
Virtual Memory

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy 

pieces. WISC

2



Outline

● Virtual memory

○ Address translation

● Paging

○ Page table

○ Translation lookaside buffer (TLB)

3



A system with physical memory only

● CPU’s load or store addresses used directly to access 

memory

4

CPU

0

N - 1

Physical 

memory 

address



Problems of physical memory addressing

● Physical memory is of limited size

● Programmer needs to manage physical memory space

○ Inconvenient & difficult

○ Harder when you have multiple processes

● Challenges

○ Code and data relocation

○ Protection and isolation between multiple processes

○ Sharing of physical memory space

5



Virtual memory

● Virtual memory
○ The illusion of a large address space while having a small 

physical memory
○ Only a portion of the virtual address space lives in the physical 

address space at any amount of time
○ Programmer doesn’t worry about managing physical memory
○ Address generated by each instruction in a program is a “virtual 

address”

● Virtual memory requires both HW + SW support
○ Can cached in special hardware structures call translation 

lookaside buffers (TLBs)

6



Physical and virtual memory

7

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf



Advantages of virtual memory

● Illusion of having more physical memory

● Multiple programs share the physical memory

○ Permit sharing without knowing other programs

○ Division of memory among programs is automatic

● Program relocation

○ Program addresses can be mapped to any physical location

○ Physical memory does not have to be contiguous

● Protection

○ Per process protection can be enforced on pages
8



A system with virtual memory (page based)

● Address translation

○ 4GB virtual memory, 1GB physical memory, page size is 4KB 

(212) with 218 physical pages

9

Virtual page number Page offset

31                                                         11                         0

Virtual address

Translation

Virtual page number Page offset

29                                         11                            0

Physical 

address



Page tables for address translation

10

Virtual page 

no

offset

Virtual 

address

10

V Access 

rights

P

A

Page table 

base register

Physical page 

no

offset

Physical 

address

Index into 

page 

table

Page table 

located in 

physical 

memory



Page memory management

Source: Operating System Concepts by Abraham Silberschatz, Greg Gagne, Peter B. Galvin

Memory management unit (MMU)

Page table

MMU is in the 

CPU



Virtual pages, physical frames

● Virtual address space divided into pages

● Physical address space divided into frames

● A virtual page is mapped to 

○ A physical frame if the page is in the physical memory

○ A location in the disk, otherwise

● Page table

○ Stores the mapping of virtual pages to physical frames

○ Page table is in the main memory

12



Outline

● Virtual memory

○ Address translation

● Paging

○ Page table

○ Translation lookaside buffer (TLB)

13



Paging

● Why does segmentation cause fragmentation? 

○ Variable-sized segments

● Solution -> paging !

○ All “chunks” be the same size (typically 512 – 8 K bytes)

○ Call chunks be “pages” rather than “segments”

○ Allocation is done in terms of full page-aligned pages -> no 

bounds

○ MMU maps virtual page numbers to physical page numbers

14



Paging (cont.)

● Modern hardware and OS use paging

● Pages are like segments, but fixed size
○ The bounds register goes away

○ External fragmentation goes away

● Since pages are small (4 or 8 KB, often), a lot of them
○ So page table has to go into RAM

○ Page table might be huge

○ Accessing the page table requires a memory reference by the 

hardware to perform the translation

15



How does the paging help ?

● How does the paging help ?
○ No external fragmentation

○ No forced holes in virtual address space

○ Easy translation -> everything aligned on power-of-2 addresses

○ Easy for OS to manage/allocate free memory pool

● What problems are introduced ?
○ What if you do not need entire page ? -> internal fragmentation

○ Page table may be large

○ How can we do fast translation if not stored in processor ?

○ How big should you make your pages ?

16



Page table is per process

● Each process has its own virtual address space

17

VP 1 

VP 2 

…

0

N-1

VP 1 

VP 2 

…

0

N-1

Process 1

Process 2

PP2

PP7

PP10

0

M-1

Physical address (DRAM)

Address 

translation Read only library 

code

Virtual address



The page table

● Each process has a 
separate page table

○ A “page table register” points to
the current process’s page table

○ The page table is indexed with 
the virtual page number (VPN)

○ Each entry contains a valid bit, 
and a physical page number 
(PPN)

○ The PPN is concatenated with
the page offset to get the 
physical address

18

https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec20.pdf



Page table

● Parameters

○ P = 2p = page size (bytes)

○ N = 2n = virtual-address limit

○ M = 2m = physical address limit

19

Virtual page number (VPN) Page offset

n - 1 p p -1 0

Address translation

Virtual page number (VPN) Page offset

m - 1 p p -1 0

Page offset bits don’t 

change as a result of 

translation

Virtual 

address

Physical 

address



Page table (cont.)

● Each process has a separate page table

○ VPN forms index into page table (points to a page table entry)

○ If valid = 0, then page not in memory (page fault)

20

Virtual page number (VPN) Page offset

n - 1 p p -1 0
Virtual 

address
valid access physical frame number (PFN)

Virtual page number (VPN) Page offset

m - 1 p p -1 0

Physical 

address

Page table 

base register 

(per process)

VPN acts 

as table 

index

Page table entry 

(PTE)



Page hit

● 1) Processor sends virtual address to MMU

● 2 – 3) MMU fetches PTE from page table in memory

● 4) MMU sends physical address to L1 cache

● 5) L1 cache sends data word to processor

21



Page fault

● 1) Process sends virtual address to MMU

● 2-3) MMU fetches PTE from page table in memory

● 4) Valid bit is 0, so MMU triggers page fault exception

● 5) Handler identifies victim, and if dirty pages it out to disk

● 6) Handler pages in new page and updates PTE in memory

● 7) Handler returns to original process, restarting faulting instruction

22



What is in a page table entry (PTE)?

● Page table is the “tag store” for the physical memory 

● PTE is the “tag store entry” for a virtual page in memory

○ A present bit -> whether this page is in physical memory or on disk

○ A protection bit -> enable access control and protection

○ A dirty bit -> whether page has been modified since it was brought 

into memory

○ A reference bit -> track whether a page has been accessed

23An x86 page table entry (PTE)



Slow paging

● Require a large amount of mapping information

○ The mapping information is stored in physical memory

○ Paging logically requires an extra memory lookup for each 

virtual address generated by the program

○ Going to memory for translation information before every 

instruction fetch

○ Explicit load or store is prohibitively slow

24



Paging unit

● CPU issues load/store

25

Tag PPN State

0A1FE 20104 …

104A3 4010D …

… … …

3D11C 0401A …

CPU 

core

Virtual Pg# Offset

Physical Pg# Offset

Match Valid

Trap or 

HW 

refill

Trap
Physical 

address

No No

1. Compare VPN to all TLB tags

2. If no match, need TLB refill

a. SW -> trap to OS

b. HW -> HW table walker

3. Check if VA is valid

a. if not, generate trap

4. Concatenate PPN to offset to  

form physical address

Does all needs to be very fast ?



Translation lookaside buffer (TLB)

● Translation lookaside buffer (TLB)

○ Reduce memory reference time if page tables stored in hardware

○ A hardware cache of popular virtual-to-physical address 

translation

○ Caching of the page table

26



Paging with TLB

Source: Operating System Concepts by Abraham Silberschatz, Greg Gagne, Peter B. Galvin

Page table cache 

Fast memory (inside CPU)



TLB (cont.)

● What are typical TLB sizes and organization ?
○ Usually small: 16 – 512 entries
○ Fully associative, sub-cycle access latency

■ Lookup is by virtual address
■ Return physical address + other info

○ TLB misses take 10-100 cycles
○ Search the entire TLB in parallel to find the desired translation
○ Why is TLB often fully associative ?

● What happens when fully-associative is too slow ?
○ Put a small (4 – 16 entry) direct-mapped cache in front
○ Called a “TLB slice”

28



TLB organization

● TLB entry

○ Tag is virtual page and data is PTE for that tag

○ Dirty is marked when the page has been written to

○ Coherence bit determines how a page is cached by the 

hardware

○ Valid bit tells the hardware if there is a valid translation 

○ Address space identifier (ASID) as a process identifier (PID)

29



TLB organization

● TLB entry

30

Virtual 

address

Physical 

address

Dirty Coherence Valid Access ASID

0xFA00 0x0003 Y N Y R/W 34

0x0040 0x0010 N Y Y R 0



TLB control flow algorithm

31

PTBR (Page Table 

Base Register)



Translation with a TLB

● Overlap the cache access with the TLB access

○ High order bits of the VA are used to look in the TLB

○ Low order bits are used as index into cache

32

CPU
TLB 

Lookup

Translation

Cache
Main 

Memory

VA PA
hit

miss hit

miss



Virtual caches

● Virtual cache

○ Tags in cache are virtual addresses

○ Translation only happens on cache 
misses

● What to do on process switches ?
○ Flush caches ? Slow
○ Add process IDs to cache tags

● Does inter-process communication work ?
○ Aliasing: multiple VAs map to same PA
○ How are multiple cache copies kept in sync?
○ Disallow caching of shared memory ? Slow

33

http://people.ee.duke.edu/~sorin/prior-courses/ece152-spring2008/lectures/6.9-memory.pdf



Physical caches

● Physical caches

○ Indexed and tagged by PAs

○ Translate to PA at the outset

○ No need to flush caches on process switches

■ Processes do not share PAs

○ Cached inter-process communication works

■ Single copy indexed by PA

34

http://people.ee.duke.edu/~sorin/prior-courses/ece152-spring2008/lectures/6.9-memory.pdf



Virtual physical caches

● Virtual-physical caches

○ Indexed by VAs

○ Tagged by PAs

○ Cache access and address translation 

in parallel

○ No context-switching/aliasing problems

○ A TB that acts in parallel with a cache is TLB

35



Overlapped cache & TLB access

36

TLB 4K Cache

12

4 bytes

index
1 K

VA page # offset

20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

10
PA page # offset

IF TLB hit and cache hit and (cache tag = PA) then deliver data to 

CPU

ELSE IF TLB hit and cache miss or cache tag != PA THEN

access memory with the PA from the TLB

ELSE do standard VA translation

What if the 

cache size 

is increased 

to 8 KB ?



Some solutions to the synonym problem

● Limit cache size to (page size x associativity)
○ Get index from page offset

● On a write to a block, search all possible indices that can 

contain the same physical block, and update/invalidate
○ Used in Alpha 21264, MIPS R10K

● Restrict page placement in OS
○ Make sure index(VA) = index(PA)

○ Called page coloring

○ Used in many SPARC processors

37



Handling TLB misses

● The TLB is small; it cannot hold all PTEs

○ Some translations will inevitably miss in the TLB

○ Must access memory to find the appropriate PTE

■ Called walking the page directory/table

■ Large performance penalty

● Who handles TLB misses ? Hardware or software ?

38



Handling TLB misses (cont.)

● Hardware-managed (e.g. x86)
○ The hardware does the page walk

○ The hardware fetches the PTE and inserts it into the TLB
■ If the TLB is full, the entry replaces another entry

○ Transparently to system software

● Software-managed (e.g. MIPS)
○ The hardware raises an exception

○ The operating system does the page walk

○ The operating system fetches the PTE

○ The operating system inserts/evicts entries in the TLB

39



Handling TLB misses (cont.)

● Hardware-managed TLB
○ Pro: No exception on TLB miss. Instruction just stalls
○ Pro: Independent instructions may continue
○ Pro: No extra instructions/data brought into caches
○ Con: page directory/table organization is etched into the system, OS 

has little flexibility in deciding these

● Software-managed TLB
○ Pro: The OS can define page table organization
○ Pro: More sophisticated TLB replacement policies are possible
○ Con: Need to generate an exception -> performance overhead due to 

pipeline flush, exception handler execution, extra instruction brought 
to caches

40



Summary

● Translation lookaside buffer (TLB)

○ Reduce the overhead of paging

○ Must be fast

41


