
Operating System 
Design and 

Implementation
Lecture 6: Processes 

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1



Acknowledgements and Disclaimer
• Slides was developed in the reference with 

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC

2



Outline

• Process
• Process address space
• Process stacks
• Process control block
• Creating the first process

3



Process

• Process
• A program in execution
• Include

• Code
• Data
• Stack
• Heap
• State in the OS
• Kernel stack

• State contains: registers, list of 
open files etc.

4

ELF
Executable

(a.out) Process

gcc hello.c
From ELF In the user 

space of 
process

In the kernel
space

./a.out



Program ≠ Process

5

Program Process
Code + static and global data Dynamic instruction of code + 

data + heap + stack + process 
state

One program can create several 
processes

A process is unique isolated 
entity



Executable file (program)
ELF Header

Program-Header Table

.text

.data

Executable File

.bss

Memory layout (Process)

By Majenko - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=43245083

Program vs. Process

Storage

program

CPU

Memory

process

registers



ELF executables (linker view)

7

ELF Header
Section header table

Section 1
Section 2

….

/bin/ls

This is an ELF file
ELF format of executable

• Section comprises all information needed for linking a target 
object file to build an executable
• E.g. .text, .data, .rodata, .bss, .plt, .got …



ELF header

8
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



Section headers

• Contains information about the various sections

9
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



Program header (executable view)

• Program headers split the executable into segments with different 
attributes, which will be loaded into memory

• No need on link time
• A program header entry contains

• Offset of segment in ELF file
• Virtual address of segment
• Segment size in file (filesz)
• Segment size in memory (memsz)
• Segment type

• Loadable segment
• Shared library
• etc. 10

ELF Header
Program header table

Segment 1
Segment 2

….



Program header contents

11
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



Program headers for hello world executable

• readelf –l hello

12
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



Process address space
• Each process has a different address space
• This is achieved by the use of virtual memory

• 0 to MAX_SIZE are virtual memory addresses

13

Stack

Heap

Data

Text
(instructions)

Process A
Page Table 

Process A

0

MAX_SIZE Stack

Heap

Data

Text
(instructions)

Process B
Page Table 

Process B

0

MAX_SIZE



Virtual address mapping

14

Stack

Heap

Data

Text
(instructions)

Process A

Process A
Page 
Table 

Stack

Heap

Data

Text
(instructions)

Process B

Process B
Page 
Table 

Virtual memory Physical memory Virtual memory



Advantage of virtual address map

• Isolation (private address space)
• One process cannot access another process’s memory

• Relocatable
• Data and code within the process is relocatable

• Size
• Processes can be much larger than physical memory

15



Process address map in xv6

• Entire kernel mapped into every
process address space
• This allows easy switching from

user code to kernel code (during
system calls)

• No change of page tables needed
• Easy access of user data from

kernel space

16

Kernel Text 
+ data, 
device 

memory
Heap

Stack

Data

Text
(instructions)

0xFE000000

KERNBASE
0x8000000

U
ser process can access

Kernel can access



Process stacks

• Each process has two stacks
• User space stack

• Used when executing user code
• Kernel space stack

• Used when executing kernel code
(e.g. during system calls)

• Advantage:
• Kernel can execute even user stack 

is corrupted 
• For instance, buffer overflow attack

in user stack won’t affect the kernel
17

Heap

User stack 
for process

Data

Text
(instructions)

Kernel stack 
for process

Kernel (Text + Data)



Process management

• Each process has a PCB (process control block)
• Holds important process specific information in PCB

• Why does a process need PCB ?
• Allow process to resume execution after a while
• Keep track of resources used
• Track the process state

18



Entries of PCB in xv6

19

struct proc {
uint sz;
pde_t* pgdir;
char *kstack;
enum procstate state;
int pid;
struct proc *parent;
struct trapframe *tf;
struct context *context;
void *chan;
int *killed;
struct file *ofile[NOFILE];
struct inode *cwd;
char name[16]; };

Size of process memory
Page directory pointer for process
Kernel stack pointer

Files opened
Current working directory
Executable name

proc.h



Page directory pointer

• Page directory pointer
• Point to the page directory

20
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



Context pointer

• Context pointer
• Contains registers used for

context switches
• Registers in context

• %edi, %esi, %ebx, %ebp, %eip
• Stored in the kernel stack

space

21http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



Trapframe

• Trapframe
• Process state is pushed on the kernel 

stack during trap handling
• CPU context of where execution 

stopped is saved, so that it can 
resume after trap

• Some extra information needed by trap 
handler is also saved 

22http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



Process table

• The process table
• An array of PCB in Linux kernel
• Contains PCB’s for all of the current processes in the system
• Includes Process ID, Process priority, process state, process 

resource usage

• Storing process in xv6
• NPROC is the maximum number of processes that can be present 

in the system (#define NPROC 64)
• Also present in process table is a lock that series access to the 

array
23http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



Process identifier (PID)

• Process identifier (PID)
• Number incremented sequentially
• Reset and continue to increment when maximum is reached
• This time skip already allocated PID numbers

24



Process state

• Process state: specifies the state of the process

25

EMBRYO RUNNABLE

SLEEPING RUNNING

1. EMBRYO: The new process is currently being created
2. RUNNABLE: Ready to run
3. RUNNING: Currently executing
4. SLEPPING: Blocked for an I/O



Create a process by cloning

• Cloning
• Child process is an exact replica of the parent
• Fork system call

26

Process 1

Kernel

Process 1

Kernel

Process 2
fork() system call

execute fork

Parent Child



Creating a process by fork system call

• In parent
• fork returns child pid

• In child process
• fork return 0

• pid = wait()
• Return pid of an 

exiting child

27

int pid;

pid = fork();
if(pid > 0) {

printf(“parent: child PID:%d\n”, pid);
pid = wait();
printf(“parent: child %d exited\n”, pid);

} else {
printf(“In child process\n”);
exit(0);

}



How to make a copy of a process in memory ?

• Making a copy of a process is 
calling forking
• Parent (is the original)
• Child (is the new process)
• Child is an exact copy of parent

• When fork is invoked
• All pages are shared between

parent and child
• Easily done by copying the parent’s

page table
28http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



How to reduce the process cloning overhead ?

• Copy-on-write (COW)
• Common code (for example shared libraries) would continue to be 

shared
• When data in any of the shared pages changed, OS intercepts and 

makes a copy of the page
• Thus, parent and child will have different copies of this page

• Why does COW work ?
• Copying each page from parent and child would incur significant 

disk swapping -> huge performance penalties
• Postpone coping of pages as much as possible 

29



How COW works ?

• When forking
• Kernel makes COW pages as read only
• Any write to the pages would cause a page fault
• The kernel detects that it is a COW page and duplicates the page

• Pages from shared libraries, shared between processes
• printf() implements in shared libraries

30

printf()

Process A

printf()

Process B

printf()

virtual memory physical memory virtual memory



The first process

• Unix: /sbin/init
• Unlike the others, this is created by the kernel during boot
• Super parent

• Responsible for forking all other processes
• Typically starts several scripts present in “/etc/init.d” in Linux

• Who create the first process ?
• In Linux, start_kernel() first calls sched_init() to create first user 

space process init

31



Process tree

• Processes in the system arranged in the form of a tree
• pstree in Linux

32

init

Network manager Init.d

dhclient



Process termination

• Voluntary: exit(status)
• OS passes exit status to parent via wait(&status)
• OS frees process resources

• Involuntary: kill(pid, signal)
• Signal can be sent by another process or by OS
• pid is for the process to be killed
• Signal enforces the process to be killed in different ways

• E.g. SIGTERM, SIGQUIT(ctrl+\), SIGINT(ctrl+c), SIGHUP

33



Zombies

• What is a zombie (defunct) process ?
• PCB in OS still exists even though program no longer executing

• When parent process reads child’s status ?
• Parent process can read the child’s exit status through wait system 

call
• Zombie entries removed from OS

• When parent doesn’t read status
• Zombie will continue to exist infinitely -> a resource leak

34



Orphans

• When a parent process terminates before its child
• Adopted by first process (/sbin/init)
• Unintentional orphans

• When parent crashes

• Intentional orphans
• Process becomes detached

from user session and runs
in the background

35http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



The first process in xv6

• Creating the first process
• main (main.c) invokes userinit()

• userinit
• Allocate a process id, kernel stack, fill in the process entries
• Setup kernel page tables
• Copy initcode.S to 0x0
• Create a user stack
• Set process to runnable

• The scheduler would then execute the process

36

https://github.com/mit-pdos/xv6-public.git



allocproc

• Find an unused proc entry in 
the process table
• proc.c

37

Set the state to EMBRYO (neither RUNNING 
nor UNUSED)

Set the pid (need to ensure that pid is 
unused)



allocproc (cont.)

• Allocate kernel stack of size 4KB
• Allocate space on to kernel stack for

• trapframe, trapret, context

38

trapframe

trapret

context

Kstack + KSTACKSIZE

Kstack
Process’s stack in kernel space

struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;

};



Setup pagetables

• Kernel page tables
• Invoked by setupkvm (vm.c)

• User page tables
• Setup in inituvm (vm.c)

39http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



Userinit (cont.)

• userinit() (proc.c)
• Fill the trapframe

40



Executing user code

• The kernel stack of the process 
has a trap frame and context

• The process is set as RUNNABLE
• The scheduler is then 

invoked from main
• The scheduler() gets

initcode (in user space)
to execute

41http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf



Finally … initcode.S

• Invokes system call exec to 
invoke /init
• Exec(‘/init’)

42



init.c

• forks and creates a shell (sh)

43



Summary

• A process is different from the program
• Each process has its own address space
• Process kernel stack and user space stack
• Process control block (PCB) records the information for each 

process
• Creating the first process

44


