
Locking

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy

pieces. WISC

2

Outline
● Locks
● Hardware synchronization operators

○ test-and-set
○ compare-and-swap
○ fetch-and-add
○ Load-linked / stored-conditional

● Reducing spin-locking overhead
○ yield ()
○ Futex in Linux

3

Locks and unlocks

● Lock: synchronization mechanism that enforces atomicity

● lock(L) : acquire lock L exclusively

○ Only the process with L can access the critical section

● Unlock(L): release exclusive access to lock L

○ Permitting other processes to access the critical section

4

{

lock(L)

counter ++

unlock(L)

}

Program 0

{

lock(L)

counter --

unlock(L)

}

Program 1

int counter=5

lock_t L

Shared variable

Software locking -- Interrupt

● In a single-processor system
● How does it work ?

○ Lock -- turning off interrupts before entering a
critical section

○ Ensure the code inside the critical section won’t
be interrupted -> execute as if it were atomic

● Requires privileges
○ User processes generally cannot disable

interrupts (how to trust every requests ?)

● Not suited for multicore systems
○ Threads can run on different processors and

enter the critical section
5

while(1){

disable interrupts()

critical section

enable interrupts()

}

Process 1

while(1){

disable interrupts()

critical section

enable interrupts()

}

Process 2

Lock

unlock

Problems with disabling interrupts

● Disabling interrupts for long is always bad

○ Can result in lost interrupts and dropped data

● But what about multiprocessors ?

○ Disabling interrupts on just the local processor is not very

helpful

○ Unless all processes are running on the local processor

○ Disabling interrupts on all processors is expensive

6

Hardware synchronization Operators

● test-and-set (loc, t)
○ Atomically read original value and replace it with “t”

● compare-and-swap (loc, a, b)
○ Atomically: if (loc == a) {loc = b;}

● fetch-and-add (loc, n)
○ Atomically read the value at loc and replace it with its value

incremented by n

● Load-linked / stored-conditional
○ Load-linked: loads values from specified address
○ Store-conditional: if no other thread has touched value -> store, else

return error

7

How about hardware locking ?

● Does this scheme provide mutual exclusion ?

8

Process 1

while(1){

while(lock != 0);

lock = 1; // lock

critical section

lock = 0; //unlock

}

Process 2
lock = 0

P1: while (lock != 0);

P2: while (lock != 0);

P2: lock = 1;

P1: lock = 1;

… Both processes in

critical section

lock = 0

while(1){

while(lock != 0);

lock = 1; // lock

critical section

lock = 0; //unlock

}

Context

switch

How to make mutual execution ?

● Make the following operations be atomic

9

Process 1

while(1){

while(lock != 0);

lock = 1; // lock

critical section

lock = 0; //unlock

}

Make atomic, how?

Test & Set instruction

● Test & set instruction

○ Return the old value pointed to by the old_ptr

○ ‘test’ the old value

○ ‘setting’ the memory location to a new value

10

int test_and_set (int *old_ptr, int new)

{

int old = *old_ptr; // fetch old value at old_ptr

*old_ptr = new; // store ‘new’ into old_ptr

return old; // return the old value

}

How to use test_and_set ?

● The first invocation of

test_and_set will read a 0 and set

lock to 1 then return

● The second test_and_set

invocation will see lock as 1, and

loop continuously until lock

becomes 0 11

typedef struct __lock_t {

int flag;

};

void init (lock_t *lock) {

// 0: lock is available, 1: lock is held

lock->flag = 0;

}

void lock (lock_t *lock) {

while (TestAndSet (&lock->flag, 1) == 1);

}

void unlock (lock_t *lock) {

lock->flag = 0;

}

int TestAndSet(int *old_ptr, int new)

{

int old = *old_ptr;

*old_ptr = new;

return prev;

}

Intel hardware atomic exchange (xchg)

● Why does xchg work ?

○ If two CPUs execute xchg at the

same time

○ The hardware ensures that one xchg

completes then the second xchg

starts

12

int xchg (int *L)

{

int prev = *L;

*L = 1;

return prev;

}

int xchg (addr, value) {

%eax = value

xchg %eax, (addr)

}

void acquire (int *locked) {

while (1) {

if(xchg (locked, 1) == 0)

break;

}

}

void release (int *locked) {

locked = 0;

}

Typical usage

xchg reg, mem

Compare-And-Swap

● Compare-And-Swap

○ Test whether the value at

the address specified by

‘ptr’ is equal to ‘expected’

○ If so, update the memory location pointed to by ptr with the

new value

○ If not, do nothing

○ Return the original value at that memory location

13

int CompareAndSwap(int *old_ptr, int

expected, int new)

{

int original = *ptr;

if (original == expected)

*ptr = new;

return original;

}

Compare-And-Swap

● Compare-And-Swap with lock

○ Check if the flag is 0

○ If so, atomically swaps in a 1 thus acquiring the lock

○ Spinning while the lock is held

14

int lock (lock_t *lock)

{

while (CompareAndSwap (&lock->flag, 0, 1) == 1);

// spin

}

Load-linked and store-conditional (llsc)

● The load-linked
○ Fetches a value from memory and

places it in a register

● The store-conditional
○ Only succeeds if no intervening

store to the address has taken

place

○ If success, return 1 and update

the value at ptr to value

○ If fail, 0 is returned

15

int LoadLinked (int *ptr) {

return *ptr;

}

int StoreConditional (int *ptr, int

value) {

if (no update to *ptr since

LoadLinked to this address) {

*ptr = value;

return 1; // success !

} else {

return 0; // failed to update

}

}

Lock implementation with llsc

● lock ()

○ A thread spins waiting

for the flag to be set to 0

○ The thread tries to

acquire the lock via the

store-conditional

○ If succeeds, the thread

has atomically changed

the flag’s value to 1

16

void lock (lock_t *lock) {

while (1) {

while (LoadLinked (&lock->flag) == 1);

// spin until it’s zero

if (StoreConditional (&lock->flag, 1) == 1)

return; // if set-it-to-1 was a success: all done

// otherwise: try it all over again

}

}

void unlock (lock_t *lock) {

lock->flag = 0;

}

llsc Case study

17

void lock (lock_t *lock) {

while (1) {

while (LoadLinked (&lock->flag) == 1);

// spin until it’s zero

if (StoreConditional (&lock->flag, 1) == 1)

return; // if set-it-to-1 was a success: all done

// otherwise: try it all over again

}

}

void unlock (lock_t *lock) {

lock->flag = 0;

}

1. The first thread calls lock()

and executes ll, return 0 as

the lock is not held

2. The first thread is

interrupted and another

thread enters the lock code

3. The second thread get a 0

in ll

4. Both of them attempt the ss

5. The second thread that

attempt ss will fail (why ?)

The key feature of llsc instruction is only one of

these threads will succeed in updating the flag

1 and acquire the lock

Fetch-and-add

● Fetch-and-add
○ Atomically increments a value

while returning the old value at
a particular address

● Ticket lock
○ A thread first does an atomic

fetch-and-add on the ticket
value (myturn as turn value)

○ Globally shared lock->turn is
used to decide which thread’s
turn it is

○ Enter the critical section when
(myturn == turn)

18

int FetchAndAdd (int *ptr) {

int old = *ptr;

*ptr = old + 1;

return old;

}

type_def struct __lock_t {

int ticket;

int turn;

} lock_t;

void lock_init (lock_t *lock) {

lock->ticket = 0;

lock-> turn = 0;

}

void lock (lock_t *lock) {

int myturn = FetchAndFetch (&lock->ticket);

while (lock-> turn != myturn);

}

void unlock (lock_t *lock) {lock->turn ++;}

Evaluating spin locks

● Correctness
○ Does it provide mutual exclusion ?
○ Yes, spin lock only allows a single thread to enter the critical section

at a time

● Fairness
○ Does it guarantee a waiting thread will enter the critical section ?
○ No, spin locks don’t provide any fairness guarantees
○ A thread spinning may spin forever under contention

● Performance
○ The performance overhead is high in the single CPU
○ On multiple CPUs, spin locks work reasonably well (why ?)

19

Case study: yield ()

● What to do ?
○ When a context switch occurs in a critical section

○ Will threads need to spin endlessly and wait for the interrupted (lock-

holding) thread to be run again ?

● yield () system call
○ Moves the caller from running state to the ready state

○ Promote another thread to running

○ The yielding thread essentially deschedules itself

○ A thread can call when it wants to give up the CPU and let another

thread run

20

yield ()

● Two threads on one CPU

○ A thread happens to call lock()

and find a lock held

○ It will simply yield the CPU

without spinning

○ The other thread will run and

finish its critical section

○ Thus, yield () relieves the

spinning lock problem
21

void init () {

flag = 0;

}

void lock () {

while (TestAndSet (&flag, 1) == 1)

yield (); // give up the CPU

}

void unlock () {

flag = 0;

}

The yield () problem

● There are many threads contending for a lock repeatedly
○ One thread acquires the lock and is preempted before releasing it

○ The other 99 threads will each call lock (), then find lock held

○ Finally, yield the CPU

○ Each of the 99 thread will execute the run-and-yield pattern

before the thread holding the lock gets to run again

→ plenty of waste

○ The starvation problem
■ A thread may get caught in an endless yield loop while other threads

repeatedly enter and exit the critical section

22

Using queues: Sleeping instead of spinning

23

int lock (lock_t *m) {

// acquire guard lock by spinning

while (TestAndSet (&m->guard, 1)

== 1);

if (m->flag == 0) {

m->flag = 1; // lock is acquired

m->guard = 0;

} else {

queue_add(m->q, gettid());

m->guard = 0;

park ();

} }

int unlock(lock_t *m) {

// acquire guard lock by spinning

while (TestAndSet (&m->guard, 1)

== 1);

if (queue_empty (m->q)) {

m->flag = 0;

} else {

// hold lock for next thread !

unpark (queue_remove (m->q));

}

m->guard = 0;

}

park (): put a calling thread to sleep. unpark(tid): wake a particular thread

Wakeup / waiting race

● Where is the race condition ?
○ A thread will be about to park

(it should sleep until the lock is

no longer held.)

○ A switch at that time to another

thread holding the lock and the

lock is released

○ The subsequent park by the first

thread would then sleep forever

○ Wakup / waiting race:
■ The thread that unpark doesn’t know threads are going to park

■ Threads that park don’t know the thread is going to unpark
24

int lock (lock_t *m) {

// acquire guard lock by spinning

while (TestAndSet (&m->guard, 1) == 1);

if (m->flag == 0) {

m->flag = 1; // lock is acquired

m->guard = 0;

} else {

queue_add(m->q, gettid());

m->guard = 0;

park ();

}

}

setpark()

● Adding setpark()

○ If another thread calls unpark

before park is actually called

○ The subsequent park

returns immediately

instead of sleeping

25

int lock (lock_t *m) {

// acquire guard lock by spinning

while (TestAndSet (&m->guard, 1)

== 1);

if (m->flag == 0) {

m->flag = 1; // lock is acquired

m->guard = 0;

} else {

queue_add(m->q, gettid());

setpark();

m->guard = 0;

park ();

}

}

futex in Linux

● Callers can use futex calls to sleep and wake as need be

○ Each futex has associated with it a specific physical memory

location

○ futex_wait (address, expected)

■ Puts the calling thread to sleep

○ futex_wake (address)

■ Wakes one thread that is waiting on the queue

26

Locks by using futex

● Lock using futex

○ A single integer to track
■ Whether the lock is held

or not (The high bit of the

integer)

■ The number of waiters on

the lock (all the other bits)

○ If the lock is negative, it is

held
■ Because the high bit is

set and the bit determines

the sign of the integer
27

int mutex_lock (int *mutex) {

int v;

/*Bit 31 was clear, we got the mutex*/

if (atomic_bit_test_set (mutex, 31) == 0)

return;

atomic_increment (mutex);

while (1) {

if (atomic_bit_test_set (mutex, 31) == 0)

{

atomic_decrement (mutex);

return;

}

// we are monitoring it truly negative (locked)

v = *mutex;

if (v >= 0)

continue;

futex_wait (mutex, v);

} }

Conclusion

● Lock

○ Enforce atomicity through the synchronization

● Interrupt-based lock

○ Expensive on multiprocessor

● Hardware synchronization operators

○ test-and-set …

● Spin lock is expensive and error-prone

○ yield ()

28

