Operatmg Syste
Design and
Implementation

Lecture 4: BIOS & Bootloader

Tsung Tai Yeh

Tuesday: 3:30 —5:20 pm
Classroom ED-302

Acknowledgements and Disclaimer

* Slides was developed in the reference with

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC

Outline

* Boot sequence
* Bootloader on x86
* Bootloader on embedded system

* Linux kernel initialization
* Kernel bootstrap
* Compressed kernels
* The root file system

Powering up: Reset

Power on Reset Inaccessible _
y 8086 CPU memory
Every register initialized to 0 except First functions

CS = 0xf000, IP = OxfffO

N

Physical address = (CS << 4) + IP = OxffffO
First instruction fetch from location OxffffO
Processor in real mode

(jump to ROM BIOS)

BIOS

a. Limited to 1MB addresses (0x00000 ~ OxFFFFF)

b. No protection; no privilege levels
c. Direct access to all memory
d. No multi-tasking

First instruction is on the top of accessible memory

http://www.cse.iitm.ac.in/~chester/courses/160_os/slides/3 Hardware.pdf

0x100000
OXFFFFO

OxFO000

4

; 10FFFFH
High High Memory Area(A20 on)

¥ FFFFFH
FFFFOH S
BIOS Boot Block FOH -—— BIOS Entry

FEDOOH{1016K Start)

Powering up: BIOS

Bl0S Routine & Card BIOS

Upper Memory Block

COD0OH{TEEK Start)

* BIOS presents in a small chip connected
to p rO C e S S O r Wono text video buffer S0000H(TO4K Start

EGANVGAIXGAIXVGA Graphic Video Buffer
ADDDOH(B40K Start)
* Flash/EPROM/EEPROM 3

Extended BIOS Data Arsajusually 1K)

* BIOS work
* Power on self test RS
* |nitialize video card and other devices
* Display BIOS screen
* Perform brief memory test

Set DRAM memory parameters

Boot Sector(5125) Q7CO0H{31K Start) -— Boot Sector Eniry

e Configure plug & play devices
* Assign DMA channels and IRQs
* |dentify the boot device

Inferrupt Vector{256*45=10245)

* Read sector 0 from boot device into memory N
location Ox7c00 e By

* Jumps to 0x7c00

https://www.twblogs.net/a/5b7f367e2b717767c6ae576¢c 5

Power on Reset

. v
Powerl Ng up. MBR Every register initialized to 0 except
CS = 0xf000, IP = OxfffO
* Sector 0 in the disk called Master B‘IOS
Boot Record (MBR) i
* Includes code that boots the OS or bootloader MBR

* Copied from disk to RAM (@0x7c00) by BIOS

* Size: 512 bytes

* 446 bytes bootable code

* 64 bytes disk partition information (16 bytes per partition)

* MBR looks through partition table and loads the bootloader such
as Linux or Windows

* Or MBR may directly load the OS

Power on Reset

v

POWe ri ﬂg U p : bOOtloa d er Every register initialized to 0 except
CS = 0xf000, IP = OxfffO

* Bootloader loads the operating system B¢IOS
* May also allow the user to select which OS i
to load MBR
e Other jobs done
* Disable interrupts Bootloader

» Setup GDT (global descriptor table)

» Switch from real mode to protected mode

* Read operating system from disk

* The bootloader may be presented in the MBR (sector 0)

Powering up: xv6

Power on Reset

¥

* Bootloader

Every register initialized to O except
CS = 0xf000, IP = Oxfff0

* Present in sector O of disk i
* 512 bytes BIOS
* bootasm.S ¥
* Enters in 16 bit real mode, leaves in 32 bit MBR
protected mode v
* Disable interrupts Bootloader
* Enable A20 physical address line ¥
e Load GDT (only segmentation, no paging) 0S

Set stack to 0x7c00
Never returns

Powering up: xv6 (cont.)

Power on Reset

¥

* Bootloader

Every register initialized to 0 except
CS = 0xf000, IP = OxfffO

* bootmain.c ¥

* Loads the xv6 kernel from sector 1 to RAM BIOS

e Starting at 0x10000 (1MB) ' |

* Invoke the xv6 kernel entry MBR

* start present in entry.S {

* This entry point is known from the ELF header Bootloader
¥
OS

Powering up: OS

Power on Reset

¥

* The operating system

Every register initialized to O except
CS = 0xf000, IP = Oxfff0

e Set up virtual memory
* |nitialize interrupt vectors BIOS
- Initialize v
* Timers MBR
* Monitors ¥
e Hard disks Bootloader
* Consoles ¥
* File systems 05

* Initialized other processor (if any)
e Startup user process

10

Multiprocessor booting

* One processor designated as “Boot Processor” (BSP)
e Designation done either by hardware or BIOS

 All other processors are designated AP (Application Processors)

* BIOS boots the BSP
* BSP learns system configuration

* BSP triggers boot of other AP

* Done by sending an startup IPI
(inter processor interrupt) signal
to the AP

Processor
1

Processor
2

Processor
3

Processor
4

l

l

l

l

<

> front side bus

DRAM

Memory bus

North Bridg%

http://www.cse.iitm.ac.in/~chester/courses/160_os/slides/3 Hardware.pdf

11

Boot sequence of Raspberry Pi

e Boot from the GPU

* Stage 1:

* GPU activates bootstrap code in the ROM to check filesystem on SD card
* Stage 2:

* GPU loads bootcode.bin in /boot from the SD card to L2 cache (first-stage bootloader)
* Stage 3:

* Bootcode.bin activates SDRAM and loads loader.bin to RAM and executes loader.bin
* Stage 4.

* Loader.bin (second-stage bootloader) loads start.elf that is the firmware of the GPU
* Stage 5:

 Start.elf reads config.txt and cmdline.txt and loads kernel.img that is Linux kernel
* Stage 6:

* Activating the CPU after the start.elf loads kernel.img

12

Bootloaders

* The bootloader is a piece of code that is responsible for
* Basic hardware initialization
* Loading an operating system kernel from non-volatile storage
* Possibly decompression of the application binary
* Execution of the application

* Most bootloaders provides a shell with various commands
* Loading of data from storage or network
* Memory inspection
* Hardware diagnostics and testing

13

Bootloader on x86 processor

System Up

*

Linux

ﬂl

LILO, Grub

MBR,
Bootstrap

{ System Startup]

BIOS, Boot
monitor

=

Bootloaders on BIOS-based x86 BIOS

from ROM
* Basic Input Output System (BIOS)
. Stage 1
a program 512 bytes from
* bundled on a board with non-volatile memory on raw storage
X86 processor
* On old BIOS-based x86 platform Stage 2

from raw stage

* Responsible for basic hardware initialization
* Loading small piece code from non-volatile storage

* This piece of code is typically a 15 stage bootloader
which will load the full bootloader itself from filesystem

* It typically understands filesystem format so that
kernel file can be loaded directly from a normal filesystem

15

Bootloaders on x86

* Grand Unified Bootloader (GRUB)
 2nd stage bootloader
* Can read many filesystem formats
* Load kernel image and the configuration
e Can load kernel images over the network

* Syslinux

 for network and removable media booting
(USB key, CD-ROM)

BIOS
from ROM

Stage 1
512 bytes from
raw storage

Stage 2

from raw stage

Kernel
from filesystem

16

PC Booting (Cont)

OXFFFFF
OXFFFFO

@ Power supply sends POWER GOOD to CPU

@ CPU resets

(3)Run FFFF:0000 @ BIOS ROM

O0xA0000

@Jump to a real BIOS start address

@ Power On Self Test (POST) RAM

@ Beep if there is an error

@ Read CMOS data/settings

Run 2M-stage boot

0x00000

PC Booting (Cont)

OXFFFFF
INT 13
2)L boot sector (in sequential)
@ Call INT 13 servise
0xA0000 MR (0:0:1)
RAM 0x0000 Program to load active partition
0x01BE Partition table 1
0x01CE Partition table 2
: 0x01DE | Partition table 3
: 0x01EE Partition table 4
i 0x01FE BIOS magic number:0xAA55
Linterrupt call i [s12p S
Interrupt call || ol2bytes 0x07C00
0x00000

Linux Boot Example

Disk

‘Execute from fixed address

DY A BIOS

‘Select boot device

.Load MBR 512 bytes to 0xc700

2" bootloader

RAM

Oxc700
512 bytes

‘Pass control to bootloader (LILO)

MBR (Master Boot Record)

445
bytes

64
bytes

bytes

|

-

Master boot record

LILO or Grub

(stage 1)

Bootloader
Partition 1
Partition 2
Partition table =
Partition 3
Magic Number L Partition 4

-

-

-

flag

I‘P;f;*';m| Start CHS Pg__gon

1. Partition table: describes the
partitions of a storage device

2. Bootstrap code: instructions to identify
the configured bootable partition

Booting on embedded CPUs (case 1)

 When powered, that CPU starts executing code at Execution
a fixed address starts =

* There is no other booting mechanism provided by here
the CPU

* The hardware design must ensure that a NOR flash
chip is wired so that it is accessible at the address
at which the CPU start executing instructions

* The first stage bootloader must be programmed at
this address in the NOR

* Not very common anymore (unpractical, and requires
NOR flash)

Physical
memory

NOR

RAM

21

Booting on embedded CPUs (case 2)

* The CPU has an integrated boot code in ROM
* BootROM on AT91 CPUs, “ROM code” on OMAP, etc.

* This boot code is able to load a first stage bootloader from a storage
device into an internal SRAM (DRAM not initialized yet)

 Storage device can typically be: MMC, NAND, SPI flash

* The first bootloader is
* Limited in size due to hardware constraints (SRAM size)
* Provided either by U-Boot or by the CPU vender

* This first bootloader must
* |nitialize DRAM and other hardware devices
* Load a second stage bootloader into DRAM

22

Booting on Microchip ARM SAMAS5D3

* RomBoot

* Tries to find a valid bootstrap image from various storage
sources, and load it into SRAM

* Size limited to 64KB. No user interaction possible in
standard boot mode

 U-Boot SPL

* Run from SRAM, initialize the DRAM, and NAND or SPI
controller, and load the 2" bootloader into DRAM and start it

* No user interaction possible

 U-Boot

* Runs from DRAM, initializes other hardware devices (network,
USB, etc.), loads kernel image from storage or network to DRAM

* Linux kernel

RomBoot

stored (n ROM
in the CPU

l

U-Boot SPL

stored in MMC, NAND or 5P| flash
rufs from SRAM

l

U-Boot

stored in MMC, NAND or 5P| flash
runs from DREAM

l

Linux Kernel

wrtared in MMC, NAND. network. .,
runs from DRAM

* Runs from DRAM, takes over the system completely, the boot loader no longer

exists https://bootlin.com/doc/training/buildroot/buildroot-slides.pdf

23

From Bootloader to user space

Bootloader

Low level hardware
initialization
Fetch and copy the
Linux kernel to
RAM

Kernel
initialization

Init process

System
initialization from
user space

24

Linux Boot Example

‘Execute from fixed address
5 Ox7C00

Bootsec.

512 bytes

‘POST ’ 0x10000
_______________ . X
< BIOS Compressed
kernel ‘Pass control to bootsec.S
Move 0x90000

Load compressed kernel to

RAM 0x10000
0x90000
Bootsec.S
> ‘Pass control to setup.s
Setup.s
Video.s
more blocks)

‘Load bootsec.S 512 bytes to Oxc700

Overall Linux boot sequence

Bootloader
Loads the DTE and kernel to RAM, starts the kernel

|

Kernel

Initializes hardware devices and kernel subsystems
Meounts the root filesystem indicated by root=
Starts the init application, /sbin/init by default

/sbin finit
Starts other user space services and applications

|
Y Y

Shell Other applications

Roat filesystem
L > -

https://bootlin.com/doc/training/buildroot/buildroot-slides.pdf

26

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- zImage -j4

Kernel bootstrap (1) « >

LD vmlinux
SORTEX vmlinux
* How the kernel bootstraps SYSMAP System.map
itSEIf appears in kerne' OBJCOPY arch/arm/boot/Image

Kernel: arch/arm/boot/Image is ready

building

Kernel: arch/arm/boot/Image is ready

LDS arch/arm/boot/compressed/vmlinux.lds
AS arch/arm/boot/compressed/head.o
L. GZIP arch/arm/boot/compressed/piggy.gzip
Raspberry P! Linux kernel cC arch/arm/boot/compressed/misc.o
https://github.com/raspberrypi/linux CC arch/arm/boot/compressed/decompress.o
CC arch/arm/boot/compressed/string.o
AS arch/arm/boot/compressed/liblfuncs.o
AS arch/arm/boot/compressed/ashldi3.o
AS arch/arm/boot/compressed/bswapsdi2.o
AS arch/arm/boot/compressed/piggy.gzip.o
LD arch/arm/boot/compressed/vmlinux

OBJCOPY arch/arm/boot/zImage

Kernel: arch/arm/boot/zImage is ready
27

Kernel bootstrap (2)

as
piggy.gzip.S Id
—P piggy.gzip.o
objcopy gzip
vmlinux Image
—> pigey.ez objcopy
) vmlinux zlmage
head.o
Kernel Proper: Stripped Kernel Compressed Kernel
Raw kernel Binary Binary .
executable (Binary Object) L
(ELF object)
head-cpu.o in arch/<arch>/ Kernel image
' boot/compressed for bootloaders
Composite kernel (binary object)
image
decompress.o (ELF object)
liblfuncs.o

asm wrapper

around piggy.gz
+ bootstrapcode

https://bootlin.com/doc/legacy/kernel-init/kernel-init.pdf

28

Bootstrap code for compressed kernels

* vmlinux.lds
* Kernel proper, in ELF format, including symbols, comments, debug info

* System.map
* Text-based kernel symbol table for vmlinux module

* Image
* Binary kernel module, stripped of symbols, notes and comments
* objcopy —O binary —R .note —R .comment =S vmlinux.lds arch/arm/boot/Image

 heedo
* Architecture-specific startup code i Located in arch/<arch>/boot/compressed i

« Passed control by the bootloader —TTTTTTTTTTTTTTTTTTTTTTTTTTT

29

Bootstrap code for compressed kernels

* piggy.gz
* The file image compressed with gzip (gzip —f -9 < Image > piggy.gz)

* piggy.o
* The file piggy.gz in assembly language format from piggy.S
* It can be linked with a subsequent object, misc.o

* misc.0, decompress.o
* Routines used for decompressing the kernel image (piggy.gz)

* vmlinux
* Composite kernel image and is the result when the kernel proper is linked
with the objects

* ziImage

* Final composite kernel image loaded by bootloader 2

vmlinux

head.o
» Kernel architecture-specific startup code

arch/arm/kernel/init-task.o

* Initial thread and task structs required
by kernel

init
* Main kernel-initialization code

usr/built-in.o
 Built-in initramfs image

arch/arm/nwfpe

* Architecture-specific floating point —
emulation code

vmlinux <

arch/arm/kernel/head.o
arch/arm/kernel/init-atask.o
init

usr/built-in.o
arch/arm/kernel

arch/arm/mm
;ircllfanm"com non
arch/arm/ l‘j‘jﬂcll'l*lx pxx
arch/arm/nwipe

kernel

T

fs

ipc |
S't‘JZ'LlI'H.'_'!rr
lib/lib.a

arch/arm/lib

lib

drivers

net

31

Bootstrap Loader

* The second-stage loader (bootstrap loader)
* Load the Linux kernel image into memory

* Act as the glue between a board-level
bootloader and the Linux kernel

* Low-level assembly processor initialization
* Decompression and relocation of the kernel
image
* The first-stage loader
* Controls the board upon power-up
* Does not reply on the Linux kernel in any way

0iggy.o — Binary
kernel
J image
misc.o)
decompress.o BOOtStrap
| _loader
head.o
head-cpu.o

32

Kernel entry point: head.o

* The un-compression code jumps into the main kernel entry point
* Located in arch/<arch>/kernel/head.S
* Check the architecture, processor and machine type

* Configure the MMU, create page table entries and enable virtual
memory

e Same code for all architectures
* Calls the start_kernel function in init/main.c

- RedBoot F=———=» head.0 F——p head.0 ep main.o
Power on

Bootloader Bootstrap loader Kernel vmlinux Kernel main.o 33

Kernel startup: main.c

* The final task performed by the kernel’s own head.o
 Control is passed from head.o to the start_kernel() in .../init/main.c
* Most of the Linux kernel initialization takes place in this routine

* The function setup arch() in start_kernel()
* |dentify the specific CPU

* Provides a mechanism for calling high-level CPU-specific initialization
routines

https://elixir.bootlin.com/linux/latest/source/init/main.c 34

Start kernel main actions

* Call setup_arch (& command_line)
* Function defined in arch/<arch>/kernel/setup.c
* Copying the command line from where the bootloader left it

* On ARM, this function calls

* setup_processor: CPU information is display
* setup_machine: locating the machine in the list of supported machines

* Initializes the console (to get error messages)
* Initializes many subsystems
* Eventually calls rest_init

35

rest init: Starting the init process

static noinline wvoid __init_refok rest_init(void)

{

__releases (kernel_lock)
int pid;

rcu_scheduler_starting();
/%
* We need to spawn init first so that it obtains pid 1, however
* the init task will end up wanting to create kthreads, which, if
* we schedule it before we create kthreadd, will OOPS.
*/
kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND) ;
numa_default_policy();
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
rcu_read_unlock();
complete (&kthreadd_done);

/%
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/
init_idle_bootup_task(current);
preempt_enable_nc_resched();
schedule() ;
preempt_disable();

/* Call into cpu_idle with preempt disabled */
cpu_idle();

36

Kernel init

* Kernel_init does two main things

 Call do_basic_setup in ../init/main.c

* Once kernel services are ready, start device initialization (Linux
2.6.36 excerpt):

static void __init do_basic_setup(void)
{
cpuset_init_smp();
usermodehelper_init();
init_tmpfs();
driver_init();
init_irq_proc();
do_ctors();
do_initcalls();

37

do initcalls

* A "pure" initcall has no dependencies on anything else, and purely
* initializes variables that couldn't be statically initialized.

*

* This only exists for built-in code, not for modules.

*/

o The initca” meChanlsm #define pure_initcall(fn) __define_initcall("0",fn,1)
|S tO dEtermlne COFFECt #define core_initcall(fn) __define_initcall("1",fn,1)

. . #define core_initcall_sync(fn) __define_initcall("1s",fn,1s)
Order Of the bUIIt_In #define postcore_initcall(fn) __define_initcall("2",fn,2)
#define postcore_initcall_sync(fn) __define_initcall("2s",fn,2s)
mOdUIes and #define arch_initcall(fn) __define_initcall("3",fn,3)
Subsystems |n|t|a||2at|0r #def%ne arch_ln:-tt«:‘:all_sync(fn} __def?ne_}n?tcall(3s",fn,3s)
#define subsys_initcall (fn) __define_initcall("4",fn,4)
. . #define subsys_initcall_sync(fn) __define_initcall("4s",fn,4s)
[J
Defined in #define fs_initcall (fn) __define_initcall("5",fn,5)
o I I . . h #define fs_initcall_sync(fn) __define initcall("5s",fn,Gs)
INC Ude/ |nUX/|n|t. #define rootfs_initcall(fn) __define_initcall("rootfs",fn,rootfs)
#define device_initcall(fn) __define_initcall("6",fn,6)
#define device_initcall_sync(fn) __define_initcall("6s",fn,6s)
#define late_initcall(£fn) __define_initcall("7",fn.7)

#define late_initcall_sync(£fn) _define_initcall("7s",fn,7s)

38

INit_post

* The last step of Linux booting
* First tries to open a console
* Then tries to run the init process

* Effectively turning the current kernel thread into the user space
Init process

39

init_post Code: init/main.c

static noinline int init_post(void) __releases(kernel_lock) {
/* need to finish all async __init code before freeing the memory */
async_synchronize_full();
free_initmem() ;
mark_rodata_ro();
system_state = SYSTEM_RUNNING;
numa_default_policy();

current->signal->flags |= SIGNAL_UNKILLABLE;
if (ramdisk_execute_command) {
run_init_process(ramdisk_execute_command) ;
printk (KERN_WARNING "Failed to execute %s\n", ramdisk_execute_command) ;

e

/* We try each of these until one succeeds.
* The Bourne shell can be used instead of init if we are
* trying to recover a really broken machine. */
if (execute_command) {
run_init_process(execute_command) ;
printk (KERN_WARNING "Failed to execute %s. Attempting defaults...\n", execute_command);
}
run_init_process("/sbin/init");
run_init_process("/etc/init");
run_init_process("/bin/init");
run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel. See Linux Documentation/init.txt");

Final stage of the boot

» After kernel thread calls init during the final stages of boot
* run_init_process()

 /sbin/init is spawned by the kernel on boot
* Mount the root file system
e Spawn the first user space program, init

* inittab
 When init is started, it reads the system configuration file /etc/inittab
* Contains directive for each runlevel
* e.g. runlevel 0 instructs init to halt the system
* Runlevel directories are typically rooted at /etc/rc.d

41

Root file system

* The root file system

» Refer to the file system mounted at the base of the file system hierarchy,
designated simply as /

» Contains programs and utilities to boot a system and initialize services

* Initial RAM Disk (initrd) /

« A small self-contained root file system /bin

* Contains directives to load specific device drivers before the ;Stecv
completion of the boot cycle Jlib

* When the kernel boots, it copies the compressed binary file from /sbin
the specified physical location in RAM into a proper kernel ramdisk Jusr
and mount it as the root file system /var

* Use linuxrc file to execute commands /tmp

42

initramfs

* initramfs
* Executing early user space programs

e initramfs is loaded before the call to do_basic_setup(), which loads
firmware for devices before its driver has been loaded

* initramfs is a cpio archive, whereas initrd is a gizpped file system
image -> much easier to use

* initramfs is integrated into Linux kernel source tree and is built
automatically when building the kernel image

43

Loading kernel

Hardware Initialization = KCTDEIImage Copy _p, Decompress Kernel

|< Boot Loader + Kernel bl

Mount o comines | . Memory / Scheduler
Initial Ramdisk Hardware Initialization Initialization

| < Kemel >|

Initiate and Run B Run rc.sysinit . Remount

init process to insert necessary modules Root Filesystem

|< Kemel i |< 111t script .l

Launch X-Window i Launch Shell A Tpitiate Run Level Script

|< Application Program + it script >|

44

Booting kernel

https://www.thegeekstuff.com/2011/02/linux-boot-process

45

summary

* The bootloader executes bootstrap code

* Bootstrap code initializes the processor and board, and un-compresses
the kernel code to RAM, and calls the kernel’s start_kernel function

* Copies the command line from the bootloader

* |dentifies the processor and machine

* Initializes the console

* Initializes kernel services (memory allocation, scheduling, file cache ...)

* Creates a new kernel thread (init process) and continues in the idle loop
* Initializes devices and execute initcalls

46

