(Success, TlbEntry) = TLB Lookup(VPN)					
3	if (Success == True) // TLB Hit					
4	if (CanAccess(TlbEntry.ProtectBits) == True)					
5	Offset = VirtualAddress & OFFSET_MASK					
6	PhysAddr = (TlbEntry.PFN << SHIFT) Offset					
7	Register = AccessMemory(PhysAddr)					
8	else DTDD (Dere Teble					
9	RaiseException (PROTECTION EAULT) PTBR (Page Table					
10	else // TLB Miss Base Register)					
11	PTEAddr = PTBR + (VPN * sizeof(PTE))					
12	PTE = AccessMemory(PTEAddr)					
13	if (PTE.Valid == False)					
14	RaiseException(SEGMENTATION_FAULT)					
15	else if (CanAccess(PTE.ProtectBits) == False)					
16	RaiseException(PROTECTION_FAULT)					
17	else					
18	TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)					
19	RetryInstruction()	31				

Translation with a TLB

- Overlap the cache access with the TLB access
 - High order bits of the VA are used to look in the TLB
 - Low order bits are used as index into cache

Virtual caches

• Virtual cache

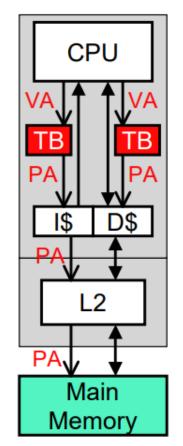

- Tags in cache are virtual addresses
- Translation only happens on cache misses

• What to do on process switches ?

- Flush caches ? Slow
- Add process IDs to cache tags

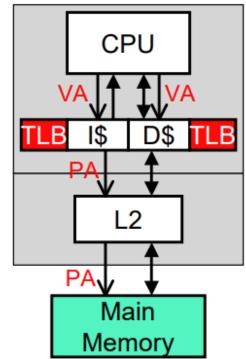
Does inter-process communication work ?

- Aliasing: multiple VAs map to same PA
- How are multiple cache copies kept in sync?
- Disallow caching of shared memory ? Slow

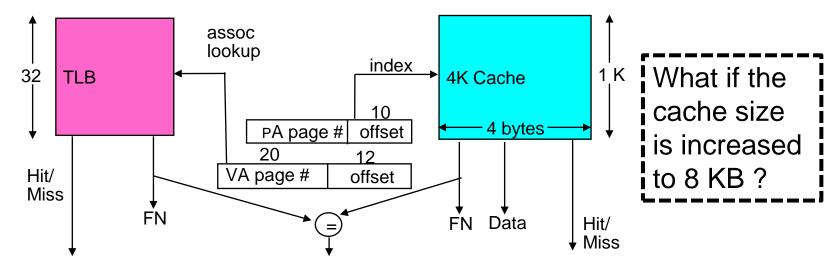


Physical caches

Physical caches


- Indexed and tagged by PAs
- Translate to PA at the outset
- No need to flush caches on process switches
 - Processes do not share PAs
- Cached inter-process communication works
 - Single copy indexed by PA

Virtual physical caches


- Virtual-physical caches
 - Indexed by VAs
 - Tagged by PAs
 - Cache access and address translation in parallel
 - No context-switching/aliasing problems
 - A TB that acts in parallel with a cache is TLB

National Yang Ming Chiao Tung University Computer Architecture & System Lab

Overlapped cache & TLB access

IF TLB hit and cache hit and (cache tag = PA) then deliver data to CPU
ELSE IF TLB hit and cache miss or cache tag != PA THEN access memory with the PA from the TLB
ELSE do standard VA translation

Some solutions to the synonym problem

- Limit cache size to (page size x associativity)
 - Get index from page offset
- On a write to a block, search all possible indices that can contain the same physical block, and update/invalidate
 Used in Alpha 21264, MIPS R10K
- Restrict page placement in OS
 - Make sure index(VA) = index(PA)
 - Called page coloring
 - Used in many SPARC processors

Handling TLB misses

- The TLB is small; it cannot hold all PTEs
 - Some translations will inevitably miss in the TLB
 - Must access memory to find the appropriate PTE
 - Called walking the page directory/table
 - Large performance penalty
- Who handles TLB misses ? Hardware or software ?

Handling TLB misses (cont.)

- Hardware-managed (e.g. x86)
 - The hardware does the page walk
 - The hardware fetches the PTE and inserts it into the TLB
 - If the TLB is full, the entry replaces another entry
 - Transparently to system software
- Software-managed (e.g. MIPS)
 - The hardware raises an exception
 - The operating system does the page walk
 - The operating system fetches the PTE
 - The operating system inserts/evicts entries in the TLB

Handling TLB misses (cont.)

• Hardware-managed TLB

- Pro: No exception on TLB miss. Instruction just stalls
- Pro: Independent instructions may continue
- Pro: No extra instructions/data brought into caches
- Con: page directory/table organization is etched into the system, OS has little flexibility in deciding these

Software-managed TLB

- Pro: The OS can define page table organization
- Pro: More sophisticated TLB replacement policies are possible
- Con: Need to generate an exception -> performance overhead due to pipeline flush, exception handler execution, extra instruction brought to caches

Summary

- Translation lookaside buffer (TLB)
 - Reduce the overhead of paging
 - Must be fast