
Operating System 
Design and 

Implementation
Lecture 22: Networking driver

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1



Acknowledgements and Disclaimer
• Slides was developed in the reference with 

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Onur Mutlu, Computer architecture, ece 447, Carnegie Mellon University

• CSE 506, operating system, 2016, 
https://www.cs.unc.edu/~porter/courses/cse506/s16/slides/sync.pdf

2



Outline

• The packet flow in NIC
• RX/TX flow path
• Kernel space operations

• NIC hardware driver
• struct sk_buf
• Reception and transmission operations

3



The NIC hardware

• The NIC
• Connector: RJ45 cable, 

SFP etc.
• Media: Copper, Fiber, 

Radio
• PHY: Convert media-depend signal into standard data
• PCIe network card embed a PHY
• The MAC

• Handle L2 protocol, transfer data to the CPU

4

Network Interface Controller (NIC)

https://bootlin.com/pub/conferences/2021/fosdem/chevallier-network-performance-in-the-linux-
kernel/chevallier-network-performance-in-the-linux-kernel.pdf



The packet flow

5

TX

Application

Transport (L4)

Network (L3)

Data link (L2)

NIC driver

NIC hardware

RX

Application

Transport (L4)

Network (L3)

Data link (L2)

NIC driver

NIC hardware



L2 frame reception

• The MAC received data and write it to RAM using DMA
• A descriptor is created
• Its address is put in a queue 6

https://bootlin.com/pub/conferences/2021/fosd
em/chevallier-network-performance-in-the-
linux-kernel/chevallier-network-performance-in-
the-linux-kernel.pdf



L2 frame reception -- IRQ

• A interrupt is fired
• One CPU core will handle the interrupt

7

https://bootlin.com/pub/conferences/2021/fosd
em/chevallier-network-performance-in-the-
linux-kernel/chevallier-network-performance-in-
the-linux-kernel.pdf



L2 frame reception -- Unqueue

• The interrupt handler acknowledges the interrupt
• The packet is processed in softirq context
• The new frame can be received in parallel

8



In the NIC driver

• The CPU
• Processes L3 (packets) and above, up to the application
• The interrupt handler masks interrupts

• New API (NAPI) 
• An extension to the device driver in packet processing framework
• Schedules the processing in batches
• Stop de-queueing once, because

• The budget is expired (release the CPU to the scheduler)
• The queue is empty

9



Inside a packet

10

• The packet through TCP socket
• Frame checksum sequence (FCS):

• Detects any in-transit corruption of data



RX path: Packet arrives at the destination NIC

Packet 
buffer
…
Packet 
buffer

11

Applications

Kernel space
NIC driver

TX RX

NIC
Hardware RX queue

User space• NIC receives packets
• Match destination MAC

address
• Verify ethernet checksum

• TX/RX ring
• Circular queue
• Shared between NIC and 

NIC driver
• Content

• Length + packet buffer pointer



RX path: Packet arrives at the destination NIC

Packet 
buffer
…
Packet 
buffer

12

Applications

Kernel space
NIC driver

TX RX

NIC
Hardware RX queue

User space• NIC accepts packets
• DMA the packet to RX ring

buffer
• NIC triggers an interrupt

H
ardw

are interrupt



Top-half interrupt processing

13

RX

Application

Transport (L4)

Network (L3)

Data link (L2)

NIC driver

NIC hardware

CPU interrupts the executed process

Switch from user space to kernel space

Top-half interrupt processing
1. Lookup IDT (interrupt descriptor table)
2. Call ISR (interrupt service routine)

a. Acknowledge the interrupt
b. Schedule bottom-half processing

3. Switch back to user space



Bottom-half processing

• CPU initiates the bottom-half when it is free (soft-irq)
• Switch from user space to kernel space
• Driver allocates an sk-buff (skb) dynamically
• Sk-buf

• In-memory data structure that contains packet metadata
• Pointers to packet headers and payload
• Packet related information

14



Bottom-half processing

• NIC driver 
• Handles all packets

in the packet buffer
• Driver allocates sk-buff
• Update sk-buf with packet

metadata
• Remove the Ethernet header
• Pass sk-buff to the network

stack
• Call L3 protocol handler

15

Packet 
buffer

Applications

Kernel space
NIC driver

TX RX

NIC
Hardware RX queue

User space

skb



L3 processing

• L3 common processing
• Match destination IP/socket
• Verify checksum
• Remove header

• L3-specific processing
• Route lookup
• Combine fragmented packets
• Call L4 protocol handler

16

RX

Application

Transport (L4)

Network (L3)

Data link (L2)

NIC driver

NIC hardware



L4 processing

• L4 specific processing
• Handle TCP state machine
• Enqueue to socket read

queue
• Signal the socket

17

Packet 
buffer

Applications

Kernel space
NIC driver

TX RX

NIC
Hardware RX queue

User space

skb

RQWQ



Application Layer processing

• In the socket read
• Switch from user space to 

kernel space
• Dequeue packet from socket

receive queue (RQ)
• Copy packet to application

buffer (user space)
• Release sk-buff
• Return back to the 

application

18

Packet 
buffer

Applications

Kernel space
NIC driver

TX RX

NIC
Hardware RX queue

User space

skb

RQWQ



Transmit an application packet

• In the socket writes
• Switch from user space to 

kernel space
• Writes the packet to the 

kernel buffer
• Calls socket’s send function

(sendmsg)

19

Packet 
buffer

Applications

Kernel space
NIC driver

TX RX

NIC
Hardware TX queue

User space



L4 processing in transmit packets

• L4-specific processing
• Allocate sk-buff
• Enqueue sk-buf to socket

write queue
• Call L3 protocol handler

• Common processing
• Build header
• Add header to packet buffer
• Update sk-buf

20

Packet 
buffer

Applications

Kernel space
NIC driver

TX RX

NIC
Hardware TX queue

User space

skb

WQ RQ



L3 processing in transmit packets

• L3-specific processing
• Fragment, if needed
• Call L2 protocol handler

21

Packet 
buffer

Applications

Kernel space
NIC driver

TX RX

NIC
Hardware TX queue

User space

skb

WQ RQ



L2 processing in transmit packets

• Enqueue packet to queue
discipline (qdisc)
• Hold packets in a queue
• FIFO, priority scheduling 

policy

• Qdisc
• Dequeue sk-buff (if NIC has

free buffers)
• Calculate TCP/IP checksum
• Call NIC driver’s send 

function 22

Packet 
buffer

Applications

Kernel space
NIC driver

TX RX

NIC
Hardware TX queue

User space

skb

WQ RQ

Qdisc
queue



NIC processing
• NIC driver

• If hardware TX queue full
• Stop qdisc queue

• Else
• Map packet data to DMA
• Tells NIC to send the packet

• NIC
• Calculate FCS
• Send packet to the wire
• Sends an interrupt “packet is sent”

(kernel space to user space)
• Driver frees the sk-buf, start the 

qdisc queue
23

Packet 
buffer

Applications

Kernel space
NIC driver

RX TX

NIC
Hardware TX queue

User space

Qdisc
queue



NIC packet processing flow

24

Network stack

Network hardware driver

Bus infrastructure

sk_buff net_device



sk_buff

• struct sk_buff
• Represents a network packet
• Support encapsulation/decapsulation of data through the protocol 

layers
• Maintain data structures

• Head: the start of the packet
• Data: the start of the packet payload
• Tail: the end of the packet payload
• End: the end of the packet
• Len: the amount of data in a packet

25



Allocating a skb

• Allocate an SKB
• dev_alloc_skb()
• Called from an interrupt handler
• On Ethernet, the size allocated is the length of packet + 2
• So, the IP header is word-aligned (the Ethernet header is 14 bytes)

• skb = dev_alloc_skb (length + NET_IP_ALIGN) 

26



Copy the received data

• Copy the packet payload from the DMA buffer to the skb
• static inline vokd skb_copy_to_linear_data (struct sk_buff *skb, 

const void *from, const unsigned int len);
• static inline vokd skb_copy_to_linear_data_offset (struct sk_buff

*skb, const void *from, const unsigned int len);

27
https://bootlin.com/doc/legacy/network-drivers/network-drivers.pdf



struct net_device

• struct net_device
• Represents a single network interface
• Allocation with alloc_etherdev()
• Registration with register_netdev()
• Unregistration with unregister_netdev()
• Liberation with free_netdev()

28



struct net_device_ops

• Methods of a network interface
• ndo_open(), called when the network interface is up
• ndo_close(), called when the network interface is down
• ndo_start_xmit(), start the transmission of a packet
• ndo_get_stats(), gets statistics
• ndo_do_ioctl(), implement device specific operations
• ndo_set_rx_mode(), select promiscuous, multicast, etc.
• ndo_set_mac_address(), set the MAC address

29



Transmission

• The ndo_start_xmit() starts the transmission of a packet
• The driver sets up DMA buffers
• The driver can also stop the queue with netif_stop_queue() 

depending on the number of free DMA buffers available

• When the packet has been sent, an interrupt is raised, the 
driver will do
• Acknowledging the interrupt
• Freeing the used DMA buffers
• Free the skb with dev_kfree_skb_irq()
• If the queue was stopped, start it again

30



Reception

• Reception is notified by an interrupt. The interrupt handler 
should
• Allocate an skb with dev_alloc_skb()
• Reserve the 2 bytes offset with skb_reserve ()
• Copy the packet data from the DMA buffers to the skb through

skb_copy_to_linear_data () or skb_copy_to_linear_data_offset ()
• Update the skb pointers with skb_put()
• Update the skb->protocol field with eth_type_trans(skb, 

netdevice)
• Give the skb to the kernel network stack with netif_rx(skb)

31



Reception: NAPI mode

• The NAPI mode allows to switch to polled mode when the 
interrupt rate is too high
• Add a struct napi_struct in the network interface private structure
• At driver initialization, register the NAPI poll operation
• netif_napi_add (dev, &bp->napi, macb_poll, 64)

• dev: the network interface
• &bp->napi: the struct napi_struct
• macb_poll is the NAPI poll operation
• 64 is the weight that represents the importance of the network interface

32



Reception: NAPI mode

• When a packet has been received, interrupt handler will do

• The kernel will call our poll() operation regularly (macb_poll())
• Push packets to the network stack using netif_receive_skb() 

when receive at most budget packets
• Switch back to interrupt mode using napi_complete () if less than 

budget packets have been received, re-enable interrupts
• Must return the number of packets received

33

if (napi_schedule_prep (&bp->napi)) {
/*Disable reception interrupts*/
__napi_schedule (&bp->napi); }



Communication with the PHY

• Ethernet controller handles layer 2 (MAC) communication
• An external PHY is responsible for layer 1 communication
• The MAC and PHY are connected using a MII or RMII 

interface
• MII = Media independent interface
• RMII = Reduced media independent interface

• This interface contains two wires used for the MDIO 
(management data input/output) bus 
• Ethernet driver needs to communicate with the PHY to get 

information about the link (up, down, speed, full or half duplex) 34



PHY in the kernel

• The kernel provides a framework that 
• Exposes an API to communicate with the PHY
• Allows to implement PHY drivers
• Implements a basic generic PHY driver that works with all PHY
• See ‘drivers/net/phy’

35



Connection to the PHY

• The ‘mdiobus_register()’ function
• Filled the mii_bus->phy_map[] array with struct phy_device * 

pointer
• The appropriate PHY must be selected
• Connecting to the PHY allows to register a callback that will be 

called when the link changes

36

int phy_connect_direct (
struct net_device *dev,
void (*handler) (struct net_device *), 
u32 flags,
phy_interface_t interface

)



Start and stop the PHY

• To make poll regularly in the PHY hardware, one must start 
• phy_start (phydev)

• When the network is stopped, the PHY must also be stopped
• phy_stop (phydev)

37



Suspend and resume the PHY

• The suspend () operation
• Call netif_device_detach ()
• Do the hardware-dependent operations to suspend the devices 

(like disable the clocks)

• The resume() operation
• Call netif_device_attach()
• Do the hardware-dependent operations (like enable the clocks)

38



ethtool

• Ethtool is a userspace tool
• Allows to query low-level information from an Ethernet interface 

and to modify its configuration

• On the kernel side
• A struct ethtool_ops can be declared and connected to the struct 

net_device
• These operations can be implemented using the PHY interface 

(phy_ethtool_gset (), phy_ethtool_sset()) or using generic 
operations (ethtool_op_get_link())

39



Summary

• NIC driver
• The kernel space interrupt handler controls the TX/RX packet flow
• TX/RX ring circular queue
• Packet buffer

• struct sk_buff
• A network packet entry

• set_device ()

40


