
Operating System
Design and

Implementation
Lecture 5: Linux Kernel

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC

2

Bootloader Review

• The bootloader is a piece of code responsible for
• Basic hardware initialization
• Loading application binary, usually an operating system kernel,

from flash or network
• Possibly decompression of the application binary
• Execution of the application

• Additional functions
• Provide a shell with various commands

• Memory inspection, hardware diagnostics and testing etc.

3

1st stage bootloader

• The main goal of the first stage bootloader
• Configure the RAM controller
• Load the second stage bootloader from storage (flash) to RAM

• The main porting steps are:
• Finding the proper RAM timings and settings from the first stage
• Configuring the storage IP
• Copying the second stage to RAM

4

2nd stage bootloader

• The main goal of the 2nd stage bootloader
• Load the Linux kernel from storage to RAM
• Set the ATAGS or load the device tree depending on the kernel

version
• Load an initramfs to be used as the root filesystem
• Also provices more debugging utilities like reading and writing to

memory or Ethernet access

5

Outline

• U-Boot
• Linux kernel

• Linux kernel structure
• Linux kernel module

• Kernel debugging
• kgdb

6

Booting kernel

• Device tree
• Many embedded architectures have many non-discoverable

hardware (serial, Ethernet, I2C, NAND flash, USC controllers …)
• Such hardware is either described in BIOS ACPI table (x86) or
• Using C code directly in the kernel or
• Using a special hardware description language in a Device Tree

• The goal of device tree
• To describe the hardware and its integration

7

Device tree

• A device tree source (DTS)
• Compiled into a binary device tree blob (DTB)
• Needs to be passed to the kernel at boot time
• Each board/platform has its own device tree

“arch/arm/boot/dts/<board>.dtb”
• The boot loader must load both the kernel image and DTB in

memory before starting the kernel

8

U-Boot configuring and Installing

• U-Boot is a bootloader
• The “config/” directory in U-Boot source codes

• Contains configuration files for each supported board
• Examples: configs/stm32mp15_basic_defconfig
• It defines the CPU type, the peripherals and their configuration

• Configuring and compiling U-Boot
• Configuration stored in a .config file
• make BOARDNAME_defconfig
• make menuconfig to further customize U-Boot’s configuration
• cross-compiler: make CROSS_COMPILE=arm-linux-
• The final result is a u-boot.bin file, which is the U-Boot image

9

Booting with U-boot
• U-Boot

• load and boot a kernel image and change the kernel image and the root
filesystem stored in flash

• Through the network if U-Boot has drivers for such networking
• Through a USB key, a SD, the serial port (loadb, loadx or loady

command)
• U-Boot can directly boot the zImage binary

Example: tftp <address> <filename> => tftp 0x21000000 zImage
• The typical boot process is:

• Load zImage at address X in memory
• Load <board>.dtb at address Y in memory
• Start the kernel with bootz X – Y

The – in the middle indicates no initramfs
10

U-Boot prompt

• U-Boot is usually be installed in
flash memory

• Connect the target to the host
through a serial console

• Power-up the board.
On the serial console:

11

Linux kernel in the system

12

User app A

User app BLibrary A

Library B

Linux Kernel

Hardware

Call to services

Manage hardware

Event notification

Event notification

Linux kernel main roles

• Manage all the hardware resources
• CPU, memory, I/O

• Contains a set of hardware independent APIs
• Allow user applications to use the hardware resources

• Handle concurrent accesses
• The use of hardware resources from different applications
• E.g. a single network interface used by multiple user space

applications through network connections. The kernel is
responsible for multiplexing the hardware resource

13

System calls

• System calls
• The main interface between the kernel and user space

• About 400 system calls that provide the main kernel services
• File and device operations, network operations, inter-process

communication, process management, memory mapping, timers,
threads, synchronization primitives, etc.

• These system call interfaces are wrapped by the C library
• User space applications usually never make a system call directly

but rather use the corresponding C library function

14

Pseudo filesystems

• Pseudo filesystem
• Linux makes system and kernel information available in user space

through pseudo filesystems, also call virtual filesystems
• Allow applications to see directories and files that do not exist on

any real storage: they are created and updated on the fly by the
kernel

• The two most important pseudo filesystems are
• proc, usually mounted on /proc: operating system related information

(processes, memory management parameters …)
• sysfs, usually mounted on /sys: representation of the system as a tree of

devices connected by buses.
15

Inside the Linux kernel

16

Memory
management

Device driver +
driver frameworks

Scheduler
Task management

Filesystem layer
and drivers

Low level
architecture
specific code

Network stack

Device Trees
(HW description),

on some
architecture

Supported hardware architectures

• See the arch/ directory in the kernel sources
• Minimum: 32 bit processors, with or without MMU, supported by

gcc or clang
• 32 bit architecture (arch/ subdirectories)

Examples: arm, arc, m68k, microblaze (soft core on FPGA)
• 64 bit architectures:

Example: alpha, arm64, ia64 …
• 32/64 bit architectures

Example: mips, powerpc, riscv, sh, sparc, x86 …
• Find details in kernel sources:

• arch/<arch>/Kconfig, arch/<arch>/README, or
Documentation/<arch>/

17

Getting Linux sources

• Fetch the entire kernel sources and history
• git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux

• Create a branch that starts at a specific stable version
• git checkout -b <name-of-branch> v5.6

• Linux 5.10.11 sources
• 70,639 files (git ls-files | wc -l)
• 29,746,102 lines (git ls-files | xargs cat |wc -l)
• 862,810,769 bytes (git ls-files | xargs cat | wc -c)
• A minimum uncompressed Linux kernel just sizes 1-2 MB
• Why are these sources so big ?

18

Linux kernel size

• As of kernel version 5.7 (in percentage of total number of
lines)
• drivers/: 60.1% lib/: 0.6%
• arch/: 12.9% mm/: 0.5%
• fs/: 4.7% scripts/: 0.4%
• sound/: 4.2% crypto/: 0.4%
• net/: 4.0% security/: 0.3%
• include: 3.6% block/: 0.2%
• tools/: 3.2% samples/: 0.1%
• Documentation/: 3.2% virt/: 0.1%
• Kernel/: 1.3%

19

Linux sources structure (1/5)

• arch/<ARCH>
• Architecture specific code
• arch/<ARCH>/mach-<machine>, SoC family specific code
• arch/<ARCH>/include/asm, architecture-specific headers
• arch/<ARCH>/boot/dts, Device Tree source files, for some arch.

• block/
• Block layer core

• certs/
• Management of certificates for key signing

20

Linux sources structure (2/5)
• crypto/

• Cryptographic libraries

• documentation/
• Kernel documentation sources

• drivers/
• All device drivers except sound ones (usb, pci)

• fs/
• Filesystems (fs/ext4, etc.)

• include/linux
• Linux kernel core headers

21

Linux sources structure (3/5)
• include/uapi

• User space API headers
• init/

• Linux initialization (including init/main.c)
• ipc/

• Code used for inter process communication
• Kbuild

• Part of the kernel build system
• Kconfig

• Top level description file for configuration parameters
• kernel/

• Linux kernel core (very small !)
• lib/

• Misc library routines (zlib, crc32 …)
22

Linux sources structure (4/5)

• mm/
• Memory management code (small too!)

• net/
• Network support code (not drivers)

• samples/
• Sample code (markers, kprobes, kobjects, bpf …)

• scripts/
• Executables for kernel building and debugging

• security/
• Security model implementations (SELinux)

23

Linux sources structure (5/5)

• sound/
• Sound support code and drivers

• tools/
• Code for various user space tools (mostly C, example: perf)

• usr/
• Code to generate an initramfs cpio archive

• virt/
• Virtualization support (KVM)

24

Kernel modules

• Kernel or module ?
• The kernel image is a single file, resulting from the linking of all object files

that correspond to features enabled in the configuration
• The kernel is loaded in memory by boot loader

• Some features (device drivers, filesystems, etc.) can be compiled as
modules

• Modules are plugins that can be load/unloaded dynamically to the kernel
• Each module is stored as a separate file in the filesystem
• Access to a filesystem is mandatory to use modules
• This is not possible in the early boot procedure of the kernel, because no

filesystem is available

25

Advantages of modules

• Easy to develop drivers without rebooting
• Useful to keep the kernel image size to the

minimum
• Also useful to reduce boot time: don’t spend

time on device initialization
• Caution

• Once loaded, have full control and privileges in
the system

• No particular protection
• Only the root user can load and unload modules

26https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Module dependencies

• Some kernel modules can depend on other modules, which
need to be loaded first
• Example: the ubifs module depends on the ubi and mtd modules

• Dependencies are described both in
• /lib/modules/<kernel-version>/modules.dep and in
• /lib/modules/<kernel-version>/modules.dep.bin (binary hashed

format)
• These files are generated when you run “make modules_install”

27

Kernel log

• When a new module is loaded, related information is
available in the kernel log
• The kernel keeps its messages in a circular buffer (so that it

doesn’t consume more memory with many messages)
• Kernel log messages are available through the dmesg command
• Kernel log messages are also displayed in the system console

Example: console=ttyS0 root=/dev/mmcblk0p2 loglevel = 5
• Can write to kernel log from user space too.

Example: echo “<n>Debug info”

28

Module utilities (1)

• <module_name>
• name of the module file without the trailing .ko

• modinfo <module_name> (for modules in /lib/modules)
• modinfo <module_path>.ko

• Gets information about a module without loading it: parameters,
license, description and dependencies

• sudo insmod <module_path>.ko
• Tries to load the given module
• The full path to the module object file must be given

29

Understanding module loading issues

• When loading a module fails
• Insmod often doesn’t gave you enough details
• Details are often available in the kernel log
• Example:

30

Module utilities (2)

• sudo modprobe <top_module_name>
• Tries to load all the dependencies of the given top module, and

then this module
• Automatically looks in /lib/modules/<version>/modules.dep for

the object file corresponding to the given module name

• lsmod
• Display the list of loaded modules

31

Module utilities (3)

• sudo rmmod <module_name>
• Remove the given module
• Will only be allowed if the module is no longer in use

• sudo modprobe –r <top_module_name>
• Remove the given top module and all its no longer needed

dependencies

32

Passing parameters to modules
• Find available parameters: modinfo usb-storage
• Using insmod:

• sudo insmod ./usb-storage.ko delay_use=0
• Using modprobe:

• Set parameters in /etc/modprobe.conf or in any file in /etc/modprobe.d/:
options usb-storage delay_use=0

• Using the kernel command line, when the driver is built statically into the
kernel:

• usb-storage.delay_use=0
• usb-storage is the driver name
• delay_use is the driver parameter name. It specifies a delay before accessing a USB

storage device
• 0 is the driver parameter value

33

Check module parameter values

• How to find/edit the current values for the parameters of a
loaded module ?
• Check /sys/module/<name>/parameters
• There is one file per parameter, containing the parameter value
• Also possible to change parameter values if these files have write

permissions
• Example:

• echo 0 > /sys/module/usb_storage/parameters/delay_use

34

Developing kernel modules

• Hello module

35https://frama.link/Q3CNXnom

Hello module

• Code marked as __init:
• Removed after initialization (static kernel or module)
• See how init memory is reclaimed when the kernel finishes booting

• Code marked as __exit:
• Discarded when module compiled statically into kernel, or when

module unloading support is not enabled

36

Hello module explanations
• Headers specific to the Linux kernel: linux/xxx.h

• No access to the usual C library, we are doing kernel programming
• An initialization function

• Called when the module is loaded, return an error code (0 on success,
negative value on failure)

• Declared by the module_init() macro
• A cleanup function

• Called when the module is unloaded
• Declared by the module_exit() macro

• Metadata information declared using
• MODULE_LICENSE(), MODULE_DESCRIPTION(), and MODULE_AUTHOR()

37

Compiling a module

• Two solutions
• Out of tree, when the code is outside of the kernel source tree, in

a different directory
• Not integrated into the kernel configuration/compilation process
• Needs to be built separately
• The driver cannot be built statically, only as a module

• Inside the kernel tree
• Well integrated into the kernel configuration/compilation process
• The driver can be built statically or as a module

38

Compiling an out-of-tree module

• The source file is hello.c
• Just run make to build the hello.ko file
• KDIR: kernel source or headers directory
• To use below Makefile for any single-file out-of-tree Linux module

39https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Kernel debugging

• Debugging using messages
• printk(), no longer recommended for new debugging messages
• The pr_*() family of functions: pr_emerg(), pr_alert(), pr_crit(),

pr_err(), pr_warning(), pr_notice(), pr_info(), pr_cont()
• Defined in “include/linux/printk.h”
• Example:

pr_info(“Booting CPU %d\n”, cpu)
• Here is what you get in the kernel log:

40

Debugging using messages

• The dev_*() family of functions:
• dev_emerg(), dev_alert(), dev_crit(), dev_err(), dev_warn(),

dev_notice(), dev_info()
• Take a pointer to struct device as first argument, and then a

format string with arguments
• Defined in “include/linux/dev_printk.h”
• To be used in drivers integrated with the Linux device model
• Example:

dev_info(&pdev->dev, “in prob\n”)

41

Remote debugging
• In a non-embedded environment

• Debugging takes place using gdb or one of its front-ends

• In an embedded context
• The target platform environment is too limited to allow direct

debugging with gdb (2.4 MB on x86)

• Remote debugging is preferred
• ARCH-linux-gdb is used on the development workstation
• gdbserver is used on target system (only 100 KB on ARM)

42

Remote debugging: architecture

43https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Remote debugging: usage

• On the target, run a program through gdbserver
• gdbserver localhost:<port> <executable> <args>
• gdbserver /dev/ttyS0 <executable> <args>

• Otherwise, attach gdbserver to an already running program
• gdbserver –attach localhost:<port> <pid>

• Then, on the host, start ARCH-linux-gdb <executable>, and using the
following gdb commands

• To connect to the target:
• gdb> target remote <ip-addr>:<port> (networking)
• gdb> target remote /dev/ttyUSB0 (serial link)

44

kgdb –A kernel debugger

• The execution of the kernel is fully controlled by gdb from another
machine, connected through a serial line

• You must include a kgdb I/O driver over serial console, enabled by
CONFIG_KGDB_SERIAL_CONSOLE.

45https://www.linux-magazine.com/Online/Features/Qemu-and-the-Kernel

How to use kdb/kgdb ?

• To turn on KDB over serial console
• 'make menuconfig'

• go to "Kernel Hacking" sub-menu
• turn on "KGDB: kernel debugger", and

choose "<Select>" to go to sub-menu
• verify that "KGDB: use kgdb over the

serial console" is set
• set "KGDB_KDB: include kdb frontend

for kgdb"

• save and exit

46
https://www.linux-magazine.com/Online/Features/Qemu-and-the-Kernel
https://elinux.org/KDB

Enabling kdb
• Connect to the board’s console port

• agent-proxy 2223^2222 localhost /dev/ttyUSB0,115200
• telnet localhost 2223

• Configure kgdboc to use the console device
• echo ttyO2 > /sys/module/kgdboc/parameters/kgdboc
• The console returns a confirmation:
• kgdb: Registered I/O driver kgdboc.

• Enter kdb mode by sending the sysrq-g magic sequence
• # echo g > /proc/sysrq-trigger
• The console returns:

47

SysRq : DEBUG
Entering kdb (current=0xde63da40, pid 543) due to
Keyboard Entry
kdb>

https://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git

Enabling kdb

• Enter kgdb mode from the kdb prompt
• kdb> kgdb

• Launch the gdb debugger on the host workstation
• (gdb)

• Connect gdb to the target
• (gdb) target remote localhost:2222

• use of kgdb over serial - Start up the agent-proxy and connect and hit
a breakpoint a sys_sync

• https://www.youtube.com/watch?v=nnopzcwvLTs

48https://docs.windriver.com/bundle/Wind_River_Linux_Users_Guide_6.0_1/page/1565589.html

Useful commands in kdb

Commands Meaning
lsmod Shows where kernel modules are loaded
ps Displays only the active processes
ps A Show all the processes
summary Show kernel version info and memory usage
bt Get a backtrace of the current process usingn dump_stack()
dmesg View the kernel syslog buffer
go Continue the system
bph Set or display hardware breakpoint

49
https://www.kernel.org/doc/html/v5.0/dev-tools/kgdb.html

Demo kdb/kgdb

• Example of a call to panic from a test module (without debugger)
• https://www.youtube.com/watch?v=V6Qc8ppJ_jc

• Example of catching the panic with KDB, and looking up the source
line with gdb

• https://www.youtube.com/watch?v=LqAhY8K3XzI

• Example of a bad access request, and looking up the source line with
gdb

• https://www.youtube.com/watch?v=bBEh_UduX04

• Example of using a hardware breakpoint with kdb
• https://www.youtube.com/watch?v=MfJU2E0aJwg

50

Debugging with a JTAG interface

• Two types of JTAG dongles
• The ones offering a gdb compatible interface, over a serial port or

an Ethernet connection
• The ones not offering a gdb compatible interface are generally

supported by OpenOCD (Open On Chip Debugger)
• OpenOCD is the bridge between the gdb debugging language and the

JTAG interface of the target CPU
• For each board, you need an OpenOCD configuration file

51
https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Summary

• U-Boot demonstrates the processing of the bootloader
• Linux kernel designs to manage hardware resource with

multiple abstractions
• Modules in the Linux kernel enables to load/unload

additional features dynamically
• Kgdb – Linux kernel debugger

52

