Operatmg Syste
Design and
Implementation

Lecture 22: Networking driver
Tsung Tai Yeh

Tuesday: 3:30—5:20 pm
Classroom ED-302

Acknowledgements and Disclaimer

* Slides was developed in the reference with
MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Onur Mutlu, Computer architecture, ece 447, Carnegie Mellon University

* CSE 506, operating system, 2016,
https://www.cs.unc.edu/~porter/courses/cse506/s16/slides/sync.pdf

Outline

* The packet flow in NIC
* RX/TX flow path
» Kernel space operations

* NIC hardware driver
* struct sk_buf
* Reception and transmission operations

The NIC hardware

* The NIC

e Connector: RJ45 cable,
SFP etc.

* Media: Copper, Fiber,
Radio

Network Interface Controller (NIC)

Link
Partner

/

CPU

MAC

~

RAM

— PHY

* PHY: Convert media-depend signal into standard data
* PCle network card embed a PHY

e The MAC

* Handle L2 protocol, transfer data to the CPU

https://bootlin.com/pub/conferences/2021/fosdem/chevallier-network-performance-in-the-linux-
kernel/chevallier-network-performance-in-the-linux-kernel.pdf

The packet flow

R

Application Application
Transport (L4) Transport (L4)
Network (L3) Network (L3)
Data link (L2) Data link (L2)

NIC driver NIC driver

NIC hardware . NIC hardware

L2 frame reception

MAC RAM
> 011011001 > > 1101) Buffer
(Receivequeue | || | | | [| |
CPU https://bootlin.com/pub/conferences/2021/fosd
em/chevallier-network-performance-in-the-
linux-kernel/chevallier-network-performance-in-

the-linux-kernel.pdf

* The MAC received data and write it to RAM using DMA

* A descriptor is created
* Ilts address is put in a queue :

L2 frame reception -- [RQ

MAC RAM

Buffer

% https://bootlin.com/pub/conferences/2021/fosd

em/chevallier-network-performance-in-the-
CPU linux-kernel/chevallier-network-performance-in-
the-linux-kernel.pdf

* Ainterrupt is fired
* One CPU core will handle the interrupt 7

L2 frame reception -- Unqueue

MAC RAM

> 011011001 > Buffer >

> 1101 > Buffer
|
HEEEEN

CPU

<_0111010011101001110101
| [J

* The interrupt handler acknowledges the interrupt
* The packet is processed in softirg context

* The new frame can be received in parallel

In the NIC driver

* The CPU

* Processes L3 (packets) and above, up to the application
* The interrupt handler masks interrupts

* New API (NAPI)

* An extension to the device driver in packet processing framework
* Schedules the processing in batches

* Stop de-queueing once, because
* The budget is expired (release the CPU to the scheduler)
* The queue is empty

Inside a packet

* The packet through TCP socket

* Frame checksum sequence (FCS):
* Detects any in-transit corruption of data

‘Ethemet header IP header TCP header payload -

/

dest src type
MAC MAC

‘src dst ..
port port

RX path: Packet arrives at the destination NIC

* NIC recelves.pac.kets Applications T seaes
* Match destination MAC
address Kernel space
e Verify ethernet checksum ! NIC driver
. . Packet
TX/BX ring buffer
* Circular queue
* Shared between NIC and TX RX P —
NIC driver acke
* Content AW A pufter
* Length + packet buffer pointer a NIC
s+ e g ——— [T g

11
Hardware RX queue

RX path: Packet arrives at the destination NIC

* NIC accepts packets Applications iy e
* DMA the packet to RX ring
buffer Kernel space
e NIC triggers an interrupt NIC driver
‘ t e Packet
s "‘ buffer
r% Packet
~ < buffer
a8 NIC 7

12
Hardware RX queue

Top-half interrupt processing

CPU interrupts the executed process

Switch from user space to kernel space

Top-half interrupt processing

1. Lookup IDT (interrupt descriptor table)
2. Call ISR (interrupt service routine)

a. Acknowledge the interrupt

b. Schedule bottom-half processing
3. Switch back to user space

Application
Transport (L4)
Network (L3)
Data link (L2)

NIC driver
NIC hardware

13

Bottom-half processing

* CPU initiates the bottom-half when it is free (soft-irq)
* Switch from user space to kernel space
* Driver allocates an sk-buff (skb) dynamically

 Sk-buf
* In-memory data structure that contains packet metadata
* Pointers to packet headers and payload
* Packet related information

14

Bottom-half processing

* NIC driver .

* Handles all packets fppicarions User space
in the packet buffer Kernel space

* Driver allocates sk-buff NIC driver

 Update sk-buf with packet | skb
metadata l

* Remove the Ethernet header TX RX |

e Pass sk-buff to the network Packet
stack buffer

 Call L3 protocol handler

15
Hardware RX queue

L3 processing

* L3 common processing “

* Match destination IP/socket Application
 Verify checksum

Transport (L4)
* Remove header
. . Network (L3)
* L3-specific processing
e Route IOOkUp Data ||nk (LZ)
 Combine fragmented packets NIC driver

 Call L4 protocol handler NIC hardware

16

L4 processing

L4 specific processing | Applications User space
* Handle TCP state machine
* Enqueue to socket read Kernel space
queue NIC driver

WQ || RQ

* Signal the socket ‘ Kb
X RX | Packet
buffer
~ |
> C /

E B -

Hardware RX queue

17

Application Layer processing

In thej socket read Applications ._\ T D
* Switch from user space to
kernel space ernel space
R NIC driver
Dequeue packet from socket wa |[ra

receive queue (RQ) |
* Copy packet to application skb
buffer (user space) TX RX |
* Release sk-buff Eiiﬁt
e Return back to the ~ P |
application X

E B [

Hardware RX queue

18

Transmit an application packet

In thg socket writes Applications "\ User space
* Switch from user space to
kernel space ernel space
* Writes the packet to the NIC driver

kernel buffer

v
* Calls socket’s send function
isendmsg) X RX Packet
buffer
N c if
] [

19
Hardware TX queue

L4 processing in transmit packets

* L4-specific processing
 Allocate sk-buff

* Enqueue sk-buf to socket
write queue

 Call L3 protocol handler

« Common processing
* Build header
* Add header to packet buffer
* Update sk-buf

WQ

Applications User space
Kernel space

NIC driver
RQ

Packet
buffer

‘ sk_b
€ X ? | RX
e 7

Hardware TX queue

L3 processing in transmit packets

* L3-specific processing Applications User space
* Fragment, if needed
* Call L2 protocol handler : Kernel space
NIC driver
‘ WQ | | RQ
skb
X RX Packet
buffer
N » |
> NIC
B L]

Hardware TX queue 21

L2 processing in transmit packets

* Enqueue packet to queue
discipline (qdisc)

Applications

User space

* Hold packets in a queue
* FIFO, priority scheduling
policy
* Qdisc
e Dequeue sk-buff (if NIC has
free buffers)
* Calculate TCP/IP checksum

NIC driver

" //<§::J§:;%>\\ skb
X RX

N

Kernel space

WQ

RQ

Packet
buffer

4

Qdisc

queue

* Call NIC driver’s send ‘.
function

Hardware TX queue

22

NIC processing

* NIC driver Applications
* If hardware TX queue full User space

* Stop gdisc queue
* Else

* Map packet data to DMA
e Tells NIC to send the packet ‘

Kernel space

NIC driver

* NIC

 Calculate FCS
. RX
* Send packet to the wire

e Sends an interrupt “packet is sent”
(kernel space to user space) AW

Packet w
buffer | adisc

/ gueue
* Driver frees the sk-buf, start the < \
i m _NIC]

gdisc queue

Hardware TX queue 23

NIC packet processing flow

Network stack

sk_buff net_device

Network hardware driver

Bus infrastructure

24

sk_buff

e struct sk_buff
* Represents a network packet

 Support encapsulation/decapsulation of data through the protocol
layers

* Maintain data structures

* Head: the start of the packet
Data: the start of the packet payload
Tail: the end of the packet payload
End: the end of the packet
Len: the amount of data in a packet

25

Allocating a skb

* Allocate an SKB
» dev_alloc_skb()
 Called from an interrupt handler
* On Ethernet, the size allocated is the length of packet + 2

* So, the IP header is word-aligned (the Ethernet header is 14 bytes)
* skb = dev_alloc_skb (length + NET_IP_ALIGN)

26

Copy the received data

* Copy the packet payload from the DMA buffer to the skb

e static inline vokd skb_copy_to_linear_data (struct sk_buff *skb,
const void *from, const unsigned int len);

e static inline vokd skb_copy_to_linear_data_offset (struct sk_buff
*skb, const void *from, const unsigned int len);

skb copy to linear data(skb, dmabuffer,
length);

head
data, tail ——»

’ NET_IP_ALIGN

length

27
https://bootlin.com/doc/legacy/network-drivers/network-drivers.pdf

struct net device

* struct net_device
* Represents a single network interface
 Allocation with alloc_etherdev()
 Registration with register_netdev()
* Unregistration with unregister_netdev()
e Liberation with free_netdev()

28

struct net device ops

* Methods of a network interface
* ndo_open(), called when the network interface is up
* ndo_close(), called when the network interface is down
e ndo_start_xmit(), start the transmission of a packet
* ndo_get_stats(), gets statistics
* ndo_do_ioctl(), implement device specific operations
* ndo_set_rx_mode(), select promiscuous, multicast, etc.
* ndo_set_mac_address(), set the MAC address

29

Transmission

* The ndo_start_xmit() starts the transmission of a packet
* The driver sets up DMA buffers

e The driver can also stop the queue with netif_stop_queue()
depending on the number of free DMA buffers available

* When the packet has been sent, an interrupt is raised, the
driver will do
* Acknowledging the interrupt
* Freeing the used DMA buffers
* Free the skb with dev_kfree_skb_irq()
* If the queue was stopped, start it again

30

Reception

* Reception is notified by an interrupt. The interrupt handler
should
 Allocate an skb with dev_alloc_skb()
* Reserve the 2 bytes offset with skb_reserve ()

* Copy the packet data from the DMA buffers to the skb through
skb_copy_to_linear _data () or skb_copy to linear data_offset ()

e Update the skb pointers with skb_put()

» Update the skb->protocol field with eth_type_trans(skb,
netdevice)

 Give the skb to the kernel network stack with netif rx(skb)

31

Reception: NAPI mode

* The NAPI mode allows to switch to polled mode when the
interrupt rate is too high
* Add a struct napi_struct in the network interface private structure
e At driver initialization, register the NAPI poll operation
 netif napi_add (dev, &bp->napi, macb_poll, 64)
* dev: the network interface
* &bp->napi: the struct napi_struct

* macb_poll is the NAPI poll operation
* 64 is the weight that represents the importance of the network interface

32

Reception: NAPI mode

* When a packet has been received, interrupt handler will do

if (napi_schedule_prep (&bp->napi)) {
/*Disable reception interrupts*/
__napi_schedule (&bp->napi); }

* The kernel will call our poll() operation regularly (macb_polli())

* Push packets to the network stack using netif _receive_skb()
when receive at most budget packets

e Switch back to interrupt mode using napi_complete () if less than

budget packets have been received, re-enable interrupts
* Must return the number of packets received

33

Communication with the PHY

* Ethernet controller handles layer 2 (MAC) communication
* An external PHY is responsible for layer 1 communication

* The MAC and PHY are connected using a Mll or RMII
interface
 Mil = Media independent interface
* RMII = Reduced media independent interface

* This interface contains two wires used for the MDIO
(management data input/output) bus

* Ethernet driver needs to communicate with the PHY to get
information about the link (up, down, speed, full or half duplex) ,,

PHY in the kernel

* The kernel provides a framework that
* Exposes an APl to communicate with the PHY
* Allows to implement PHY drivers
* Implements a basic generic PHY driver that works with all PHY
* See ‘drivers/net/phy’

35

Connection to the PHY

* The ‘mdiobus_register()’ function

* Filled the mii_bus->phy_map(] array with struct phy_device *
pointer

* The appropriate PHY must be selected

* Connecting to the PHY allows to register a callback that will be
called when the link changes

int phy_connect_direct (
struct net_device *dey,
void (*handler) (struct net_device *),
u32 flags,
phy_interface t interface

36

Start and stop the PHY

* To make poll regularly in the PHY hardware, one must start
* phy_start (phydev)

* When the network is stopped, the PHY must also be stopped
* phy_stop (phydev)

37

Suspend and resume the PHY

* The suspend () operation
 Call netif _device_detach ()
* Do the hardware-dependent operations to suspend the devices
(like disable the clocks)
* The resume() operation
 Call netif_device_attach()
* Do the hardware-dependent operations (like enable the clocks)

38

ethtool

 Ethtool is a userspace tool

* Allows to query low-level information from an Ethernet interface
and to modify its configuration

* On the kernel side

* A struct ethtool ops can be declared and connected to the struct
net_device

* These operations can be implemented using the PHY interface
(phy_ethtool gset (), phy_ethtool sset()) or using generic
operations (ethtool op get link())

39

summary

e NIC driver

* The kernel space interrupt handler controls the TX/RX packet flow
* TX/RX ring circular queue
* Packet buffer

e struct sk_buff
* A network packet entry

* set_device ()

40

