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Outline

• The packet flow in NIC
• RX/TX flow path
• Kernel space operations

• NIC hardware driver
• struct sk_buf
• Reception and transmission operations
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The NIC hardware

• The NIC
• Connector: RJ45 cable, 

SFP etc.
• Media: Copper, Fiber, 

Radio
• PHY: Convert media-depend signal into standard data
• PCIe network card embed a PHY
• The MAC

• Handle L2 protocol, transfer data to the CPU
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Network Interface Controller (NIC)

https://bootlin.com/pub/conferences/2021/fosdem/chevallier-network-performance-in-the-linux-
kernel/chevallier-network-performance-in-the-linux-kernel.pdf



The packet flow
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L2 frame reception

• The MAC received data and write it to RAM using DMA
• A descriptor is created
• Its address is put in a queue 6

https://bootlin.com/pub/conferences/2021/fosd
em/chevallier-network-performance-in-the-
linux-kernel/chevallier-network-performance-in-
the-linux-kernel.pdf



L2 frame reception -- IRQ

• A interrupt is fired
• One CPU core will handle the interrupt
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https://bootlin.com/pub/conferences/2021/fosd
em/chevallier-network-performance-in-the-
linux-kernel/chevallier-network-performance-in-
the-linux-kernel.pdf



L2 frame reception -- Unqueue

• The interrupt handler acknowledges the interrupt
• The packet is processed in softirq context
• The new frame can be received in parallel
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In the NIC driver

• The CPU
• Processes L3 (packets) and above, up to the application
• The interrupt handler masks interrupts

• New API (NAPI) 
• An extension to the device driver in packet processing framework
• Schedules the processing in batches
• Stop de-queueing once, because

• The budget is expired (release the CPU to the scheduler)
• The queue is empty
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Inside a packet
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• The packet through TCP socket
• Frame checksum sequence (FCS):

• Detects any in-transit corruption of data



RX path: Packet arrives at the destination NIC

Packet 
buffer
…
Packet 
buffer
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User space• NIC receives packets
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• TX/RX ring
• Circular queue
• Shared between NIC and 

NIC driver
• Content

• Length + packet buffer pointer



RX path: Packet arrives at the destination NIC

Packet 
buffer
…
Packet 
buffer
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Top-half interrupt processing
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1. Lookup IDT (interrupt descriptor table)
2. Call ISR (interrupt service routine)
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b. Schedule bottom-half processing
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Bottom-half processing

• CPU initiates the bottom-half when it is free (soft-irq)
• Switch from user space to kernel space
• Driver allocates an sk-buff (skb) dynamically
• Sk-buf

• In-memory data structure that contains packet metadata
• Pointers to packet headers and payload
• Packet related information
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Bottom-half processing

• NIC driver 
• Handles all packets

in the packet buffer
• Driver allocates sk-buff
• Update sk-buf with packet

metadata
• Remove the Ethernet header
• Pass sk-buff to the network

stack
• Call L3 protocol handler
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L3 processing

• L3 common processing
• Match destination IP/socket
• Verify checksum
• Remove header

• L3-specific processing
• Route lookup
• Combine fragmented packets
• Call L4 protocol handler
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L4 processing

• L4 specific processing
• Handle TCP state machine
• Enqueue to socket read

queue
• Signal the socket
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Application Layer processing

• In the socket read
• Switch from user space to 

kernel space
• Dequeue packet from socket

receive queue (RQ)
• Copy packet to application

buffer (user space)
• Release sk-buff
• Return back to the 

application
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Transmit an application packet

• In the socket writes
• Switch from user space to 

kernel space
• Writes the packet to the 

kernel buffer
• Calls socket’s send function

(sendmsg)
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L4 processing in transmit packets

• L4-specific processing
• Allocate sk-buff
• Enqueue sk-buf to socket

write queue
• Call L3 protocol handler

• Common processing
• Build header
• Add header to packet buffer
• Update sk-buf
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L3 processing in transmit packets

• L3-specific processing
• Fragment, if needed
• Call L2 protocol handler
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L2 processing in transmit packets

• Enqueue packet to queue
discipline (qdisc)
• Hold packets in a queue
• FIFO, priority scheduling 

policy

• Qdisc
• Dequeue sk-buff (if NIC has

free buffers)
• Calculate TCP/IP checksum
• Call NIC driver’s send 

function 22
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NIC processing
• NIC driver

• If hardware TX queue full
• Stop qdisc queue

• Else
• Map packet data to DMA
• Tells NIC to send the packet

• NIC
• Calculate FCS
• Send packet to the wire
• Sends an interrupt “packet is sent”

(kernel space to user space)
• Driver frees the sk-buf, start the 

qdisc queue
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NIC packet processing flow
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sk_buff

• struct sk_buff
• Represents a network packet
• Support encapsulation/decapsulation of data through the protocol 

layers
• Maintain data structures

• Head: the start of the packet
• Data: the start of the packet payload
• Tail: the end of the packet payload
• End: the end of the packet
• Len: the amount of data in a packet
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Allocating a skb

• Allocate an SKB
• dev_alloc_skb()
• Called from an interrupt handler
• On Ethernet, the size allocated is the length of packet + 2
• So, the IP header is word-aligned (the Ethernet header is 14 bytes)

• skb = dev_alloc_skb (length + NET_IP_ALIGN) 
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Copy the received data

• Copy the packet payload from the DMA buffer to the skb
• static inline vokd skb_copy_to_linear_data (struct sk_buff *skb, 

const void *from, const unsigned int len);
• static inline vokd skb_copy_to_linear_data_offset (struct sk_buff

*skb, const void *from, const unsigned int len);
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struct net_device

• struct net_device
• Represents a single network interface
• Allocation with alloc_etherdev()
• Registration with register_netdev()
• Unregistration with unregister_netdev()
• Liberation with free_netdev()
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struct net_device_ops

• Methods of a network interface
• ndo_open(), called when the network interface is up
• ndo_close(), called when the network interface is down
• ndo_start_xmit(), start the transmission of a packet
• ndo_get_stats(), gets statistics
• ndo_do_ioctl(), implement device specific operations
• ndo_set_rx_mode(), select promiscuous, multicast, etc.
• ndo_set_mac_address(), set the MAC address
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Transmission

• The ndo_start_xmit() starts the transmission of a packet
• The driver sets up DMA buffers
• The driver can also stop the queue with netif_stop_queue() 

depending on the number of free DMA buffers available

• When the packet has been sent, an interrupt is raised, the 
driver will do
• Acknowledging the interrupt
• Freeing the used DMA buffers
• Free the skb with dev_kfree_skb_irq()
• If the queue was stopped, start it again
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Reception

• Reception is notified by an interrupt. The interrupt handler 
should
• Allocate an skb with dev_alloc_skb()
• Reserve the 2 bytes offset with skb_reserve ()
• Copy the packet data from the DMA buffers to the skb through

skb_copy_to_linear_data () or skb_copy_to_linear_data_offset ()
• Update the skb pointers with skb_put()
• Update the skb->protocol field with eth_type_trans(skb, 

netdevice)
• Give the skb to the kernel network stack with netif_rx(skb)
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Reception: NAPI mode

• The NAPI mode allows to switch to polled mode when the 
interrupt rate is too high
• Add a struct napi_struct in the network interface private structure
• At driver initialization, register the NAPI poll operation
• netif_napi_add (dev, &bp->napi, macb_poll, 64)

• dev: the network interface
• &bp->napi: the struct napi_struct
• macb_poll is the NAPI poll operation
• 64 is the weight that represents the importance of the network interface
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Reception: NAPI mode

• When a packet has been received, interrupt handler will do

• The kernel will call our poll() operation regularly (macb_poll())
• Push packets to the network stack using netif_receive_skb() 

when receive at most budget packets
• Switch back to interrupt mode using napi_complete () if less than 

budget packets have been received, re-enable interrupts
• Must return the number of packets received
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if (napi_schedule_prep (&bp->napi)) {
/*Disable reception interrupts*/
__napi_schedule (&bp->napi); }



Communication with the PHY

• Ethernet controller handles layer 2 (MAC) communication
• An external PHY is responsible for layer 1 communication
• The MAC and PHY are connected using a MII or RMII 

interface
• MII = Media independent interface
• RMII = Reduced media independent interface

• This interface contains two wires used for the MDIO 
(management data input/output) bus 
• Ethernet driver needs to communicate with the PHY to get 

information about the link (up, down, speed, full or half duplex) 34



PHY in the kernel

• The kernel provides a framework that 
• Exposes an API to communicate with the PHY
• Allows to implement PHY drivers
• Implements a basic generic PHY driver that works with all PHY
• See ‘drivers/net/phy’
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Connection to the PHY

• The ‘mdiobus_register()’ function
• Filled the mii_bus->phy_map[] array with struct phy_device * 

pointer
• The appropriate PHY must be selected
• Connecting to the PHY allows to register a callback that will be 

called when the link changes
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int phy_connect_direct (
struct net_device *dev,
void (*handler) (struct net_device *), 
u32 flags,
phy_interface_t interface

)



Start and stop the PHY

• To make poll regularly in the PHY hardware, one must start 
• phy_start (phydev)

• When the network is stopped, the PHY must also be stopped
• phy_stop (phydev)
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Suspend and resume the PHY

• The suspend () operation
• Call netif_device_detach ()
• Do the hardware-dependent operations to suspend the devices 

(like disable the clocks)

• The resume() operation
• Call netif_device_attach()
• Do the hardware-dependent operations (like enable the clocks)

38



ethtool

• Ethtool is a userspace tool
• Allows to query low-level information from an Ethernet interface 

and to modify its configuration

• On the kernel side
• A struct ethtool_ops can be declared and connected to the struct 

net_device
• These operations can be implemented using the PHY interface 

(phy_ethtool_gset (), phy_ethtool_sset()) or using generic 
operations (ethtool_op_get_link())
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Summary

• NIC driver
• The kernel space interrupt handler controls the TX/RX packet flow
• TX/RX ring circular queue
• Packet buffer

• struct sk_buff
• A network packet entry

• set_device ()

40


