X //1 National Yang Ming Chiao Tung University
T i [N
a7+ Computer Architecture & System Lab

Virtual Memory

|OC5226 Operating System Capstone

Tsung Tai Yeh
Department of Computer Science
National Yang Ming Chiao Tung University

%% National Yang Ming Chiao Tung University

;\ iy
14 Computer Architecture & System Lab

Acknowledgements and Disclaimer

e Slides were developed in the reference with
® MIT 6.828 Operating system engineering class, 2018
® MIT 6.004 Operating system, 2018
® Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy
pieces. WISC

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Outline

o Virtual memory
- Address translation
o Paging
- Page table
o Translation lookaside buffer (TLB)

#Z % National Yang Ming Chiao Tung University
SP2| -
874 Computer Architecture & System Lab

A system with physical memory only

o« CPU’s load or store addresses used directly to access
memory

O —_

Physical
memory
— address

§\§,ﬁ National Yang Ming Chiao Tung University
AT d 1N
=t

T4 Computer Architecture & System Lab

Problems of physical memory addressing

o Physical memory is of limited size

o Programmer needs to manage physical memory space
o Inconvenient & difficult
- Harder when you have multiple processes
« Challenges
o Code and data relocation
o Protection and isolation between multiple processes
o Sharing of physical memory space

X ,//I National Yang Ming Chiao Tung University

=3\p7

=334
‘,%-r Computer Architecture & System Lab

Virtual memory

e Virtual memory

o The illusion of a large address space while having a small
physical memory

o Only a portion of the virtual address space lives in the physical
address space at any amount of time

o Programmer doesn’t worry about managing physical memory

o Address generated by each instruction in a program is a “virtual
address”

o Virtual memory requires both HW + SW support

o Can cached in special hardware structures call translation
lookaside buffers (TLBS)

National Yang Ming Chiao Tung University
Computer Architecture & System Lab

Physical and virtual memorv

lllustration on 32 bit systems

0xFFFFFFFF
Kernel
0xFFFFFFFF 0xC0000000
1/0 Memery 3
Process 1
1;/0 Memaory 2
000000000
1/0 Memory 1
N — MMU o J— CPU g
NOR flash
0xFFFFFFFF
RAM 1 Kernel
0eCOO00000
RAM 0
Process 2
000000000
000000000
Physical addresses Virtual addresses

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

X

14 Computer Architecture & System Lab

Advantages of virtual memory

X %ﬁ\ National Yang Ming Chiao Tung University

o lllusion of having more physical memory

o Multiple programs share the physical memory
o Permit sharing without knowing other programs
- Division of memory among programs is automatic
o« Program relocation
- Program addresses can be mapped to any physical location
- Physical memory does not have to be contiguous
e Protection
- Per process protection can be enforced on pages

X

a4 Computer Architecture & System Lab

A system with virtual memory (page based)

X iﬁ\ National Yang Ming Chiao Tung University

o Address translation
o 4GB virtual memory, 1GB physical memory, page size is 4KB
(212) with 218 physical pages
31 11 0
Virtual page number Page offset Virtual address

A 4
Virtual page number Page offset Physical

29 11 o address

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Page tables for address translation

Virtual «— 10—
address | virtual page offset
no
Page table R
base register
. v Af:cess Pl Physical page offset
Index into rights | A o
age
fat?le Physical
address
Page table
located in
physical

memory

10

§\§,ﬁ National Yang Ming Chiao Tung University
AT d 1N
=

FlaT4 Computer Architecture & System Lab

Page memory management

Memory management unit (MMU) f
MMU is in the T T -
- logical physical
v |
CPU | address address| | 10000 . ..0000
: |
]
| [I
I I O O B
: R
| ¢ _ N
| : Page table
I g :
: 7 .
| — P I physical
I Lo I memory
:_ page table I

Source: Operating System Concepts by Abraham Silberschatz, Greg Gagne, Peter B. Galvin

§\§,ﬁ National Yang Ming Chiao Tung University
S3TA
A

N 874 Computer Architecture & System Lab

ia

Virtual pages, physical frames

o Virtual address space divided into pages

o Physical address space divided into frames

o A virtual page is mapped to
o A physical frame if the page is in the physical memory
- Alocation in the disk, otherwise

o« Page table

o Stores the mapping of virtual pages to physical frames
- Page table is in the main memory

X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Outline

o Virtual memory
- Address translation
e Paging
- Page table
o Translation lookaside buffer (TLB)

13

§\§,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a

W Computer Architecture & System Lab

o Why does segmentation cause fragmentation?
- Variable-sized segments

o Solution -> paging !
o All “chunks” be the same size (typically 512 — 8 K bytes)
o Call chunks be “pages” rather than “segments”

- Allocation is done in terms of full page-aligned pages -> no
bounds

- MMU maps virtual page numbers to physical page numbers

14

'X$Z % National Yang Ming Chiao Tung University

=3¢71n
‘,%-r Computer Architecture & System Lab

Paging (cont.)

« Modern hardware and OS use paging

o Pages are like segments, but fixed size
- The bounds register goes away
o External fragmentation goes away

o Since pages are small (4 or 8 KB, often), a lot of them
- SO0 page table has to go into RAM
- Page table might be huge
- Accessing the page table requires a memory reference by the
hardware to perform the translation

é%ﬁ\ National Yang Ming Chiao Tung University

_‘, 874 Computer Architecture & System Lab

How does the paging help ?

« How does the paging help ?

O

O

O

O

No external fragmentation

No forced holes in virtual address space

Easy translation -> everything aligned on power-of-2 addresses
Easy for OS to manage/allocate free memory pool

« What problems are introduced ?
o What if you do not need entire page ? -> internal fragmentation

O

O

O

Page table may be large
How can we do fast translation if not stored in processor ?
How big should you make your pages ?

16

X ,ﬁ\ National Yang Ming Chiao Tung University

=337
‘Eg-r Computer Architecture & System Lab

Page table Is per process

o Each process has its own virtual address space
Virtual address Physical address (DRAM)

!

Process 1

N-1

Address
translation

PP7 Read only library

code
mma PP10

M-1

0

Process 2

N-1

Page table register

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

The page table

Each process has a

o
separate page table
A “page table register” points to

the current process’s page table

The page table is indexed with
the virtual page number (VPN)

o Each entry contains a valid bit,
and a physical page number

(PPN)
The PPN is concatenated with
the page offset to get the

O

O

Virtual address
31 30 29 28 27 cceereriaerananns 1514 1312111098 ------ 3210
Virtual page number Page offset
\\20 \\12
Valid Physical page number
p
Page table
\\18

If 0 then page is not
present in memory

29 28 27 crececiiiianeannn 15 14 13 12 11 10 9 8--}--- 3210

Physical page number Page offset
Phvsical address
18

physical address
https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec20.pdf

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Page table

Parameters
o P =2P = page size (bytes)

o N = 2" = virtual-address limit

o M =2™M = physical address limit

n-1 P

Page offset bits don't
change as a result of
translation

p-1

0

Virtual page number (VPN)

Page offset

Address translation

P

p-1

0

Virtual page number (VPN)

Page offset

Virtual
address

Physical

19
address

X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Page table (cont.)

o« Each process has a separate page table
- VPN forms index into page table (points to a page table entry)
o If valid = 0, then page not in memory (page fault)

Page table
base register
(per process)

VPN acts
as table
index

n-1

P p-1

0

Virtual page number (VPN)

Page offset

Virtual
address

valid access physical frame number (PFN)

T

m-1

pPp-1

Virtual page number (VPN)

Page offset

Page table entry
(PTE)

Physical
address

20

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Page hit

o 1) Processor sends virtual address to MMU
o« 2—3) MMU fetches PTE from page table in memory
« 4) MMU sends physical address to L1 cache

e 5) L1 cache sends data word to processor
CPU chip @

@ : PTE
Processor » MMU @ Cache/
VA ' memory

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Page fault

1) Process sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is 0, so MMU triggers page fault exception

5) Handler identifies victim, and if dirty pages it out to disk

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

FEREraSecEiSsossIy Page fault exception handler
CPUchip @
: PTEA
' @ Victim pag
i ' PTE
! | Processor VA MMU @ Cache/ @ Disk

i memory

@) New page
| o I a ® 22

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

What is in a page table entry (PTE)?

o Page table is the “tag store” for the physical memory

o« PTE is the “tag store entry” for a virtual page in memory

o A present bit -> whether this page is in physical memory or on disk

o A protection bit -> enable access control and protection

o A dirty bit -> whether page has been modified since it was brought
Into memory

o A reference bit -> track whether a page has been accessed
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514131211 10 9 8 7 6 5 4 3 2 1 0

I Q 0wz
< Zl=|a
PFN ol<|a OED::

An x86 page table entry (PTE) 23

X

a4 Computer Architecture & System Lab

Slow paging

X %ﬁ\ National Yang Ming Chiao Tung University

o Require a large amount of mapping information
o The mapping information is stored in physical memory
- Paging logically requires an extra memory lookup for each
virtual address generated by the program

- Going to memory for translation information before every
Instruction fetch

o Explicit load or store is prohibitively slow

24

N

a4 Computer Architecture & System Lab

Paging unit

X %ﬁ\ National Yang Ming Chiao Tung University

e CPU issues load/store
1. Compare VPN to all TLB tags

2. If no match, need TLB refill
a. SW ->trap to OS

b. HW -> HW table walker

3. Check if VA is valid

a. if not, generate trap
4. Concatenate PPN to offset to
form physical address

Tag PPN State
AlFE | 20104
CPU 0 010
core / 104A3 | 4010D
Virtual Pg# | Offset ||| 3D11C | 0401A
Physical Pg# | Offset \ /
, Match Valid
|
Physical l No 1N0
address Trap or Trap
HW
refill

Does all needs to be very fast ?

25

'X$7 % National Yang Ming Chiao Tung University
_‘r 874 Computer Architecture & System Lab

Translation lookaside buffer (TLB)

o Translation lookaside buffer (TLB)
- Reduce memory reference time if page tables stored in hardware

o A hardware cache of popular virtual-to-physical address

translation
o Caching of the page table

Virtual space

J» Page table

Memory references
(virtual address)

TLB

Physical
address

Physical
memory

National Yang Ming Chiao Tung University
874 Computer Architecture & System Lab

Paging with TLB

logical

~
r;

7
oY)
=\
|~

address
CPU —b-(p | d
| page frame |
A | number number |
I |
N I . TLB hit physical
I | address
Page table cache | | - Y
Fast memory (inside CPY) I L.JL|_'
I TLB
1
p
TLB miss
o f
- physical
memory
page table

Source: Operating System Concepts by Abraham Silberschatz, Greg Gagne, Peter B. Galvin

X

a4 Computer Architecture & System Lab

TLB (cont.)

X %ﬁ\ National Yang Ming Chiao Tung University

« What are typical TLB sizes and organization ?
o Usually small: 16 — 512 entries
o Fully associative, sub-cycle access latency
= Lookup is by virtual address
= Return physical address + other info
o TLB misses take 10-100 cycles
o Search the entire TLB in parallel to find the desired translation
o Why is TLB often fully associative ?

o What happens when fully-associative is too slow ?

o Putasmall (4 — 16 entry) direct-mapped cache in front
o Called a “TLB slice”

28

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

S

TLB organization

e TLB entry
o Tag is virtual page and data is PTE for that tag
o Dirty is marked when the page has been written to
- Coherence bit determines how a page is cached by the
hardware
o Valid bit tells the hardware if there is a valid translation
o Address space identifier (ASID) as a process identifier (PID)

29

X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

TLB organization

e TLB entry
Virtual | Physical | Dirty | Coherence | Valid Access ASID
address | address
OxFAOQO | 0x0003 Y N Y R/W 34
0x0040 | 0x0010 N Y Y R 0

30

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
g7/ Computer Architecture & System Lab

TLB control flow algorithm

Register = AccessMemory (PhysAddr)
else

L=« R I - " I - B

AULT)

PTEAddr = PTBR + (VPN x sizeof (PTE))
PTE = AccessMemory (PTEAddr)
1f (PTE.Valid == False)

= R s e e e
o S | " IR o T R el

RaiseException(PROTECTION_FAULT)
else

= e
e o’ ~

RetryInstruction ()

VPN = (VirtualAddress & VPN_MASK) >> SHIFT

Success, TlbEntr = TLB Lookup (VPN)
if (Success == True) // TLB Hit
1f (CanAccess (TlbEntry.ProtectBits) == True)
Offset = VirtualAddress & OFFSET_MASK
PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

PTBR (Page Table
Base Register)

RaiseException(SEGMENTATION_FAULT)
else 1f (CanAccess (PTE.ProtectBits) == False)

TLB_Insert (VPN, PTE.PFN, PTE.ProtectBits)

31

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Translation with a TLB

o Overlap the cache access with the TLB access
o High order bits of the VA are used to look in the TLB
o Low order bits are used as index into cache

hit .
VA PA miss
@[] =] [
Cache
. Lookup Memory
§ miss hit
Translation p—

éiﬁ\ National Yang Ming Chiao Tung University

_‘, 874 Computer Architecture & System Lab

Virtual caches CPU
e Virtual cache val1 VA
o Tags in cache are virtual addresses I$ | D$
o Translation only happens on cache val 4
misses Vv
e What to do on process switches ? L2
o Flush caches ? Slow VA A
o Add process IDs to cache tags
e Does inter-process communication work ? =
o Aliasing: multiple VAs map to same PA
o How are multiple cache copies kept in sync? PAV v
o Disallow caching of shared memory ? Slow Main
Memory

http://people.ee.duke.edu/~sorin/prior-courses/ece152-spring2008/lectures/6.9-memory.pdf

33

Ntz National Yang Ming Chiao Tung University
—‘i“'IP Computer Architecture & System Lab
Physical caches CPU

« Physical caches
- Indexed and tagged by PAs
o Translate to PA at the outset

A A

VA VA

PA PA

- No need to flush caches on process switches | LIS _| D$
= Processes do not share PAs PA W i
o Cached inter-process communication works L2
= Single copy indexed by PA 4
PAY
Main
Memory

http://people.ee.duke.edu/~sorin/prior-courses/ece152-spring2008/lectures/6.9-memory.pdf

34

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

5h

Virtual physical caches

« Virtual-physical caches
- Indexed by VAs
- Tagged by PAs
o Cache access and address translation
In parallel
> No context-switching/aliasing problems
- A TB that acts in parallel with a cache is TLB

CPU

TLBMEMIEIATLE

Main
Memory

35

X ,1 National Yang Ming Chiao Tung University
=34
14 Computer Architecture & System Lab

Overlapped cache & TLB access

1 assocC 1
lookup ndex || pmmmm——————
32 |TLB < 22— 4K Cache 1K 'What If the
10 ! I cache size
v PA page #| offset| [f—__4bytes—* v . .
20 > . IS increased
Hit/ VA page # offset |t0 S KB ?
Miss| | ——_ | |] teema———-———
FN @ FN Data Hit/
v v Miss
IF TLB hit and cache hit and (cache tag = PA) then deliver data to
CPU

ELSE IF TLB hit and cache miss or cache tag '= PA THEN
access memory with the PA from the TLB
ELSE do standard VA translation

36

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
14 Computer Architecture & System Lab

Some solutions to the synonym problem

o Limit cache size to (page size x associativity)
- Get index from page offset
o On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate
o Used in Alpha 21264, MIPS R10K
o Restrict page placement in OS
o Make sure index(VA) = index(PA)

- Called page coloring
o Used in many SPARC processors

37

X

a4 Computer Architecture & System Lab

Handling TLB misses

o« The TLB is small; it cannot hold all PTEs
o Some translations will inevitably miss in the TLB

- Must access memory to find the appropriate PTE
= Called walking the page directory/table
= Large performance penalty

e Who handles TLB misses ? Hardware or software ?

X %ﬁ\ National Yang Ming Chiao Tung University

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Handling TLB misses (cont.)

o Hardware-managed (e.g. x86)

O

O

O

The hardware does the page walk

The hardware fetches the PTE and inserts it into the TLB
= Ifthe TLB is full, the entry replaces another entry

Transparently to system software

o Software-managed (e.g. MIPS)

O

O

O

O

The hardware raises an exception

The operating system does the page walk

The operating system fetches the PTE

The operating system inserts/evicts entries in the TLB

39

'X$7 % National Yang Ming Chiao Tung University
=‘;§‘;'IP Computer Architecture & System Lab
Handling TLB misses (cont.)

e Hardware-managed TLB
o Pro: No exception on TLB miss. Instruction just stalls
o Pro: Independent instructions may continue
o Pro: No extra instructions/data brought into caches
o Con: page directory/table organization is etched into the system, OS
has little flexibility in deciding these

e Software-managed TLB
o Pro: The OS can define page table organization
o Pro: More sophisticated TLB replacement policies are possible
o Con: Need to generate an exception -> performance overhead due to
pipeline flush, exception handler execution, extra instruction brought

to caches

40

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Summary

« Translation lookaside buffer (TLB)
- Reduce the overhead of paging
o Must be fast

41

