
Operating System
Design and

Implementation
Lecture 8: System call

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC

2

Outline

• System calls
• User mode vs kernel mode
• System call parameter passing
• Trap instruction
• System call example
• Context switch

3

Execution mode, address space and context

• Mode is the level of privilege allowing some operations
• Kernel mode:

• CPU can perform any operations allowed by its architecture
• User mode:

• Instructions that could alter the global state of the machine are not
permitted

• Some memory areas cannot be access
• Linux splits address in kernel space and user space
• Context represents the current state of an execution flow

• The process context can be seen as the content of the registers associated
to this process: execution register, stack register …

4

System call

5Source: http://randibox.blogspot.tw/2016/02/the-fascinating-world-of-linux-system.html

fork()

sys_fork()

• System call
• Allow the kernel to expose certain key

pieces of functionality to user programs
• Access the file system
• Destroying processes
• Communicating with other

processes
• Allocating more memory
• To execute a system call, a

program must execute a
special trap instruction

Anatomy of a system call
• Anatomy of a system call

• Program puts syscall params in register
• Program executes a trap

• Processor state (PC, PSW) pushed on stack
• CPU switches mode to KERNEL
• CPU vectors to registered trap handler

in the OS kernel
• Trap handler uses param to jump to

desired handler (e.g. fork, exec, open…)
• When complete, reserve operation

• Place return code in register
• Return from exception

6https://my.eng.utah.edu/~cs5460/slides/Lecture02.pdf

Software interrupt

• Software interrupt used for
implementing system calls
• INT is an assembly language instruction

for x86 processors that generates a
software interrupt

• In Linux INT 128 (0x80) (128 is interrupt
number) used for system calls

• In xv6, INT 64 is used for system calls

7

Kernel

Process

System calls
INT 64

System call example

8

printf(%s, str);

write(STDOUT)

int handler

Write syscall
implementation

User space

Kernel space

libc invocation

int

System call processing in kernel

9

INT 64

Vectors.S alltraps
(alltraps.S)

trap
(trap.c)

syscall
(syscall.c)

Back to user
process

Executes the
system calls

If vector = 64

Linux System Call Procedures

Source: http://monkee.esy.es/?p=1349

System call routines

11

System call Description
fork() Create a process
exit() Terminate the current process
wait() Wait for a child process to exit
open(filename, flag) Open a file; the flags indicate read/write
read(fd, buf, n) Read n bytes from an open file into buf
write(fd, buf, n) Write n bytes to an open file
close(fd) Release open file fd
dup(fd) Duplicate fd
pipe(p) Create a pipe and return fd’s in p
fstat(fd) Return info about an open file
unlink(filename) Remove a file

How does OS
distinguish
between the
system calls ?

System call number

• A system call number is a unique integer
• Assigned to each system call in a Unix-like

operating system
• The user code places the desired system

call number in a register or at a specified
location on the stack

• The OS examines the system call number
when handling the system call inside the
trap handler

12

#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5
#define __NR_close 6
#define __NR_waitpid 7
#define __NR_creat 8
#define __NR_link 9
#define __NR_unlink 10
#define __NR_execve 11
#define __NR_chdir 12
#define __NR_time 13
#define __NR_mknod 14
#define __NR_chmod 15
#define __NR_lchown 16

/usr/include/asm/unistd.h

System call number (cont.)

• System call number used to
distinguish between system calls
• Based on the system call number

function syscall invokes the
corresponding syscall handler

13

System call
numbers

System call
handlers

mov x, %eax
INT 64

System call number

syscall.h, syscall() in syscall.c

Prototype of a typical system call

14

int system_call (resource_descriptor, parameters)

OS resource: file,
device, etc. if not
specified, generally
means the current
process

System call specific
parameters passed.
How are they passed ?

‘int’ return,
sometimes ‘void’

int used to indicate completion status of system
call sometimes also has additional information
like number of bytes written to file

Passing parameters in system calls

• Passing parameters to system calls not similar to passing
parameters in function calls

• Typical methods
• Pass by registers (e.g. Linux)
• Pass via user mode stack (e.g. xv6)

• complex
• Pass via a designated memory region

• Address passed through registers

15

Pass by registers (Linux in x86)

• System calls with fewer than 6 parameters passed in
registers
• %eax (sys call number), %ebx, %ecx, %esi, %edi, %ebp

• If 6 or more arguments
• Pass pointer to block structure containing argument list
• Max size of argument is the register size (e.g. 32 bit)

16

System call example

17

Source Assembly code

https://my.eng.utah.edu/~cs5460/slides/Lecture02.pdf

Pass via user mode stack (xv6)

18

push param1
push param2
push param3
mov sysnum, %eax
int 64

User process param1
param2
Param3

User stack

SS

ESP

EFLAGS

CS

EIP

Error code

Trap number

ds

es

…

eax

ecx

…

esi

edi

ESP

(Empty)

ESP pushed by
hardware contains
user mode stack
pointer

Proc entry for
process

Points to trapframe

trapframe

sys_open(sysfile.c)

Return from system calls

19

push param1
push param2
push param3
mov sysnum, %eax
int 64
…

User process

SS

ESP

EFLAGS

CS

EIP

Error code

Trap number

ds

es

…

eax

ecx

…

esi

edi

ESP

(Empty)

trapframe

Return value
register EAX

Automatically restored
by hardware while
returning to user process

Move result to eax
in trap frame

In system call

Trap process

• The trap instruction
• The trap jumps into the kernel and raises the privilege level to

kernel mode
• When finished, the OS calls a special return-from-trap instruction
• Return into the calling user program while simultaneously

reducing the privilege back to user mode

• How does the trap know which code to run side the OS ?
• Using the trap table
• The kernel does so by setting up a trap table at boot time

20

Traps
• Architecture detects special events

• Trap instruction, invalid memory access
• Floating point exception, privileged instruction

by user mode code
• When processor detects above conditions:

• Save minimal CPU state (PC, sp, ..) -
done by hardware

• Switches to KERNEL mode
• Transfers control to trap handler

• Indexes trap table w/ trap number
• Jumps to address in trap table
• Handler saves more state and may disable interrupts

• Return-from-trap (RTE) instruction reserves
operation

21

0x0082404
0x0084d08
0x008211c
0x0082000

…

Illegal address

Mem violation
Illegal insn.

System call

0x82404 is address of
handle_illegal addr()

Trap table

Trap table at boot time
• When the machine boots up

• First, the OS is to tell the hardware what code to run when certain
exceptional events occur

• What code should run when a hardware interrupt take place ?
• When a program makes a system call ?

• OS informs the hardware of the locations of these trap handlers
through the special instruction

• The location of these handles is remembered until the machine next
reboots

22

OS @ boot (kernel mode) Hardware
Initialize trap table Remember address of syscall

handler

Limited direction execution protocol

23

OS @ boot (kernel mode) Hardware Program (user mode)

1. Create entry for process list
2. Allocate memory for program
3. Load program into memory
4. Setup user stack with argv
5. Fill kernel stack with reg/PC
6. Return-from-trap

1. Restore regs
(from kernel stack)

2. Move to user mode
3. Jump to main 1. Run main()

…
2. Call system call

trap into OS

Limited direction execution protocol (cont.)

24

OS @ boot (kernel mode) Hardware Program (user mode)

1. Save regs to kernel
stack

2. Move to kernel mode
3. Jump to trap handler

1. Handle trap
2. Do work of syscall
3. Return-from-trap 1. Restore regs (from

kernel stack)
2. Move to user mode
3. Jump to PC after trap 1. Return from main

2. Trap (via exit())

Trap process

• Return-from-trap instruction
• Switches the CPU to user mode and begins running the process

• When the process wishes to issue a system call, it traps back into the OS

25

Process Signal from
user program

Enter the
kernel mode

Trap Handler

Leave the
kernel mode

Resume
Execution

User mode

Kernel mode

Trap

Return-from-trap
instruction

The fork() system call

• The fork() system call is used to create a new process
• The newly-created process

called child
• The child process doesn’t

start running at main()
• The child isn’t an exact

copy of the parent process
• The child receives a return

code of zero

26
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf

fork: form an OS perspective

• Set State to NEW
means the pid has
been taken, the
process is being
created, but not
ready to run

27http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

Return from fork

• Return from fork is placed in
the kernel stack

• Return value in parent has
new child’s PID

• Return value in child has 0
• Registers modified in child process
• %eax = 0 so that pid = 0 in child

• The eax entry in the trapframe
has each process’s return value

28http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

29
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

The fork() is not deterministic

• The output of fork() is not deterministic
• When the child process is created, there are two active processes

in the system
• The parent did and thus printed out its message first
• The opposite might happen
• The CPU scheduler determines which process runs at a given

moment in time

30https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf

The wait() system call

• The wait() system call
• The parent process calls

wait() to delay its
execution until the child
finishes executing

• The wait() call makes
the output deterministic

• The child will always
print first

31https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf

Wait() system call internal

32
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

33
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

Exit() system call

• init, the first process, never exit
• For all other processes on exit,

34

1. Decrement the usage count of all open files
a. If usage count is 0, close file

2. Drop reference to in-memory inode
3. Wakeup parent

a. If parent state is sleeping, make it runnable
b. Needed, because parent may be sleeping due to a wait

4. Make init adopt child of exited process
5. Set process state to ZOMBIE
6. Force context switch to scheduler

35
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

The exec() system call

• The exec() system call
• Load a program into memory

and then execute it
• Loads code and static data from

the executable and overwrites
its current code segment

• The heap, stack and memory
space of the program are
re-initialized

36

https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf

exec()

37
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

exec() : Load segments into memory

38
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

exec(): user stacks

39
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

exec(): fill user stack

40
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

exec(): proc, trapframe

41
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

Summary
• System calls

• Arguments places in well-known registers
• Perform trap instruction -> vector to system call handler

• Low level code carefully saves CPU state
• Processor switches to protected/kernel mode
• Syscall handler checks param and jumps to desired handler

• Return from system call
• Perform RTE instruction: switches to user mode and returns to location

where trap was called

• OS manages trap/interrupt tables
• Traps are synchronous; interrupts are asynchronous

42

