
Operating System 
Design and 

Implementation
Lecture 20: Journaling file system

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1



Acknowledgements and Disclaimer
• Slides was developed in the reference with 

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Onur Mutlu, Computer architecture, ece 447, Carnegie Mellon University

• CSE 506, operating system, 2016, 
https://www.cs.unc.edu/~porter/courses/cse506/s16/slides/sync.pdf

2



Outline

• Block devices vs. raw flash devices
• Journaled file system
• Flash file systems

3



Block vs. raw flash device
• Storage devices: block devices and raw flash devices

• They are handled by different subsystems and different filesystems
• Block devices

• Can be read and written to on a per-block basis, in random order, 
without erasing

• Hard disks, RAM disks
• SSD, SD cards, eMMC: flash-based storage, but have an integrated 

controller that emulates a block device, managing the flash in a 
transparent way

• Raw flash devices (driven by a controller on the SoC)
• They can read, but writing requires prior erasing
• NOR flash, NAND flash

4



Block device list

• The list of all block devices available can be found in 
‘/proc/partitions’

• /sys/block
• Stores information about

each block device

5



Partitioning

• Block devices can be partitioned to store different parts of a 
system
• The partition table is stored inside the device itself, and is read 

and analyzed automatically by the Linux kernel
• mmcblk0 is the entire device
• mmcblk0p2 is the second partition of mmcblk0 

• Two partition table formats
• MBR (Master Boot Record)
• GPT (GUID Partition Table) supports disk bigger than 2TB

• Numerous tools to create and modify partitions on a block device
• fdisk, cfdisk, sfdisk, parted, etc.

6



Transfer data to a block device

• Transfer data to or from a block device in a raw way
• This directly writes to the block device itself, bypassing any 

filesystem layer
• The block devices in ‘/dev/’ allow such raw access
• dd (disk duplicate) is the tool of choice for such transfers

• dd if=/dev/mmcblk0p1 of=testfile bs=1M count=16
Transfer 16 blocks of 1 MB from /dev/mmcblk0p1 to testfile

• dd if=testfile of=/dev/sda2 bs=1M seek=4
Transfer the complete contents of testfile to /dev/sda2, by blocks of 1 MB, 
but starting at offset 4 MB in /dev/sda2

7



File system in-consistency

• A single inode is allocated (inode number 2) marked in the inode bitmap, and a 
single allocated data block (data block 4)

• The inode is denoted I[v1], as it is the first version of this inode

8

• When appending to the file, we add a new block (Db) to it
• Update the inode, new data block, and a new version of the data bitmap B[V2]

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



File system in-consistency

• The writes of appending data don’t happen immediately 
when the user issues a write() system call
• The dirty inode, bitmap, and new data will sit in main memory (in 

the buffer cache) for some time first
• Then, the file system will issue the requisite write requests to disk
• A crash happens after one or two of these writes -> cause file-

system in-consistency

9



Journaled filesystems

• Write-ahead logging
• When updating the disk
• Before overwriting the structures in 

place
• First write down a little note on the disk
• The note describes what you are about 

to do
• By writing the note to disk -> 

guarantee that if a crash takes place 
during the update

10
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



Data journaling 

• In ext2 file system
• The disk is divided into block groups
• Each block group contains an inode bitmap, data bitmap, inodes, 

and data blocks

• In ext 3 file system
• The journal occupies some small amount of space within the 

partition or on another device
• Before writing each block group to its final disk location, we are 

now first going to write
them to the log

11
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



Data journaling

• The transaction begin (TxB)
• Tells us about the update, including information about the pending 

update (I[V2], B[V2], and Db) to the file system and transaction 
identifier (TID)

• The transaction end (TxE)
• TxE is a marker of the end of the transaction, also include TID

• Checkpoint
• Once the transaction is safely on disk, we are ready to overwrite 

the old structures in the file system
• We issue the writes I[V2], B[V2], and Db to their disk locations
• If these write complete successfully, we have done checkpointed

12
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



Data journaling

• Journal write
• Write a transaction-begin block to the log
• Write all pending data and metadata updates to the log
• Write a transaction-end block to the log
• Wait for these writes to complete

• Checkpoint
• Write the pending metadata and data updates to their final 

locations in the file system

• How about a crash occurs during the writes to the journal ?

13



Data journaling

• How about a crash occurs during the writes to the journal ?
• One simple way to do is to issue each one item (TxB, I[V2], B[V2], 

Db, TxE) at a time, waiting for each to complete -> too slow
• How about issue all five block writes at once ? (unsafe, why ?)
• Given such a big write, the disk may perform scheduling and 

complete small pieces of the big write in any order
• (1) write TxB, I[v2], B[v2], and TxE
• (2) write Db
• How about the disk loses power 

between (1) and (2) ?

14
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



Data journaling

• How about a crash occurs during the writes to the journal ?
• The file system issues the transactional write in two steps
• First, write all blocks except the TxE block to the journal
• Second, issue the write of the TxE block
• Why does this two-step method work ?

• The disk guarantees that any 512-byte
write (one block )will either happen or not

• Three phases on the current protocol to update file system
• Journal write: write TxB, metdata, and data to the log
• Journal commit: write TxE to the log, wait for write to complete
• Checkpoint: write the contents of the update to their final on-disk 

location 15
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



File system recovery after crashes

• The crash happens before the transaction is written safely 
to the log
• The pending update is simply skipped

• The crash happens after the transaction has committed to 
the log and before the checkpoint is complete
• The file system can recover the update when the system boots
• The file system recovery process will scan the log and look for 

transactions that have committed to the disk
• These transactions are replayed to write blocks to their final on-

disk locations (redo-logging)
16



Batch log updates

• How to reduce excessive write traffic during the update of 
log back to the disk ?
• To create one file, one has to update several on-disk structures

• Inode bitmap (to allocate a new inode)
• The newly-created inode of the file
• The data block of the parent directory
• The parent directory inode

• The Linux ext3 don’t commit each update to disk one at a time
• Buffer all updates into a global transaction
• Only marks the in-memory structures as dirty
• The signal global transaction is committed when it is finally time to write 

blocks to disk 17



Finite size journaling

• The log is of a finite size. What happens if the log is full ?
• The larger the log, the longer recovery will take
• No further transactions can be committed to the disk

• Circular log
• Journaling file systems treat the log as a circular data structure, 

re-using it over and over
• Once a transaction has been checkpointed, the file system should 

free the space it was occupied, allow the log space to be reused
• E.g. The journal superblock records enough information to know 

which transactions have not yet been checkpointed
18



Metadata journaling 

• In journaling file system, we are writing to the journal first 
for each write to disk -> double write traffic
• One write to the journal, the other writes to the main file system

• Data journaling (ordered journaling in Linux ext3)
• The data block (Db) is not written to the journal
• The I[v2], B[v2] are both metadata and will be logged and then 

check-pointed
• The Db will only be written once to the file system
• Linux ext3 write data blocks to the disk first before related 

metadata. Why ?
19



Block reuse

• In some form of metadata journaling
• Data blocks for files are not journaled
• A directory called foo, which contents are written to the log

• When a user deletes everything in the directory
• Freeing up block 1000 for reuse
• A new file (bar) is created
• The inode of bar is committed to disk
• Only the inode of bar is committed to the journal because 

metadata journaling is in use
• The newly-written data in block 1000 in the file bar is not 

journaled 20
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



Block reuse

• Assume a crash occurs
• The newly-written data in block 1000 in the file bar is not journaled
• The recovery simply replays everything in the log
• Write the directory data in block 1000, which overwrites the ‘bar’ 

data with old directory contents !
• In Linux ext3

• Add a new type of record to the journal, known as a revoke record
• Deletes the directory would cause a revoke record to be written to 

the journal
• Any such revoked data is never replayed

21



Other approach

• How to keep file system metadata consistent ?
• Copy-on-write (COW) file system

• Sun’s ZFS
• Never overwrites files or directories in place
• Places new updates to previously unused locations on disk
• After a number of updates are completed, COW file systems flip 

the root structure of the file system to include pointers to the 
newly updated structures

22



Other journaled Linux/UNIX file systems

• btrfs
• Integrates data checksuming, volume management, snapshots, etc.

• XFS
• High-performance file system inherited form SGI IRIX

• ZFS
• Provide standard and advanced file system and volume 

management (CoW, snapshot, etc.)

• All those file system provide the necessary functionalities 
• Symbolic links, permissions, ownership, device files, etc.

23



tmpfs: file system in RAM

• Not a block file system
• Store temporary data in RAM

• System log files, connection data, temporary files …
• More space-efficient than ramdisks: files are directly in the file 

cache, grows and shrinks to accommodate stored files

• How to use ?
• mount –t tmpfs run /var/run
• mount –t tmpfs shm /dev/shm

24



Recap: block device vs. raw flash devices

• Block devices
• Allow for random data access using fixed size blocks
• Block size is small (minimum 512 bytes, can be increased)
• Considered as reliable (rely on the hardware and software support)

• Raw flash devices
• Allow for random data access, too
• Require special care before writing on the media (erasing the 

region that is about to write on)
• Erase, write and read operations might not use the same block size
• Reliability depends on the flash technology

25



NAND flash chips: how they work ?

• Encode bits with voltage levels
• SLC (single level cell) – 1 bit per memory cell
• MLC (multi level cell) – multiple bits per cell

• Start with all bits set to 1
• Writing implies changing some bits from 1 to 0 (assuming 1 bit per cell)
• Restore bits to 1 is done via the ERASE operation
• Writing and erasing are not done on a per bit or per byte basis

• Organization
• Page: minimum unit for PROGRAM (write), example size: 4K
• Block: minimum unit for ERASE, example size: 128 K

26



NAND flash storage: organization

• Microchip SAMA5D3 Xplained
• Page size

• 2048 bytes
• OOB size

• 64 bytes
• Erase block size

• 131072 bytes

27
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



NAND flash storage: constraints

• Reliability
• Require mechanisms to recover from bit flips: ECC (Error 

Correcting Code)
• ECC information stored in the OOB (Out-of-band area)

• Lifetime
• Short lifetime compared to other storage media (between 

1,000,000 and 1,000 erase cycles per block)
• Wear leveling mechanisms are required to erase blocks evenly
• Bad block detection/handling required, too

28



NAND flash: ECC

• Error Correcting Code (ECC)
• Operates on chunks of usually 512 or 1024 bytes
• ECC data are stored in the OOB area

• Three algorithms
• Hamming: can fix up a single bit per chunk
• Reed-Solomon: can fix up several bits per chunk
• BCH: can fix up several bits per chunk

29



Memory Technology Devices (MTDs)

• Generic subsystem in Linux 
• Dealing with all types of storage media that are not fitting in the 

block subsystem
• Support media: RAM, ROM, NOR flash, NAND flash, Dataflash
• Abstract storage media characteristics and provide a simple API to 

access MTD devices
• MTD device characteristics exposed to users

• erasesize: minimum erase size unit
• writesize: minimum write size unit
• obbsize: extra size to store metadata or ECC data
• size: device size
• flag: information about device type and capabilities 30



The MTD subsystem

31
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



Flash wear leveling

• Wear leveling
• Distributing erases over the whole flash device to avoid quickly 

reaching the maximum number of erase cycles on blocks
• The wear leveling implementation affects the life time of the flash 

memory

• Can be done in
• The file system (JFFS2, YAFFS2)
• An intermediate layer dedicated to wear leveling (UBI)

32



Flash file system: JFFS2

• Flash file systems
• Rely on the MTD layer to access flash chips
• Legacy flash file system: JFFS2, YAFFS2

• Journaling flash file system version 2 (JFFS2)
• Supports on-the-fly compression
• Wear leveling, power failure resistant
• Available in the official Linux kernel
• The large partitions affects the boot time
• http://www.linux-mtd.infradead.org/doc/jffs2.html

33
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



Flash file system: YAFFS2

• Yet another flash file system version 2 
(YAFFS2)
• Mainly supports NAND flash
• No compression
• Wear leveling, power failure resistant
• Fast boot time
• Not part of the official Linux kernel
• https://yaffs.net/

34
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



UBI/UBIFS

• Unsorted block images (UBI)
• Aimed at replacing JFFS2 by addressing

its limitations
• Volume management system on top

of MTD devices
• Allows to create multiple logical volumes

and spread writes across all physical blocks
• Managing the erase blocks and wear

leveling

• Drawback
• Noticeable space overhead

35
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



UBI layout

36
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



Summary

• Journaling reduces recovery time 
• From O(size-of-the-disk-volume) to O(size-of-the-log)
• Speeding recovery substantially after a crash and restart

• The ordered metadata journaling
• Reduce the amount of traffic to the journal while still preserving 

reasonable consistency guarantees for both file system metadata 
and user data

• Flash file systems
• JAFFS2, YAFFS2, UBI/UBIFS

37


