
Operating System
Design and

Implementation
Lecture 4: BIOS & Bootloader

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC

2

Outline

• Boot sequence
• Bootloader on x86
• Bootloader on embedded system

• Linux kernel initialization
• Kernel bootstrap
• Compressed kernels
• The root file system

3

Powering up: Reset

4

0x100000
0xFFFF0
0xF0000

0

Inaccessible
memory

First functions
(jump to ROM BIOS)

BIOS

Power on Reset

Every register initialized to 0 except
CS = 0xf000, IP = 0xfff0

1. Physical address = (CS << 4) + IP = 0xffff0
2. First instruction fetch from location 0xffff0
3. Processor in real mode

a. Limited to 1MB addresses (0x00000 ~ 0xFFFFF)
b. No protection; no privilege levels
c. Direct access to all memory
d. No multi-tasking

4. First instruction is on the top of accessible memory
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/3_Hardware.pdf

8086 CPU

Powering up: BIOS

5

• BIOS presents in a small chip connected
to processor
• Flash/EPROM/EEPROM

• BIOS work
• Power on self test
• Initialize video card and other devices
• Display BIOS screen
• Perform brief memory test
• Set DRAM memory parameters
• Configure plug & play devices
• Assign DMA channels and IRQs
• Identify the boot device

• Read sector 0 from boot device into memory
location 0x7c00

• Jumps to 0x7c00 https://www.twblogs.net/a/5b7f367e2b717767c6ae576c

Powering up: MBR

• Sector 0 in the disk called Master
Boot Record (MBR)
• Includes code that boots the OS or bootloader
• Copied from disk to RAM (@0x7c00) by BIOS
• Size: 512 bytes
• 446 bytes bootable code
• 64 bytes disk partition information (16 bytes per partition)
• MBR looks through partition table and loads the bootloader such

as Linux or Windows
• Or MBR may directly load the OS

6

Power on Reset

Every register initialized to 0 except
CS = 0xf000, IP = 0xfff0

BIOS

MBR

Powering up: bootloader

• Bootloader loads the operating system
• May also allow the user to select which OS

to load

• Other jobs done
• Disable interrupts
• Setup GDT (global descriptor table)
• Switch from real mode to protected mode
• Read operating system from disk
• The bootloader may be presented in the MBR (sector 0)

7

Power on Reset

Every register initialized to 0 except
CS = 0xf000, IP = 0xfff0

BIOS

MBR

Bootloader

Powering up: xv6

• Bootloader
• Present in sector 0 of disk
• 512 bytes
• bootasm.S

• Enters in 16 bit real mode, leaves in 32 bit
protected mode

• Disable interrupts
• Enable A20 physical address line
• Load GDT (only segmentation, no paging)
• Set stack to 0x7c00
• Never returns

8

Power on Reset

Every register initialized to 0 except
CS = 0xf000, IP = 0xfff0

BIOS

MBR

Bootloader

OS

Powering up: xv6 (cont.)

• Bootloader
• bootmain.c

• Loads the xv6 kernel from sector 1 to RAM
• Starting at 0x10000 (1MB)
• Invoke the xv6 kernel entry
• _start present in entry.S
• This entry point is known from the ELF header

9

Power on Reset

Every register initialized to 0 except
CS = 0xf000, IP = 0xfff0

BIOS

MBR

Bootloader

OS

Powering up: OS

• The operating system
• Set up virtual memory
• Initialize interrupt vectors
• Initialize

• Timers
• Monitors
• Hard disks
• Consoles
• File systems

• Initialized other processor (if any)
• Startup user process

10

Power on Reset

Every register initialized to 0 except
CS = 0xf000, IP = 0xfff0

BIOS

MBR

Bootloader

OS

Multiprocessor booting

• One processor designated as “Boot Processor” (BSP)
• Designation done either by hardware or BIOS
• All other processors are designated AP (Application Processors)

• BIOS boots the BSP
• BSP learns system configuration
• BSP triggers boot of other AP

• Done by sending an startup IPI
(inter processor interrupt) signal
to the AP

11

http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/3_Hardware.pdf

Boot sequence of Raspberry Pi

• Boot from the GPU
• Stage 1:

• GPU activates bootstrap code in the ROM to check filesystem on SD card
• Stage 2:

• GPU loads bootcode.bin in /boot from the SD card to L2 cache (first-stage bootloader)
• Stage 3:

• Bootcode.bin activates SDRAM and loads loader.bin to RAM and executes loader.bin
• Stage 4:

• Loader.bin (second-stage bootloader) loads start.elf that is the firmware of the GPU
• Stage 5:

• Start.elf reads config.txt and cmdline.txt and loads kernel.img that is Linux kernel
• Stage 6:

• Activating the CPU after the start.elf loads kernel.img
12

Bootloaders

• The bootloader is a piece of code that is responsible for
• Basic hardware initialization
• Loading an operating system kernel from non-volatile storage
• Possibly decompression of the application binary
• Execution of the application

• Most bootloaders provides a shell with various commands
• Loading of data from storage or network
• Memory inspection
• Hardware diagnostics and testing

13

Bootloader on x86 processor

14

Bootloaders on BIOS-based x86

• Basic Input Output System (BIOS)
• a program
• bundled on a board with non-volatile memory on

x86 processor

• On old BIOS-based x86 platform
• Responsible for basic hardware initialization
• Loading small piece code from non-volatile storage
• This piece of code is typically a 1st stage bootloader

which will load the full bootloader itself
• It typically understands filesystem format so that

kernel file can be loaded directly from a normal filesystem
15

BIOS
from ROM

Stage 1
512 bytes from

raw storage

Stage 2
from raw stage

Kernel
from filesystem

Bootloaders on x86

• Grand Unified Bootloader (GRUB)
• 2nd stage bootloader
• Can read many filesystem formats
• Load kernel image and the configuration
• Can load kernel images over the network

• Syslinux
• for network and removable media booting

(USB key, CD-ROM)

16

BIOS
from ROM

Stage 1
512 bytes from

raw storage

Stage 2
from raw stage

Kernel
from filesystem

PC Booting (Cont)

RAM

x386
CPU

0x00000

0xA0000

0xFFFFF
0xFFFF0

1. Power supply sends POWER GOOD to CPU

2. CPU resets

3. Run FFFF:0000 @ BIOS ROM

4. Jump to a real BIOS start address

5. Power On Self Test (POST)

6. Beep if there is an error

7. Read CMOS data/settings

8. Run 2nd-stage boot

PC Booting (Cont)

RAM

x386
CPU

0x00000

0xA0000

0xFFFFF
INT 13

MBR

512 bytes
0x07C00

1. Call INT 13 service
2. Load boot sector (in sequential)

C:H:S (0:0:1)

0x0000 Program to load active partition

0x01BE Partition table 1

0x01CE Partition table 2

0x01DE Partition table 3

0x01EE Partition table 4

0x01FE BIOS magic number:0xAA55

0x0200

INT 13h is
shorthand for BIOS
interrupt call

Linux Boot Example

RAM
CPU

Disk

2nd bootloader

BIOS

1. Execute from fixed address

3. Select boot device

2. POST

5. Pass control to bootloader (LILO)

0xc700
512 bytes

MBR

4. Load MBR 512 bytes to 0xc700

MBR (Master Boot Record)

LILO or Grub
(stage 1)

1. Partition table: describes the
partitions of a storage device

2. Bootstrap code: instructions to identify
the configured bootable partition

Booting on embedded CPUs (case 1)

• When powered, that CPU starts executing code at
a fixed address

• There is no other booting mechanism provided by
the CPU

• The hardware design must ensure that a NOR flash
chip is wired so that it is accessible at the address
at which the CPU start executing instructions

• The first stage bootloader must be programmed at
this address in the NOR

• Not very common anymore (unpractical, and requires
NOR flash) 21

NOR

RAM

Physical
memory

Execution
starts
here

Booting on embedded CPUs (case 2)

• The CPU has an integrated boot code in ROM
• BootROM on AT91 CPUs, “ROM code” on OMAP, etc.

• This boot code is able to load a first stage bootloader from a storage
device into an internal SRAM (DRAM not initialized yet)

• Storage device can typically be: MMC, NAND, SPI flash
• The first bootloader is

• Limited in size due to hardware constraints (SRAM size)
• Provided either by U-Boot or by the CPU vender

• This first bootloader must
• Initialize DRAM and other hardware devices
• Load a second stage bootloader into DRAM

22

Booting on Microchip ARM SAMA5D3
• RomBoot

• Tries to find a valid bootstrap image from various storage
sources, and load it into SRAM

• Size limited to 64KB. No user interaction possible in
standard boot mode

• U-Boot SPL
• Run from SRAM, initialize the DRAM, and NAND or SPI

controller, and load the 2nd bootloader into DRAM and start it
• No user interaction possible

• U-Boot
• Runs from DRAM, initializes other hardware devices (network,

USB, etc.), loads kernel image from storage or network to DRAM

• Linux kernel
• Runs from DRAM, takes over the system completely, the boot loader no longer

exists 23https://bootlin.com/doc/training/buildroot/buildroot-slides.pdf

From Bootloader to user space

24

Bootloader
Low level hardware

initialization
Fetch and copy the

Linux kernel to
RAM

Kernel
initialization

Init process
System

initialization from
user space

Linux Boot Example

RAM
CPU

floppy

Bootsec.S

BIOS

1. Execute from fixed address

3. Select boot device

2. POST

5. Pass control to bootsec.S

0x7C00
512 bytes

4. Load bootsec.S 512 bytes to 0xc700

Bootsec.S

6. Move 0x90000

0x90000

7. Read two more blocks)

Setup.s
Video.s

Compressed
kernel

0x10000

8. Load compressed kernel to
0x10000

9. Pass control to setup.s

Overall Linux boot sequence

26
https://bootlin.com/doc/training/buildroot/buildroot-slides.pdf

Kernel bootstrap (1)
• How the kernel bootstraps

itself appears in kernel
building

27

Raspberry pi Linux kernel
https://github.com/raspberrypi/linux

Kernel bootstrap (2)

28
https://bootlin.com/doc/legacy/kernel-init/kernel-init.pdf

Bootstrap code for compressed kernels

• vmlinux.lds
• Kernel proper, in ELF format, including symbols, comments, debug info

• System.map
• Text-based kernel symbol table for vmlinux module

• Image
• Binary kernel module, stripped of symbols, notes and comments
• objcopy –O binary –R .note –R .comment –S vmlinux.lds arch/arm/boot/Image

• head.o
• Architecture-specific startup code
• Passed control by the bootloader

29

Located in arch/<arch>/boot/compressed

Bootstrap code for compressed kernels

• piggy.gz
• The file image compressed with gzip (gzip –f -9 < Image > piggy.gz)

• piggy.o
• The file piggy.gz in assembly language format from piggy.S
• It can be linked with a subsequent object, misc.o

• misc.o, decompress.o
• Routines used for decompressing the kernel image (piggy.gz)

• vmlinux
• Composite kernel image and is the result when the kernel proper is linked

with the objects
• zImage

• Final composite kernel image loaded by bootloader
30

vmlinux
• head.o

• Kernel architecture-specific startup code

• arch/arm/kernel/init-task.o
• Initial thread and task structs required

by kernel

• init
• Main kernel-initialization code

• usr/built-in.o
• Built-in initramfs image

• arch/arm/nwfpe
• Architecture-specific floating point –

emulation code 31

Bootstrap Loader

• The second-stage loader (bootstrap loader)
• Load the Linux kernel image into memory
• Act as the glue between a board-level

bootloader and the Linux kernel
• Low-level assembly processor initialization
• Decompression and relocation of the kernel

image

• The first-stage loader
• Controls the board upon power-up
• Does not reply on the Linux kernel in any way

32

piggy.o

misc.o

head.o

head-cpu.o

decompress.o

Binary
kernel
image

Bootstrap
loader

Kernel entry point: head.o

• The un-compression code jumps into the main kernel entry point
• Located in arch/<arch>/kernel/head.S
• Check the architecture, processor and machine type
• Configure the MMU, create page table entries and enable virtual

memory
• Same code for all architectures
• Calls the start_kernel function in init/main.c

33

RedBoot head.o head.o main.o

Bootloader Bootstrap loader Kernel vmlinux Kernel main.o

Power on

Kernel startup: main.c

• The final task performed by the kernel’s own head.o
• Control is passed from head.o to the start_kernel() in …/init/main.c
• Most of the Linux kernel initialization takes place in this routine

• The function setup_arch() in start_kernel()
• Identify the specific CPU
• Provides a mechanism for calling high-level CPU-specific initialization

routines

34https://elixir.bootlin.com/linux/latest/source/init/main.c

Start_kernel main actions

• Call setup_arch (& command_line)
• Function defined in arch/<arch>/kernel/setup.c
• Copying the command line from where the bootloader left it
• On ARM, this function calls

• setup_processor: CPU information is display
• setup_machine: locating the machine in the list of supported machines

• Initializes the console (to get error messages)
• Initializes many subsystems
• Eventually calls rest_init

35

rest_init: Starting the init process

36

Kernel_init

• Kernel_init does two main things
• Call do_basic_setup in ../init/main.c
• Once kernel services are ready, start device initialization (Linux

2.6.36 excerpt):

37

do_initcalls

• The initcall mechanism
is to determine correct
order of the built-in
modules and
subsystems initialization

• Defined in
• include/linux/init.h

38

init_post

• The last step of Linux booting
• First tries to open a console
• Then tries to run the init process
• Effectively turning the current kernel thread into the user space

init process

39

init_post Code: init/main.c

40

Final stage of the boot

• After kernel thread calls init during the final stages of boot
• run_init_process()
• /sbin/init is spawned by the kernel on boot

• Mount the root file system
• Spawn the first user space program, init

• inittab
• When init is started, it reads the system configuration file /etc/inittab
• Contains directive for each runlevel
• e.g. runlevel 0 instructs init to halt the system
• Runlevel directories are typically rooted at /etc/rc.d

41

Root file system
• The root file system

• Refer to the file system mounted at the base of the file system hierarchy,
designated simply as /

• Contains programs and utilities to boot a system and initialize services

• Initial RAM Disk (initrd)
• A small self-contained root file system
• Contains directives to load specific device drivers before the

completion of the boot cycle
• When the kernel boots, it copies the compressed binary file from

the specified physical location in RAM into a proper kernel ramdisk
and mount it as the root file system

• Use linuxrc file to execute commands
42

/
/bin
/dev
/etc
/lib
/sbin
/usr
/var
/tmp

initramfs

• initramfs
• Executing early user space programs
• initramfs is loaded before the call to do_basic_setup(), which loads

firmware for devices before its driver has been loaded
• initramfs is a cpio archive, whereas initrd is a gizpped file system

image -> much easier to use
• initramfs is integrated into Linux kernel source tree and is built

automatically when building the kernel image

43

Loading kernel

44

Booting kernel

45
https://www.thegeekstuff.com/2011/02/linux-boot-process

Summary

• The bootloader executes bootstrap code
• Bootstrap code initializes the processor and board, and un-compresses

the kernel code to RAM, and calls the kernel’s start_kernel function
• Copies the command line from the bootloader
• Identifies the processor and machine
• Initializes the console
• Initializes kernel services (memory allocation, scheduling, file cache …)
• Creates a new kernel thread (init process) and continues in the idle loop
• Initializes devices and execute initcalls

46

