
Operating System 
Design and 

Implementation
Lecture 9: Interrupt & exception

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1



Acknowledgements and Disclaimer
• Slides was developed in the reference with 

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC

2



Outline

• Interrupt
• Hardware interrupt
• Software interrupt
• Programmable Interrupt Controller (PIC)
• Interrupt vector

• Exception
• Interrupt handler

• Top and bottom half (Linux)

3



Event driven OS

• OS is event driven
• Executes only when there is an interrupt, trap, or system call

4

User process 1 User process 2

OS

events

time



Why event driven design ?

• OS cannot trust user processes
• User processes may be buggy or malicious
• User process crash should not affect OS

• OS needs to guarantee fairness to all user processes
• One process cannot ‘hog’ CPU time
• Timer interrupts

5http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/6_Interrupts.pdf



Interrupt

• Interrupt
• An event that alters the sequence of instructions executed by a 

processor
• Raised by hardware or programs to get OS attention
• Types

• Hardware interrupts: raised by external hardware
• Software interrupts: raised by user programs

• Exceptions
• Due to illegal operations

6



Interrupt

7

Device CPU
INT

A device (programmable interrupt 
controller (PIC)) asserts a pin in the CPU

.

.
INT x
.
.

An executed instruction 
causes an interrupt

Hardware interrupt Software interrupt



Why hardware interrupt ?

• Several devices connected to the CPU
• E.g. keyboards, mouse, network card, etc.

• These devices occasionally need to be serviced by the CPU
• For example: tell CPU that a key has be pressed
• These events are asynchronous i.e. we cannot predict when they 

will happen
• Need a way for the CPU to determine when a device needs 

attention

8



Interrupts
• Each device signals to the CPU that it wants to be serviced
• Generally CPUs have 2 pins

• INT: interrupt – maskable interrupt, sent to the INTR pin of 
microprocessor

• NMI: Non maskable – for very critical signal (NMI pin)
• Types

• Synchronous interrupt
• Produced by the CPU control unit while executing instructions
• The control unit issues interrupts only after terminating the execution of 

an instruction
• Asynchronous interrupt

• Generated by other hardware devices at arbitrary times with respect to 
the CPU clock signals 9



Exception

• Exception
• Generated when the CPU detects an anomalous condition while 

executing an instruction

• Exception sources
• Program-error exceptions

• Divide by zero
• Software generated exceptions

• INT 3: a break point exception
• INTO: overflow instruction 

• Machine-check exceptions
• Due to hardware error such as system bus error, parity errors in memory

10



Exception types -- Faults

• Faults
• Exception that generally can be corrected
• Once corrected, the program can continue execution

• Examples:
• Divide by zero error
• Invalid opcode
• Device not available
• Segment not present
• Page not present

11



Exception types -- Traps

• Traps
• Reported immediately after the execution of the trapping 

instruction

• Examples:
• Breakpoint
• Overflow
• Debug instructions

12



Exception types -- Aborts

• Aborts
• Severe unrecoverable errors

• Examples
• Double fault

• Occurs when an exception is unhandled or when an exception occurs 
while the CPU is trying to call an exception handler

• Machine check
• Internal errors in hardware detected
• Such as bad memory, bus errors, cache errors, etc.

13



Exceptions and interrupts

• How does exceptions and interrupts work ?
• Programmable interrupt controller 

Source: Qing Li  “real-time concepts for embedded systems” 



Exceptions and interrupts (Cont.)

• Processing general exceptions (Cont.)
–Loading and invoking exception handlers

–Nested exceptions and stack overflow

Source: Qing Li  “real-time concepts for embedded systems” 



Exceptions and interrupts (Cont.)

• Exception handlers
• Exception frame

• The exception frame is also called the interrupt stack in the context of 
asynchronous exceptions. 

Source: Qing Li  “real-time concepts for embedded systems” 



8259 Programmable interrupt controller (PIC)

• 8259 PIC relays up to 8 interrupt to the CPU
• Devices raise interrupts by an ‘interrupt request’ (IRQ)
• CPU acknowledges and queries the 8259 to

determine which device interrupted
• Priorities can be assigned to each IRQ line
• 8259s can be cascaded to support more

interrupts
• Two PICs and cascade buffer
• IRQ2 -> IRQ9

17http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/6_Interrupts.pdf

INTA is a signal used to identify that 
a CPU has an interrupt made by the interrupt 
controller.



Interrupts in legacy CPUs

• IRQ 0 to IRQ 15, 15 possible devices
• Interrupt types

• Edge
• Level

• Limitations
• Limited IRQs
• Multi-processor support limited

18http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/6_Interrupts.pdf



Advanced PIC (APIC)

• External interrupts are routed from peripherals to CPUs in multi-
processor systems through APIC

• APIC distributes and prioritizes interrupts to processors
• Comprises of two components

• Local APIC (LAPIC)
• I/O APIC

• APICs communicates through
a special 3-wire APIC bus

19http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/6_Interrupts.pdf



LAPIC and I/O APIC

• LAPIC
• Receives interrupts from I/O APIC and routes it to the local CPU
• Can also receive local interrupts such as from thermal sensor, 

internal timer, etc.
• Send and receive IPIs (Inter processor interrupts)

• IPIs used to distribute interrupts between processors or execute system 
wide functions like booting, load distribution, etc.

• I/O APIC
• Present in chipset (north bridge)
• Used to route external interrupts to local APIC

20



What happens when there is an interrupt ?

21

Device asserts IRQ of I/O APIC

I/O APIC transfer interrupt to LAPIC

LAPIC asserts CPU interrupts

After current instruction completes
CPU senses interrupt line and obtain IRQ 

number from LAPIC

Switch to kernel stack if necessary

By device 
and APICs

Done By 
CPU

Either special 3 wire 
APIC bus or system bus



What happens when there is an interrupt ?

22

Basic program state saved

Jump to interrupt handler

Interrupt handler (top half)

Return from interrupt

Interrupt handler (bottom half)

x86 saves the SS, ESP, EFLAGS, CS, EIP, 
error code on stack 
(restored by iret instruction)
suspends current task

How does hardware find the OS 
interrupt handler ?
1. Respond to interrupt
2. More storing of program state
3. Schedule bottom half
4. IRET
Restore flags and registers saved 
earlier. Restore running task

Done by 
CPU

Done in 
software

Done by 
CPU
Done in 
software



Stack

• Each process has two stacks
• A user space stack
• A kernel space stack

23http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/6_Interrupts.pdf



Switch stack (to switch or not to switch)

• When to switch stack ?
• If a process executes in user space -> switch stack to a kernel 

switch
• No stack switch when executing in kernel space

• Why switch stack ?
• OS cannot trust stack (SS and ESP) of user process
• Stack switch needed only when moving from user to kernel mode

• How to switch stack ?
• CPU should know locations of the new SS and ESP
• Done by task segment descriptor

24



How to switch stack ?

• Task state segment (TSS)
• Specialized segment for hardware support for multitasking
• TSS stored in memory

• Processor register states -> used for task switching
• I/O port permission bitmap -> specifies individual ports to accessible program
• Inner-level stack pointer -> specifies the new stack pointer when a privilege 

level change occurs
• Previous TSS link

• TSS is used to find the new stack
• SS0: the stack segment (in kernel)
• ESP0: stack pointer (in kernel)

25



Saving program state

• Why does the OS need to saving program state ?
• Current program being executed must be able to resume after 

interrupt service completed

• When stack switch occurs
• Also save the previous SS and ESP

• When no stack switch occurs
• Using existing stack

26



Interrupt vectors
• When exception or interrupt occur, what to execute next ?

• Each interrupt/exception provided a number
• Number used to index into an interrupt descriptor table (IDT)
• IDT provides the entry point into an interrupt/exception handler
• 0 to 255 vectors possible

• 0 to 31 correspond to exception and nonmaskable interrupts
• 32 – 47 are assigned to maskable interrupts caused by IRQs
• 48 – 255 may be used to identify software interrupts
• For example, Linux uses 128 (0x80) vector to implement system calls
• When int 0x80 assembly instruction is executed by a process in user mode, 

the CPU switches into kernel mode and starts executing the system_call() 
kernel function

27



Interrupt vector (cont.)

28

INT_NUM Short description
0x00 Division by zero
0x01 Single-step interrupt
0x02 NMI
0x03 Breakpoint
0x04 Overflow
0x05 Bound range exceeded
0x06 Invalid opcode

• Processor generated exception

https://en.wikipedia.org/wiki/Interrupt_descriptor_table



Finding the interrupt service routine

• IDT: interrupt descriptor table
• Also called interrupt vectors
• Stored in memory and pointed 

to by IDTR (register)
• Initialized by OS at boot

29

Selected descriptor = 
base address + (vector * 8)

// 8 is the entry size in protected mode 

http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/6_Interrupts.pdf



Interrupt handlers

• Typical interrupt handler
• Save additional CPU context (written in assembly)
• Process interrupt (communicate with I/O devices)
• Invoke kernel scheduler
• Restore CPU context and return (written in assembly)

30



Interrupt latency

31Source: Qing Li  “real-time concepts for embedded systems” 



Importance of interrupt latency

• Real time systems
• OS should guarantee interrupt latency is less than a specified value

• Minimum interrupt latency
• Mostly due to the interrupt controller

• Maximum interrupt latency
• Due to the OS
• Occurs when interrupt handler cannot serviced immediately
• E.g. when OS executing atomic operations, interrupt handler 

would need to wait till completion of atomic operations

32



Nested interrupts

• Typically interrupt disabled
during handler executes
• This reduces system 

responsiveness
• To improve responsiveness, enable interrupts within handlers

• This often causes nested interrupts but difficult to develop and 
validate

• Linux interrupt handler approach
• Design interrupt handlers to be small so that nested interrupts are 

less likely

33http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/6_Interrupts.pdf



Small interrupt handlers

• Do as little as possible in the interrupt handler
• Often just queue a work item or set a flag
• Defer non-critical actions till later

• Top and bottom half technique (Linux)
• Top half: do minimum work and return from interrupt handler

• Should complete as quickly as possible since all interrupts are disabled
• Bottom half: deferred processing

• Implemented in Linux as softirqs, tasklets or workqueues

34



Softirqs

• Softirqs are a form of bottom half processing
• The softirqs handlers are executed with all interrupts enabled
• A given softirq handler can run simultaneously on multi-CPUs
• Softirqs are executed once all interrupt handlers have completed 

before the kernel resumes scheduling processes
• The number of softirqs is fixed in the system, are not directly used by 

drivers, but by kernel subsystems
• This list of softirqs is defined in “include/linux/interrupt.h”

35



Tasklets
• Tasklets

• Executed withing the HI_SOFTIRQ and TASKLET_SOFTIRQ softirqs
• Executed with all interrupts enabled
• A given tasklet is guaranteed to execute on a single CPU at a time
• Created with the tasklet_init() function
• A tasklet is simply implemented as a function
• Tasklets can easily be used by individual device drivers
• The interrupt handler can schedule tasklet execution with:

• Tasklet_schedule() to get it executed in TASKLET_SOFTIRQ
• Tasklet_hi_schedule() to get it executed in HI_SOFTIRQ (high priority)

36



Workqueues

• Workqueue
• Aims to defer work
• Not limited in usage to handle interrupts
• Usually allocated in a per-device structure
• Registered with INIT_WORK()
• Triggered with queue_work() when using a dedicated queue
• The complete API in “include/linux/workqueue.h”
• Example (drivers/crypto/atmel-i2c)

• INIT_WORK(&work_data->work, atmel_i2c_work_handler);
• schedule_work(&work_data->work)

37



Summary

• Interrupt changes the sequence of instruction execution
• Exception occurs since the illegal operation
• Hardware interrupt – programmable interrupt controller
• Interrupt vector records interrupt commands
• Interrupt latency
• Interrupt handler – top half and bottom half 

38


