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Outline

• Interrupt
• Hardware interrupt
• Software interrupt
• Programmable Interrupt Controller (PIC)
• Interrupt vector

• Exception
• Interrupt handler

• Top and bottom half (Linux)
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Event driven OS

• OS is event driven
• Executes only when there is an interrupt, trap, or system call
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Why event driven design ?

• OS cannot trust user processes
• User processes may be buggy or malicious
• User process crash should not affect OS

• OS needs to guarantee fairness to all user processes
• One process cannot ‘hog’ CPU time
• Timer interrupts
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Interrupt

• Interrupt
• An event that alters the sequence of instructions executed by a 

processor
• Raised by hardware or programs to get OS attention
• Types

• Hardware interrupts: raised by external hardware
• Software interrupts: raised by user programs

• Exceptions
• Due to illegal operations
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Interrupt
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Why hardware interrupt ?

• Several devices connected to the CPU
• E.g. keyboards, mouse, network card, etc.

• These devices occasionally need to be serviced by the CPU
• For example: tell CPU that a key has be pressed
• These events are asynchronous i.e. we cannot predict when they 

will happen
• Need a way for the CPU to determine when a device needs 

attention
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Interrupts
• Each device signals to the CPU that it wants to be serviced
• Generally CPUs have 2 pins

• INT: interrupt – maskable interrupt, sent to the INTR pin of 
microprocessor

• NMI: Non maskable – for very critical signal (NMI pin)
• Types

• Synchronous interrupt
• Produced by the CPU control unit while executing instructions
• The control unit issues interrupts only after terminating the execution of 

an instruction
• Asynchronous interrupt

• Generated by other hardware devices at arbitrary times with respect to 
the CPU clock signals 9



Exception

• Exception
• Generated when the CPU detects an anomalous condition while 

executing an instruction

• Exception sources
• Program-error exceptions

• Divide by zero
• Software generated exceptions

• INT 3: a break point exception
• INTO: overflow instruction 

• Machine-check exceptions
• Due to hardware error such as system bus error, parity errors in memory
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Exception types -- Faults

• Faults
• Exception that generally can be corrected
• Once corrected, the program can continue execution

• Examples:
• Divide by zero error
• Invalid opcode
• Device not available
• Segment not present
• Page not present
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Exception types -- Traps

• Traps
• Reported immediately after the execution of the trapping 

instruction

• Examples:
• Breakpoint
• Overflow
• Debug instructions
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Exception types -- Aborts

• Aborts
• Severe unrecoverable errors

• Examples
• Double fault

• Occurs when an exception is unhandled or when an exception occurs 
while the CPU is trying to call an exception handler

• Machine check
• Internal errors in hardware detected
• Such as bad memory, bus errors, cache errors, etc.
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Exceptions and interrupts

• How does exceptions and interrupts work ?
• Programmable interrupt controller 

Source: Qing Li  “real-time concepts for embedded systems” 



Exceptions and interrupts (Cont.)

• Processing general exceptions (Cont.)
–Loading and invoking exception handlers

–Nested exceptions and stack overflow

Source: Qing Li  “real-time concepts for embedded systems” 



Exceptions and interrupts (Cont.)

• Exception handlers
• Exception frame

• The exception frame is also called the interrupt stack in the context of 
asynchronous exceptions. 

Source: Qing Li  “real-time concepts for embedded systems” 



8259 Programmable interrupt controller (PIC)

• 8259 PIC relays up to 8 interrupt to the CPU
• Devices raise interrupts by an ‘interrupt request’ (IRQ)
• CPU acknowledges and queries the 8259 to

determine which device interrupted
• Priorities can be assigned to each IRQ line
• 8259s can be cascaded to support more

interrupts
• Two PICs and cascade buffer
• IRQ2 -> IRQ9
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INTA is a signal used to identify that 
a CPU has an interrupt made by the interrupt 
controller.



Interrupts in legacy CPUs

• IRQ 0 to IRQ 15, 15 possible devices
• Interrupt types

• Edge
• Level

• Limitations
• Limited IRQs
• Multi-processor support limited
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Advanced PIC (APIC)

• External interrupts are routed from peripherals to CPUs in multi-
processor systems through APIC

• APIC distributes and prioritizes interrupts to processors
• Comprises of two components

• Local APIC (LAPIC)
• I/O APIC

• APICs communicates through
a special 3-wire APIC bus
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LAPIC and I/O APIC

• LAPIC
• Receives interrupts from I/O APIC and routes it to the local CPU
• Can also receive local interrupts such as from thermal sensor, 

internal timer, etc.
• Send and receive IPIs (Inter processor interrupts)

• IPIs used to distribute interrupts between processors or execute system 
wide functions like booting, load distribution, etc.

• I/O APIC
• Present in chipset (north bridge)
• Used to route external interrupts to local APIC

20



What happens when there is an interrupt ?
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Device asserts IRQ of I/O APIC

I/O APIC transfer interrupt to LAPIC
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What happens when there is an interrupt ?
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Basic program state saved

Jump to interrupt handler

Interrupt handler (top half)

Return from interrupt

Interrupt handler (bottom half)
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suspends current task

How does hardware find the OS 
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3. Schedule bottom half
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earlier. Restore running task
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Stack

• Each process has two stacks
• A user space stack
• A kernel space stack
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Switch stack (to switch or not to switch)

• When to switch stack ?
• If a process executes in user space -> switch stack to a kernel 

switch
• No stack switch when executing in kernel space

• Why switch stack ?
• OS cannot trust stack (SS and ESP) of user process
• Stack switch needed only when moving from user to kernel mode

• How to switch stack ?
• CPU should know locations of the new SS and ESP
• Done by task segment descriptor
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How to switch stack ?

• Task state segment (TSS)
• Specialized segment for hardware support for multitasking
• TSS stored in memory

• Processor register states -> used for task switching
• I/O port permission bitmap -> specifies individual ports to accessible program
• Inner-level stack pointer -> specifies the new stack pointer when a privilege 

level change occurs
• Previous TSS link

• TSS is used to find the new stack
• SS0: the stack segment (in kernel)
• ESP0: stack pointer (in kernel)
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Saving program state

• Why does the OS need to saving program state ?
• Current program being executed must be able to resume after 

interrupt service completed

• When stack switch occurs
• Also save the previous SS and ESP

• When no stack switch occurs
• Using existing stack
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Interrupt vectors
• When exception or interrupt occur, what to execute next ?

• Each interrupt/exception provided a number
• Number used to index into an interrupt descriptor table (IDT)
• IDT provides the entry point into an interrupt/exception handler
• 0 to 255 vectors possible

• 0 to 31 correspond to exception and nonmaskable interrupts
• 32 – 47 are assigned to maskable interrupts caused by IRQs
• 48 – 255 may be used to identify software interrupts
• For example, Linux uses 128 (0x80) vector to implement system calls
• When int 0x80 assembly instruction is executed by a process in user mode, 

the CPU switches into kernel mode and starts executing the system_call() 
kernel function
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Interrupt vector (cont.)
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INT_NUM Short description
0x00 Division by zero
0x01 Single-step interrupt
0x02 NMI
0x03 Breakpoint
0x04 Overflow
0x05 Bound range exceeded
0x06 Invalid opcode

• Processor generated exception

https://en.wikipedia.org/wiki/Interrupt_descriptor_table



Finding the interrupt service routine

• IDT: interrupt descriptor table
• Also called interrupt vectors
• Stored in memory and pointed 

to by IDTR (register)
• Initialized by OS at boot
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Selected descriptor = 
base address + (vector * 8)

// 8 is the entry size in protected mode 
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Interrupt handlers

• Typical interrupt handler
• Save additional CPU context (written in assembly)
• Process interrupt (communicate with I/O devices)
• Invoke kernel scheduler
• Restore CPU context and return (written in assembly)
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Interrupt latency

31Source: Qing Li  “real-time concepts for embedded systems” 



Importance of interrupt latency

• Real time systems
• OS should guarantee interrupt latency is less than a specified value

• Minimum interrupt latency
• Mostly due to the interrupt controller

• Maximum interrupt latency
• Due to the OS
• Occurs when interrupt handler cannot serviced immediately
• E.g. when OS executing atomic operations, interrupt handler 

would need to wait till completion of atomic operations
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Nested interrupts

• Typically interrupt disabled
during handler executes
• This reduces system 

responsiveness
• To improve responsiveness, enable interrupts within handlers

• This often causes nested interrupts but difficult to develop and 
validate

• Linux interrupt handler approach
• Design interrupt handlers to be small so that nested interrupts are 

less likely
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Small interrupt handlers

• Do as little as possible in the interrupt handler
• Often just queue a work item or set a flag
• Defer non-critical actions till later

• Top and bottom half technique (Linux)
• Top half: do minimum work and return from interrupt handler

• Should complete as quickly as possible since all interrupts are disabled
• Bottom half: deferred processing

• Implemented in Linux as softirqs, tasklets or workqueues
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Softirqs

• Softirqs are a form of bottom half processing
• The softirqs handlers are executed with all interrupts enabled
• A given softirq handler can run simultaneously on multi-CPUs
• Softirqs are executed once all interrupt handlers have completed 

before the kernel resumes scheduling processes
• The number of softirqs is fixed in the system, are not directly used by 

drivers, but by kernel subsystems
• This list of softirqs is defined in “include/linux/interrupt.h”
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Tasklets
• Tasklets

• Executed withing the HI_SOFTIRQ and TASKLET_SOFTIRQ softirqs
• Executed with all interrupts enabled
• A given tasklet is guaranteed to execute on a single CPU at a time
• Created with the tasklet_init() function
• A tasklet is simply implemented as a function
• Tasklets can easily be used by individual device drivers
• The interrupt handler can schedule tasklet execution with:

• Tasklet_schedule() to get it executed in TASKLET_SOFTIRQ
• Tasklet_hi_schedule() to get it executed in HI_SOFTIRQ (high priority)
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Workqueues

• Workqueue
• Aims to defer work
• Not limited in usage to handle interrupts
• Usually allocated in a per-device structure
• Registered with INIT_WORK()
• Triggered with queue_work() when using a dedicated queue
• The complete API in “include/linux/workqueue.h”
• Example (drivers/crypto/atmel-i2c)

• INIT_WORK(&work_data->work, atmel_i2c_work_handler);
• schedule_work(&work_data->work)
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Summary

• Interrupt changes the sequence of instruction execution
• Exception occurs since the illegal operation
• Hardware interrupt – programmable interrupt controller
• Interrupt vector records interrupt commands
• Interrupt latency
• Interrupt handler – top half and bottom half 
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