Operatmg Syste
Design anad
Implementation

Lecture 5: Linux Kernel

Tsung Tai Yeh

Tuesday: 3:30 —5:20 pm
Classroom ED-302

Acknowledgements and Disclaimer

* Slides was developed in the reference with

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC

Bootloader Review

* The bootloader is a piece of code responsible for
* Basic hardware initialization

* Loading application binary, usually an operating system kernel,
from flash or network

* Possibly decompression of the application binary
* Execution of the application

e Additional functions

* Provide a shell with various commands
* Memory inspection, hardware diagnostics and testing etc.

15t stage bootloader

* The main goal of the first stage bootloader
* Configure the RAM controller
* Load the second stage bootloader from storage (flash) to RAM

* The main porting steps are:
* Finding the proper RAM timings and settings from the first stage
* Configuring the storage IP
* Copying the second stage to RAM

2"d stage bootloader

* The main goal of the 2" stage bootloader
* Load the Linux kernel from storage to RAM

* Set the ATAGS or load the device tree depending on the kernel
version

* Load an initramfs to be used as the root filesystem

* Also provices more debugging utilities like reading and writing to
memory or Ethernet access

Outline

e U-Boot

e Linux kernel
* Linux kernel structure
* Linux kernel module

* Kernel debugging
* kegdb

Booting kernel

 Device tree

* Many embedded architectures have many non-discoverable
hardware (serial, Ethernet, 12C, NAND flash, USC controllers ...)

* Such hardware is either described in BIOS ACPI table (x86) or
* Using C code directly in the kernel or
* Using a special hardware description language in a Device Tree

* The goal of device tree
* To describe the hardware and its integration

Device tree

* A device tree source (DTS)
 Compiled into a binary device tree blob (DTB)
* Needs to be passed to the kernel at boot time

* Each board/platform has its own device tree
“arch/arm/boot/dts/<board>.dtb”

* The boot loader must load both the kernel image and DTB in
memory before starting the kernel

U-Boot configuring and Installing

e U-Boot is a bootloader

* The “config/” directory in U-Boot source codes
e Contains configuration files for each supported board
e Examples: configs/stm32mp15 basic_defconfig
* |t defines the CPU type, the peripherals and their configuration

* Configuring and compiling U-Boot
* Configuration stored in a .config file

* make BOARDNAME_defconfig
* make menuconfig to further customize U-Boot’s configuration

 cross-compiler: make CROSS_COMPILE=arm-linux-
* The final result is a u-boot.bin file, which is the U-Boot image

Booting with U-boot

* U-Boot
* load and boot a kernel image and change the kernel image and the root
filesystem stored in flash
* Through the network if U-Boot has drivers for such networking

* Through a USB key, a SD, the serial port (loadb, loadx or loady
command)

* U-Boot can directly boot the zimage binary
Example: tftp <address> <filename> => tftp 0x21000000 zImage

* The typical boot process is:
* Load zImage at address X in memory
* Load <board>.dtb at address Y in memory

e Start the kernel with bootz X—Y
The — in the middle indicates no initramfs

10

U-Boot prompt

e U-Boot is usually be installed in
flash memory

* Connect the target to the host
through a serial console

* Power-up the board.
On the serial console:

11

Linux kernel in the system

User app A

Library A

User app B

Library B

Call to services l

Y

Event notification

Linux Kernel

Manage hardwarel

|

Event notification

Hardware

Linux kernel main roles

* Manage all the hardware resources
* CPU, memory, I/O

* Contains a set of hardware independent APIs
* Allow user applications to use the hardware resources

 Handle concurrent accesses
* The use of hardware resources from different applications

* E.g. a single network interface used by multiple user space
applications through network connections. The kernel is
responsible for multiplexing the hardware resource

13

System calls

e System calls
* The main interface between the kernel and user space

* About 400 system calls that provide the main kernel services
* File and device operations, network operations, inter-process
communication, process management, memory mapping, timers,
threads, synchronization primitives, etc.
* These system call interfaces are wrapped by the C library

» User space applications usually never make a system call directly
but rather use the corresponding C library function

14

Pseudo filesystems

* Pseudo filesystem

* Linux makes system and kernel information available in user space
through pseudo filesystems, also call virtual filesystems

* Allow applications to see directories and files that do not exist on
any real storage: they are created and updated on the fly by the
kernel

* The two most important pseudo filesystems are

* proc, usually mounted on /proc: operating system related information
(processes, memory management parameters ...)

* sysfs, usually mounted on /sys: representation of the system as a tree of
devices connected by buses.

15

Inside the Linux kernel

Task management

Memory Device driver +
management driver frameworks
Scheduler Low level

architecture
specific code

Device Trees
(HW description),
on some
architecture

Filesystem layer
and drivers

Network stack

16

Supported hardware architectures

* See the arch/ directory in the kernel sources

* Minimum: 32 bit processors, with or without MMU, supported by
gcc or clang

* 32 bit architecture (arch/ subdirectories)
Examples: arm, arc, m68k, microblaze (soft core on FPGA)

* 64 bit architectures:
Example: alpha, arm64, ia64 ...

* 32/64 bit architectures
Example: mips, powerpc, riscy, sh, sparc, x86 ...
* Find details in kernel sources:

 arch/<arch>/Kconfig, arch/<arch>/README, or
Documentation/<arch>/

17

Getting Linux sources

* Fetch the entire kernel sources and history
e git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux

* Create a branch that starts at a specific stable version
* git checkout -b <name-of-branch> v5.6

* Linux 5.10.11 sources
« 70,639 files (git Is-files | wc -I)
* 29,746,102 lines (git Is-files | xargs cat |wc -)
» 862,810,769 bytes (git Is-files | xargs cat | wc -c)
* A minimum uncompressed Linux kernel just sizes 1-2 MB
* Why are these sources so big ?

18

Linux kernel size

* As of kernel version 5.7 (in percentage of total number of

lines)
e drivers/: 60.1% lib/: 0.6%
e arch/: 12.9% mm/: 0.5%
e fs/: 4.7% scripts/: 0.4%
* sound/: 4.2% crypto/: 0.4%
* net/: 4.0% security/: 0.3%
* include: 3.6% block/: 0.2%
* tools/: 3.2% samples/: 0.1%
 Documentation/: 3.2% virt/: 0.1%

* Kernel/: 1.3%

Linux sources structure (1/5)

* arch/<ARCH>

* Architecture specific code

e arch/<ARCH>/mach-<machine>, SoC family specific code

e arch/<ARCH>/include/asm, architecture-specific headers

* arch/<ARCH>/boot/dts, Device Tree source files, for some arch.

* block/

* Block layer core

* certs/
* Management of certificates for key signing

20

Linux sources structure (2/5)

* crypto/
* Cryptographic libraries

* documentation/
* Kernel documentation sources

* drivers/
 All device drivers except sound ones (usb, pci)

. fs/
* Filesystems (fs/ext4, etc.)

* include/linux
e Linux kernel core headers

21

Linux sources structure (3/5)

include/uapi
e User space APl headers
init/
* Linux initialization (including init/main.c)

* ipc/

* Code used for inter process communication

Kbuild

* Part of the kernel build system

* Kconfig

* Top level description file for configuration parameters
* kernel/

* Linux kernel core (very small !)
* lib/

* Misc library routines (zlib, crc32 ...)

22

Linux sources structure (4/5)

* mm/
 Memory management code (small too!)

net/
* Network support code (not drivers)

samples/

e Sample code (markers, kprobes, kobjects, bpf ...)
scripts/

* Executables for kernel building and debugging

security/
e Security model implementations (SELinux)

23

Linux sources structure (5/5)

* sound/
* Sound support code and drivers

* tools/
e Code for various user space tools (mostly C, example: perf)

* usr/

e Code to generate an initramfs cpio archive
* virt/

* Virtualization support (KVM)

24

Kernel modules

 Kernel or module ?

* The kernel image is a single file, resulting from the linking of all object files
that correspond to features enabled in the configuration

* The kernel is loaded in memory by boot loader

* Some features (device drivers, filesystems, etc.) can be compiled as
modules
* Modules are plugins that can be load/unloaded dynamically to the kernel
* Each module is stored as a separate file in the filesystem
* Access to a filesystem is mandatory to use modules

 This is not possible in the early boot procedure of the kernel, because no
filesystem is available

25

Advantages of modules

* Easy to develop drivers without rebooting

* Useful to keep the kernel image size to the
minimum

* Also useful to reduce boot time: don’t spend
time on device initialization

e Caution

* Once loaded, have full control and privileges in
the system

* No particular protection
* Only the root user can load and unload modules

Using kernel modules to support
many different devices and setups

Kernel

Intermediate root filesystem (initramfs)

Mo special driver required to access it
Contains all the modules to access the specific
storage and filesytem of the device
Load such modules
and mount the new root filesystem

'

Final root filesystem

Regular system startup

The modules in the initramfs are updated every time
a kernel upgrade is available.

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf 26

Module dependencies

* Some kernel modules can depend on other modules, which
need to be loaded first

* Example: the ubifs module depends on the ubi and mtd modules

* Dependencies are described both in
* /lib/modules/<kernel-version>/modules.dep and in

* /lib/modules/<kernel-version>/modules.dep.bin (binary hashed
format)

* These files are generated when you run “make modules_instal

|Il

27

Kernel log

* When a new module is loaded, related information is
available in the kernel log

* The kernel keeps its messages in a circular buffer (so that it
doesn’t consume more memory with many messages)

* Kernel log messages are available through the dmesg command

» Kernel log messages are also displayed in the system console
Example: console=ttyS0 root=/dev/mmcblk0Op2 loglevel = 5

* Can write to kernel log from user space too.
Example: echo “<n>Debug info”

28

Module utilities (1)

* <module_name>
* name of the module file without the trailing .ko

* modinfo <module_name> (for modules in /lib/modules)

* modinfo <module path>.ko
* Gets information about a module without loading it: parameters,

license, description and dependencies
* sudo insmod <module_path>.ko

* Tries to load the given module
* The full path to the module object file must be given

29

Understanding module loading issues

* When loading a module fails
* Insmod often doesn’t gave you enough details
* Details are often available in the kernel log
* Example:

30

Module utilities (2)

e sudo modprobe <top module name>

* Tries to load all the dependencies of the given top module, and
then this module

e Automatically looks in /lib/modules/<version>/modules.dep for
the object file corresponding to the given module name

* Ismod
* Display the list of loaded modules

31

Module utilities (3)

e sudo rmmod <module_name>
* Remove the given module
* Will only be allowed if the module is no longer in use

e sudo modprobe —r <top_module _name>

* Remove the given top module and all its no longer needed
dependencies

32

Passing parameters to modules

* Find available parameters: modinfo usb-storage

e Using insmod.:
e sudo insmod ./usb-storage.ko delay_use=0

* Using modprobe:

» Set parameters in /etc/modprobe.conf or in any file in /etc/modprobe.d/:
options usb-storage delay _use=0

* Using the kernel command line, when the driver is built statically into the
kernel:
* usb-storage.delay_use=0
* usbh-storage is the driver name

» delay _use is the driver parameter name. It specifies a delay before accessing a USB
storage device

* 0is the driver parameter value N

Check module parameter values

* How to find/edit the current values for the parameters of a
loaded module ?
* Check /sys/module/<name>/parameters
* There is one file per parameter, containing the parameter value

* Also possible to change parameter values if these files have write
permissions

* Example:
* echo 0> /sys/module/usb_storage/parameters/delay use

34

Developing kernel modules

// SPDX-License-Identifier: GPL-2.0
/* hello.c */
#include <linux/init.h>

° He”O mOdUIe #include <linux/module.h>

#include <linux/kernel.h>

static int __init hello_init(void)
{

pr_alert("Good morrow to this fair assembly.\n");
return 0;

}

static void __exit hello_exit(void)

{

pr_alert(”"Alas, poor world, what treasure hast thou lost!\n");

}

module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Greeting module");
https://frama.link/Q3CNXnom MODULE_AUTHOR("William Shakespeare");

35

Hello module

* Code marked as __init:
 Removed after initialization (static kernel or module)
* See how init memory is reclaimed when the kernel finishes booting

[2.689854] VFS: Mounted root (nfs filesystem) on device 0:15.
I 2.698796] devtmpfs: mounted

[2.704277] Freeing unused kernel memory: 1024K

[2.710136] Run /sbin/init as init process

* Code marked as __exit:

* Discarded when module compiled statically into kernel, or when
module unloading support is not enabled

36

Hello module explanations

* Headers specific to the Linux kernel: linux/xxx.h
* No access to the usual Clibrary, we are doing kernel programming

* An initialization function

* Called when the module is loaded, return an error code (0 on success,
negative value on failure)

* Declared by the module_init() macro

* A cleanup function
* Called when the module is unloaded
* Declared by the module_exit() macro

* Metadata information declared using
« MODULE_LICENSE(), MODULE_DESCRIPTION(), and MODULE_AUTHOR()

37

Compiling a module

 Two solutions

e Out of tree, when the code is outside of the kernel source tree, in
a different directory
* Not integrated into the kernel configuration/compilation process
* Needs to be built separately
* The driver cannot be built statically, only as a module

* Inside the kernel tree

* Well integrated into the kernel configuration/compilation process
e The driver can be built statically or as a module

38

Compiling an out-of-tree module

* The source file is hello.c

* Just run make to build the hello.ko file

* KDIR: kernel source or headers directory

* To use below Makefile for any single-file out-of-tree Linux module

l

ifneq ($(KERNELRELEASE),)

. _ Module Sources Kernel Sources
obj-m := hello.o
e /path/to/module_source /path/to/kernel_source
include
KDIR := /path/to/kernel/sources hello.c m:m
hello.ko Makefile
all: i R
<tab>$(MAKE) -C $(KDIR) M=$3$PWD
endif

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf 39

Kernel debugging

* Debugging using messages
e printk(), no longer recommended for new debugging messages

* The pr_*() family of functions: pr_emerg(), pr_alert(), pr_crit(),
pr_err(), pr_warning(), pr_notice(), pr_info(), pr_cont()

* Defined in “include/linux/printk.h”
* Example:
pr_info(“Booting CPU %d\n”, cpu)
* Here is what you get in the kernel log:

i "0 AEACGATT Banmntino CP '
’_ 2V7 . 3000b4 _! [O0OL1Ng LU]

40

Debugging using messages

* The dev_*() family of functions:

 dev_emerg(), dev_alert(), dev_crit(), dev_err(), dev_warn(),
dev_notice(), dev_info()

* Take a pointer to struct device as first argument, and then a
format string with arguments

* Defined in “include/linux/dev_printk.h”
* To be used in drivers integrated with the Linux device model

* Example:
dev_info(&pdev->dev, “in prob\n”)

A O AN o S s S ey g,
;,]! # [3 - 1 N 1 [

» oLV . SelrNld I_ * 1N prope

3 | = QOAQ 727 e e e T AQT1 ~QrMAMRANR ~rmvnn o s - o
25.884873] serial 481a8000.serial: 1n probe

41

Remote debugging

* In a non-embedded environment
* Debugging takes place using gdb or one of its front-ends

* In an embedded context

* The target platform environment is too limited to allow direct
debugging with gdb (2.4 MB on x86)

* Remote debugging is preferred
* ARCH-linux-gdb is used on the development workstation
» gdbserver is used on target system (only 100 KB on ARM)

ARCH-1linux-gdb
gdbserver

—_ o
— |
- > =
= 42
[— .

Remote debugging: architecture

Host | Target

(build space) (root filesystem)
Serial or Ethernet

connection

ARCH-1inux-gdb (—) gdbserver

! {

Binaries and libraries Running program
with debugging with binaries and
symbols not libraries that can be
stripped stripped

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf 43

Remote debugging: usage

* On the target, run a program through gdbserver
» gdbserver localhost:<port> <executable> <args>
» gdbserver /dev/ttySO <executable> <args>

* Otherwise, attach gdbserver to an already running program
e gdbserver —attach localhost:<port> <pid>

* Then, on the host, start ARCH-linux-gdb <executable>, and using the
following gdb commands

* To connect to the target:
» gdb> target remote <ip-addr>:<port> (networking)
» gdb> target remote /dev/ttyUSBO (serial link)

44

kgdb —A kernel debugger

* The execution of the kernel is fully controlled by gdb from another
machine, connected through a serial line

* You must include a kgdb I/O driver over serial console, enabled by
CONFIG_KGDB_SERIAL CONSOLE.

Qemu kgdb kdb
i Remote Tanget
1 Crpizaey Ho5t M : ‘ L
et (Debesgger J... ... | | _ gt (Dubuggen) e o |
| + i ,“H e = 11 -f—lm .x. oo 5
Hn-mc-'-b'.-:'s:ulm H-r.:;bcwj Sa?m-m i-:-:nr.n.-nubh" (Bl B ot E-!';H!l;q'- Hasyboard ﬁq::-:um Emr..n:r:lﬂr! B Kyt :r-?*\:""?ﬁ"

https://www.linux-magazine.com/Online/Features/Qemu-and-the-Kernel

Kernel hacking
Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,

‘:) <> modularizes features, Press <Esc><Esc> to exit, <7> for Help, </>
OW O use g . for Search. Legend: [*] built-in [] excluded <M> module < >

] Kernel debugging

] ©tebug shared IRQ handlers (NEW)

] Detect Hard and Soft Lockups (NEW)

| betect Hung Tasks (NEW)

] collect scheduler debugging info (NEW)
] tollect scheduler statistics (NEW)

] collect kernel timers statistics (NEW)
] bebug object operations (NEW)

] SLUB debugging on by default

] Enable SLUB performance statistics

] Kernel memory leak detector (NEW)

] BT Mutex debugging, deadlock detection (MNEW)
] Built-in scriptable tester for rt-mutexes (NEW)
|

]

)

]

)

|

]

]

]

]

]

)

1

-

* To turn on KDB over serial console

* 'make menuconfig'
* go to "Kernel Hacking" sub-menu

* turn on "KGDB: kernel debugger", and
choose "<Select>" to go to sub-menu

* verify that "KGDB: use kgdb over the
serial console" is set

* set "KGDB_KDB: include kdb frontend
for kgdb"

e save and exit i Sk

spinlock and rw-lock debugging: basic checks (NEW)

Mutex debugging: basic checks (NEW)

Lock debugging: detect incorrect freeing of live locks (NEW)
Lock debugging: prove locking correctness (NEW)

#CU debugging: sparse-based checks for pointer usage

Lock usage statistics (NEW)

Sleep inside atomic section checking (NEW)

tocking API boot-time self-tests (NEW)

stack utilization instrumentation (NEW)

kobject debugging (NEW)

Highmem debugging (NEW)
*] Compile the kernel with debug info

feduce debugging information (NEW)

https://www.linux-magazine.com/Online/Features/Qemu-and-the-Kernel

https://elinux.org/KDB a6

Enabling kdb

* Connect to the board’s console port
* agent-proxy 222372222 localhost /dev/ttyUSB0,115200

* telnet localhost 2223 https //git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git

* Configure kgdboc to use the console device
* echo ttyO2 > /sys/module/kgdboc/parameters/kgdboc
* The console returns a confirmation:
» kgdb: Registered 1/0 driver kgdboc.

* Enter kdb mode by sending the sysrg-g magic sequence
* # echo g > /proc/sysrq-trigger
* The console returns: ! SysRq : DEBUG

Entering kdb (current=0xde63da40, pid 543) due to
Keyboard Entry

Enabling kdb

* Enter kgdb mode from the kdb prompt
e kdb> kgdb
* Launch the gdb debugger on the host workstation
* (gdb)
* Connect gdb to the target
* (gdb) target remote localhost:2222
* use of kgdb over serial - Start up the agent-proxy and connect and hit

a breakpoint a sys_sync
* https://www.youtube.com/watch?v=nnopzcwvLlTs

https://docs.windriver.com/bundle/Wind_River_Linux_Users_Guide_6.0_1/page/1565589.htm| 45

Useful commands in kdb

Ismod Shows where kernel modules are loaded

pS Displays only the active processes

ps A Show all the processes

summary Show kernel version info and memory usage

bt Get a backtrace of the current process usingn dump_stack()
dmesg View the kernel syslog buffer

go Continue the system

bph Set or display hardware breakpoint

https://www.kernel.org/doc/html/v5.0/dev-tools/kgdb.html
49

Demo kdb/kgdb

e Example of a call to panic from a test module (without debugger)
* https://www.youtube.com/watch?v=V6Qc8ppJ jc

* Example of catching the panic with KDB, and looking up the source

line with gdb
* https://www.youtube.com/watch?v=LgAhY8K3Xzl

* Example of a bad access request, and looking up the source line with
gdb
 https://www.youtube.com/watch?v=bBEh_UduX04

* Example of using a hardware breakpoint with kdb
 https://www.youtube.com/watch?v=MfJU2EOalwg

50

Debugging with a JTAG interface

* Two types of JTAG dongles

* The ones offering a gdb compatible interface, over a serial port or

an Ethernet connection
* The ones not offering a gdb compatible interface are generally
supported by OpenOCD (Open On Chip Debugger)

* OpenOCD is the bridge between the gdb debugging language and the
JTAG interface of the target CPU

* For each board, you need an OpenOCD configuration file

Development PC

USB

gdb

¥ openocd 4|_)

ITAG JTAG

interface

ARM board

https://bootlin.com/doc/tn

hining/linux-kernel/linux-

kernel-slides.pdf

51

summary

e U-Boot demonstrates the processing of the bootloader

* Linux kernel designs to manage hardware resource with
multiple abstractions

* Modules in the Linux kernel enables to load/unload
additional features dynamically

e Kgdb — Linux kernel debugger

52

