i
e

Operating System -
Capstone

Lecture 2: OS Introduction
Tsung Tai Yeh

Tuesday: 3:30 —5:20 pm
Classroom: ED-302

Acknowledgements and Disclaimer

* Slides was developed in the reference with
MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Christopher Hallinan, Embedded Linux Primer, A Practical Real-World Approach,
Prentice Hall, 2010

What is the purpose of an OS

* Abstract the hardware Operating System

* Convenience and portability
Instruction sets (RISC-V, X86)

* Share the hardware among
multiple applications Hardware (CPU, Memory, Storage)

* Isolate applications
e Security and privacy issue

* Provide high performance
 Hardware resource management

* Multiplex the hardware

What is the OS design approach ?

* The small view

* A hardware management library

* Problem of this method ? Operating systems
* The big view

* Abstraction
* Hide details of underlying hardware

* E.g. processes open and access files instead of issuing raw
commands to hard drive

* Resource management

e Controls how processes share hardware resources (CPU,
memory, disk, etc.) .

Outline

* Operating system basics
* MIT JOS kernel
* Bootstrap
 Basic Input Output System (BIOS)
* Boot loader
* Unix Shell

Anatomy of an Embedded System

Flash memory

Main memory
|

DRAM J

Wireless Modem

|
FLASH J

CPU Processor

802.11
Chipset

|_

Real-Time
(TOD) Clock

Serial
UART

USB Ethernet
Controller | Controller

Serial
port

I

—

Ethernet
(LAN)

USB

git clone https://pdos.csail.mit.edu/6.828/2018/jos.git

A Small OS kernel -JOS |+ as kern/entry.s

' + cc kern/entrypgdir.c

_ |4 cC kern/init.c
* JOS was from MIT that includes the i, . kem/lcolnsme,c

skeleton of OS and helps you get { + cc kern/monitor.c
through booting procedure | + cc kern/printf.c
* Run JOS on QEMU emulator , + cc kern/kdebug.c

|+ cC lib/printfmt.c

* Include a boot loader |+ cc lib/readline.c

* Loading the kernel |+ cc lib/string.c

 Kernel message can be prompt printed i+ Id obj/kern/kernel
by the small monitor (console) §+ as boot/boot.S

e« QEMU wiki: ' + cc -Os boot/main.c

i+ |d boot/boot
i boot block is 390 bytes (max 510)

i + mk obj/kern/kernel.img

https://wiki.gemu.org/Hosts/Linux
* Demo JOS

The bootstrap

* The contents of emulated PC’s virtual hard disk
 Supplying the file obj/kern/kernel.img as

* The hard disk image contains ERIECEEE LR =T

entering test backtrace

* the bootloader (obj/boot/boot) [EaE

entering test backtrace

; entering test backtrace
* the kernel (ObJ/kernel) entering test:backtrace
entering test _backtrace
leaving test_backtrace
leaving test _backtrace
leaving test _backtrace
leaving test _backtrace
leaving test _backtrace
leaving test _backtrace
Welcome to the JOS kernel montitor!
Type 'help' for a list of commands.
K> |}

K> kerninfo

Special kernel symbols:
_start 0010000c (phys)
entry f010000c (virt) 0010000c (phys)

etext f01019e9 (virt) 001019e9 (phys)
edata f0113060 (virt) 00113060 (phys)
end f01136a0 (virt) 001136a0 (phys)
Kernel executable memory footprint: 78KB

Basic Input/Output System (BIOS)

* Basic input/output system (BIOS)
* A set of system-configuration software routines
* Know the low-level details of hardware architecture

* When power is first applied to the computer, BIOS immediately
takes control of the processor

* Stored in Flash memory
* Primary responsibility
* Initialize the hardware

e checking the amount of memory installed
* Load an operating system from the storage device

What is difference between
The bootloader bootloader and BIOS ?

* The bootloader
* The software program that performs same functions as BIOS

* The bootloader’s jobs on power-up
* Initializes hardware components such as memory, |/O, graphics controllers

Initializes system memory

* In preparation for passing control to the operating system
Allocates system resources

* Memory and interrupt circuits to peripheral controllers
Loading the operating system image
Passing any required startup information

* Total memory size, clock rates, serial port speeds and other low-level hardware specific
configuration data

* Check the bootloader files: boot/boot.S, boot/main.c in JOS

10

Typical Embedded Linux Setup

Ethernet Hub

USB/RS-232

11

U-Boot 2010.12-xes_r3 (Aug 25 2011 - 11:04:04)

Sta rti ng the ta rget boa rd CPUB: P2020E, Version: 1.0, (0x80ea0d0l1@)

Core: ES500, Version: 4.0, (0x80211040)
Clock Configuration:
CPUO:1066.667 MHz, CPUl1:1066.667 MHz,
CCB:533.333 MHz,
DDR:400 MHz (800 MT/s data rate) (Asynchronous), LBC:133.333 MHz

* When power is first applied D-cache 32 k6 enabled

I-cache 32 kB enabled

A bootloader in the target board " Rev SA, Serial# 36099061, Cfg 90815136-1
takes control of the processor [RN AEIEa
* Initializes low-level hardware FLasH: 256 MiB
+ Processor and memory setup s
* Initializes UART and Ethernet R
controller et
* Configures serial ports st

37 C local / 59 C remote (adt7461@4c)

37 C local (lm75@48)

eTSEC1 connected to Broadcom BCM5482S
eTSEC2 connected to Broadcom BCM5482S
eTSEC1, eTSEC2
POST i2c PASSED
Hit any key to stop autoboot: ©

12

Booting the kernel

* Load kernel image

* Uses “tftpboot” instructs
U-Boot to load the kernel
image into memory

* The “bootm” (boot from
memory image) command
instructs U-boot to boot
the kernel

SMC91111: MAC 52:54:00:12:34:56

Using SMC91111-0 device
TFTP from server 192.168.2.135:
Filename ’ulmage’ .
oad address: Ox?fcO
IR T R TV 131813131810 318 18 8 ia 18 i3 i iaiaidia 2iaiaiRiaia didiBidiaiaididididiaiiaidiRidiaiaiaisidiziidiaiaiaididigiaidiziaidid
1318 R IRIRIR R iR IR IS R iR iR iRiRiRiR iR iR giRiR R iRiRiR iR iR iRig R iR iR iR RiRiRIR AR R IRRINIRIRRIRRIRNRRRFFR BB RR
1312:31803:8:3:8 34 k‘

our IP address is 192.168.2.116

paone

ytes transferred = 2047320 (1f3d58 hex)
Emreboy # bootm 7fcO
i Booting kernel from Legacy Image at 00007fcO ...
Image Name: Linux-3.7.1
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 2047256 Bytes = 2 MiB
Load Address: 00008000
Entry Point: 00008000
XIP Kernel Image ... OK
K

tarting kernel
done,

Jncompressing Linux. .. booting the kernel.

* Unlike the BIOS in a desktop

* The bootloader ceases to exist when the Linux kernel takes control

13

aaci-plo41 fpga:04: FIFD 512 entries
TCP: cubic regis

Booting the kernel

0.4524111 ethO: link up

0.4748131 Sending DHCP requests .I[0.5894231 input: ImExPS-/Z2 Generic Exp
lorer Mouse as rsdevices/fpga:07?/seriol/input/inputi
.» OK

° Before issuing a Iogin “1:[:,? IP-Config: Got DHCP answer from 192.168.2.1, my address is 192.16
3.3001121 IP-Config: Complete:
prompt

3.3024911 device=eth0, addr=192.168.2.116, nask=255.255.255.0, gw=192.
Ziuid

* Linux mounts a root file

system

.3095121 host=192.168.2.116, domain=, nis—-domain=(none)
.3119681 bootserver=192.168.2.1, rootserver=192.168.2.135, rootpath=

.3171011 #O: ARM ? Interface PLO41 rev0 at 0x10004000, irg 24
.4003041 UFS: Mounted root (nfs filesystem) on device 0:9.
3.4070361 Freeing init memory: 140K

* A root file system contains AR

3
3
3.3121631 nam =r0=192.168.2.1I[3.3147611 ALSA device list:
3
3

emreboy: Getting IP via DHCP, waitm

* Application systems
e System libraries
* Utilities that make up a GNU/Linux system

14

First User Space Process: init

e After “init” Stage INIT: version 2.78 booting

* The kernel owns all system memory and operates with full
authority over all system resources

* “init” application program
* The Linux kernel spawns after completing internal initialization and
mounting its root file system
* When the kernel start “init”, it is said to be running in user space
* Then, the user space process has restricted access to the system
* Must use kernel system calls to request kernel services

15

Flash usage Top of Flash

Bootloader &
configuration

* When booted

A file system image stored in Flash is read into a Linux
ramdisk block device Ramdisk File System

* Linux ramdisk block device is mounted as a file system Image
and accessed only from RAM

* Flash memory layout

* The bootloader is often placed in the top or bottom of the
Flash memory array

* The Linux kernel and ramdisk file system images are compressed
* The bootloader handles the decompression during the boot cycle

Linux kernel image

Upgrade space

16

Memory Management Unit (MMU)

* MMU is a hardware engine

* Enable an operating system to control over its address space and
the address space it allocates to processes

* The purpose of MMU

* Access rights

* Allow an operating system to assign specific memory-access privileges to
specific tasks

* Memory translation
* Allow an operating system to virtualize its address space

17

Address space: 0 KB
Single user machine

* Early systems 64 KB

* The OS was set of routines
(a library)

* One running program (a process)

* Starting at physical address 64k
and use the rest of memory

* Life was sure easy

* What are problems of this physical
address space ?

MaXx

Operating system
(code, data, etc.)

Current Program
(code, data, etc.)

18

Address space:
multiprogramming

* Multiprogramming & Time
sharing
* Assuming a single CPU

* The OS chooses one of the
processes, while the others sit in
the ready queue waiting to run

* What are problem of this
address space ?

O KB

64 KB

128 KB

192 KB

256 KB

320 KB

384 KB

448 KB
512 KB

Operating system
(code, data, etc.)

free

Process C
(code, data, etc.)

Process B
(code, data, etc.)

free

Process A
(code, data, etc.)

free

free

19

Address space

168 < User code CQHNGT read from nor write to these addrasses?
_\- dﬂ‘ing 50 l"ESLI]_tS in& EEgmﬂl'Itﬂtiﬂﬂ Falllt ﬁx(aaeeaee — TﬂSK_SIZE
(F Random stack offset
[] [’ -
It is the running program’s Stack (grows down)
i ' RLIMIT STACK (e.g., 8MB)

} Random mmap offset

view of memory in the system
Memory Mapping Segment

File mappings (including dynamic libraries) and anonymous

* Keep track of where it is in the mappings. Example: /1ib/libe.so
function call chain 1l

* Allocate local variables

3GB . program break
! r brk
Heap U
. Heap ;tart_bﬁk
* Used for dynamically-allocated L Randon brk offset
user-managed memory' ma”OC() Uninitialized statich\rs;r‘siealenst, filled with zeros.

Example: static char *userName;

CO d e Data segment end_data

Static variables initialized by the programmer.
) Segments Example: static char *gonzo = "God’s own prototype”; start_data

Text segment (ELF) end_code
Stores the binary image of the process (e.g., /bin/gonzo) |g. ocoisass

k \ e

https://hackmd.io/@ofAlpaca/r1L5Ecc_7?type=view 20

Virtualizing memory

* Virtual memory

* lllusion of a large, private, uniform store for multiple running
processes on top of a single, physical memory

e Benefit:

* Efficient use of physical memory

* By presenting the appearance that the system has more memory thanis
physical present

* Prevent one process from errantly accessing memory

* The kernel can enforce access rights to each range of system memory that
it allocates to a task or process

21

Case Study: Virtualizing memory

Prompt> ./mem

* Calling malloc() to allocate memory

i #include <stdlib.h>

i #include <sys/time.h>

| #include <assert.h>

int main(int argc, char *argv([]) {

int *p = malloc (sizeof(int));

What are outputs of
*p-?

Address pointed to by p: 0x200000

i assert(p != NULL); L Pl

i printf(“(%d) address pointed to by p: %p\n”, getpid(), p); | P:2

E *p=0; E P:3

| while(1){ ' pa

: Spin(1); pis

i *p=*p+1; ;

i printf(“(%d) p: %d\n”, getpid(), *p); i

! } E

i return 0; } i mem.cC

___ 22

Case study: Virtualizing memory
What are outputs of *p ?

P >, -
rompt>./mem &; ./mem & 1] 24113

* Process identifier (PID) is [2] 24114
unique per running process (24113) Address pointed to by p: 0200000
e Each running program has (24114) Address pointed to by p: 0x200000

allocated memory at the (24113) P: 1

same address (0x200000) gjﬁg; E

1
2
* How to update the value at (24114)pP: 2
0x200000 independently ? (24113)P: 3
3

4

4

e Each process accesses its (24114) P:
own private virtual address (24113) P:
space (24114) P:

23

Application

Execution Contexts Program
]

C Library

* Consider to open a file and issue a read T | Read
request Request
* The read function call begins in user space,
in the C library read() function Linux Kernel
* The Clibrary issues a read request to the
kernel EE
* A context switch from the user to kernel :
space IDE Driver

* Inside the kernel, the read requests results in
a hard-drive access requesting the sectors
containing the file’s data

* The hard-drive read is asynchronous issued

24

Application

Execution Contexts cont. Program
]

C Library

Read
Request

e Consider to open a file and issue a read
request

* When the data is ready, the hardware
interrupts the processor

* When the hard disk has the data ready,
its posts a hardware interrupt

* When the kernel receives the hardware
interrupt, its suspends whatever process
was executing and proceeds to read the
waiting data from the drive

Linux Kernel

-
IDE Driver

25

Each running program is call process

HOW dOeS OS WQrk? — 1. Instructions: implement the

program’s computation
Process — 2. Data: the variables on which
the computation acts

A 3 Stack: organize the program’s
procedure calls

User
Space <She|D <V|m> Each process can access
- only its own memory

System call

Kernel
space v Kernel

Applications access beneath
hardware only via system
calls

[CPU] [Storage] 2

\4

Device drivers

Many system calls

fork() Create a process

exit() Terminate the current process

wait() Wait for a child process to exit
open(filename, flag) Open a file; the flags indicate read/write
read(fd, buf, n) Read n bytes from an open file into buf
write(fd, buf, n) Write n bytes to an open file

close(fd) Release open file fd

dup(fd) Duplicate fd

pipe(p) Create a pipe and return fd’s in p
fstat(fd) Return info about an open file

unlink(filename) Remove a file

27

Case study 1: How to use system calls ?

* Applications access the hardware only through system calls

* Spin(): A function that repeatedly checks the time and
returns once it has run for a second

#include <stdlib.h>
#include <sys/time.h>
#include <assert.h>
int main(int argc, char *argv[]) {
if (argc 1= 2)
fprint(stderr, “usage: cpu <string>\n"); exit(1);
char *str = argv[1];
while (1){
Spin(1);
printf(“%s\n”, str); }
return O;

28

How to use system calls ?

| #include <stdlib.h>

* gcc -0 cpu cpu.c —Wall i#include <sys/time.h>

* Prompt>./cpu “A” | #finclude <assert.h>
! int main(int argc, char *argv([]) {

* What do outputs look like? ! if (argc I= 2) i
e A i forint(stderr, “usage: cpu <string>\n"); exit(1);

.« A] char *str = argv[1]; i

i while (1){ i

* A i Spin(1); i

* How to stop this program? ! i O_p””tf(%s\n”, str); } |
e Control-c in Unix to halt } '

this program

* How about
e prompt>./cpuA & ./cpuB & ./cpuC&./cpuD &

29

How to trace system call ?

* In Linux
* strace /bin/Is

[ttyeh@linuxl I0C5226]% strace /bin/1s

execve("/bin/1s", ["/bin/1s"], 0x7ffc641ab9ad /* 50 vars */) = 0

brk(NULL) = 0x55931c67b000O

arch_prctl(0x3001 /* ARCH_??? */, 0x7ffdda727190) = -1 EINVAL (Invalid argument)

access("/etc/1d.so.preload”, R_OK) = -1 ENOENT (No such file or directory)

openat(AT_FDCWD, "/opt/remi/php74/root/usr/11b64/glibc-hwcaps/x86-64-v3/11bselinux.so.1", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No

such file or directory)

stat("/opt/remi/php74/root/usr/11b64/glibc-hwcaps/x86-64-v3", 0x7ffdda7263a0) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/opt/remi/php74/root/usr/11b64/glibc-hwcaps/x86-64-v2/11ibselinux.so.1", O RDONLY|O CLOEXEC) = -1 ENOENT (No
such file or directory)

stat("/opt/remi/php74/root/usr/11b64/glibc-hwcaps/x86-64-v2", 0x7ffdda7263a0) = -1 ENOENT (No such file or directory)

openat(AT_FDCWD, "“/opt/remi/php74/root/usr/11b64/tls/haswell/x86_64/11bselinux.so.1", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such
file or directory)

e “Is” command uses many system calls such as “execve”

30

/O and File Descriptor

* A file descriptor
* a small integer representing a kernel-managed object (read/write)
* an index into a per-process table
* Every process has a private space of file descriptors start at zero

* A process
e Reads from file descriptor O (standard input)
» Write to file descriptor 1 (standard output)
» Write error messages to file descriptor 2 (standard error)

31

/O and File Descriptor

* The read and write system calls read bytes from and write
bytes to open files named by file descriptors

char buf[512]; int n;

for(;;){
n = read(0, buf, sizeof(buf));
if(n == 0) break;

1. read (fd, buf, n) reads at most n bytes from
the file descriptor fd, copies them into buf
and return the number of bytes read

2. write(fd, buf, n) writes n bytes from buf to

fin<0) {fprintf(z, “read error\n”); the file descriptor fd and return the number
} 3. What does this program fragment work ?

if(write(1, buf, n) !=n) {
fprintf(2, “write error\n”);
exit();

a. Copy data from its standard input to its
standard output.
b. If an error occurs, it writes a message to

exit(); of bytes written
the standard error 3

https://github.com/mit-pdos/xv6-riscv/blob/riscv/kernel/entry.S

The first process and system call in JOS

* When the RISC-V computer powers on
* Runs a boot loader in read-only memory

.section .text

.global _entry

w 0 N G wv

_emEry
* The boot loader loads kernel into memory # set up a stack for C.
o # stacke is declared in start.c,
* The CPU executes OS starting at _entry | s spicl . same e sl e
* The instructions at _entry set up a 11 # sp = stacke + (hartid * 4606)
stack so that the OS can run C code 12 la sp, stacke
e oge 13 1i a@, 1024*4
* An initial stack: stackO 3y .
* The code at _entry loads the stack 15 addi a1, al, 1
pointer register sp with the address i mul a0, ae, al
stackO + 4096 Y SAAIShy. = PR
. 18 # jump to start() in start.c
* The loader loads the kernel at physical 19 el sEert
address 0x80000000

* The address range 0x0:0x80000000 contains I/O devices

33

X &= ~MSTATUS_MPP_MASK;

X | = MSTATUS_MPP_S;

w_mstatus(x);

* The function “start” performs
configurations that switches to B iy,
supervisor mode. e

» Set the privilege mode to supervisor ~ * e
in the register “mstatus” i g 3

* Set the return address to main by fE:Z?ifﬁ:ﬁtiE_sm e
writing main’s address into the
register “mepc”

* Writing 0 into the page-table register = e
“satp” to disable virtual address
translation

timerinit();

* “start” returns to supervisor mode by ¢ weocewso:

w_tp(id);

Calling llmret” £ F euiteh toocunarvicor mode and Sumn o mainf)
https://github.com/mit-pdos/xv6-riscv/blob/riscv/kernel/start.c . asm volatile("aret"); "

https://github.com/mit-pdos/xv6-riscv/blob/riscv/kernel/main.c

The first process

11 main()

12 |
* After main initializes several devices = 0 - o
and subsystems, it creates the o .
first process by calling “userinit” B PR B
* The first process makes the first - N o e
system call 2 lminithart0; /7 tum on paging
* initcode.S loads the number for s Liede | emmems
the exec system call, SYS EXEC A - i el adusind iierd
into register a7 i S S
* The kernel uses the number in ol virs. sl wordunt
register a7 to call the desired system == vireioaisianien; /7 entaced hara aisk
call s . mumenesem
33 started = 1;

e Calls “ecall” to re-enter the kernel

35

The Unix Shell

* [t’s the Unix command-line user interface
e Bourne Again Shell (BASH), C Shell, Korn Shell
* Primary purpose is to read commands and run other programs

* Programs can be run in Bash by entering commands at the
command-line prompt

* Advantages
* Automating repetitive tasks
* Bash shell script language
* The shell uses system calls to set up redirection, and pipes ...
* |s > file, Is | wc—1

36

Case Study: How to implement “cat < input.txt”?

* The system call “fork” copies the parent’s file descriptor table
along with its memory

* The child starts with exactly the same open files as the parent

i 1. After the child closes file descriptor 0

! i 2. Open uses file descriptor 0 for the newly

' argv[0] = “cat”; ; .

! argv[1] = 0; i opened input.txt

If(fork() == 0) { // child process i 3. The system call “exec” replaces the calling

close (0); process’s memory but preserves its file table.

open(“input.txt”, O_RDONLY);
exec(“cat”, argv);

37

Implement “echo hello; echo world > output”

* Fork copies the file descriptor table, each underlying file
offset is shared between parent and child

=

The file attached to file descriptor 1 will
contain the data “hello world”.

The wait system call ensures the parent to
run only after the child is done

The write in the parent picks up where the
child’s write left off.

write(1, “hello”, 6);
exit();

N

wait();
write(1, “world\n”, 6);

w

—-----::------
®
wn
(p]
——

38

Implement “echo hello; echo world > output”

* The dup system call duplicates an existing file descriptor,
return a new one that refers to the same underlying |/O object.

 fd = dup(1); 1. Both file descriptors share an offset, just as
{ write(1, “hello”, 6); the file descriptors duplicated by fork do

* Using dup to implement commands: 2>&1

* The 2>&1 tells the shell to give the command a file descriptor 2 that
is a duplicate of descriptor 1

* “|s existing-file non-existing-file > tmp1”

* Both the name of the existing file and the error message for the
non-existing file will show up in the file tmp1

39

Pipes char *argv[2];
1 argv[0] = “wc”;
* A pipe ;angEll) =0;
* A small kernel buffer PIPELR); |
as a pair of file descriptors, one | If(fork() == 0) {// child process
for reading and one for writing close(0);
* Provide a way for processes dup(p[0]);
to communicate close(p[0]);
close(p[1]);

e “dup” system call
* Duplicates an existing file

exec(“/bin/wc”, argv);
} else { // parent process

descriptor, return a new one that close(p[0]);
refers to the same underlying write(p[1], “hello world\n”, 12);
/0 object. close(p[1]);

[e e e

* “echo hello world | wc”

How to implement a shell?

* How to implement a shell in rpi3 board in Lab 1 ?
* Follow this tutorial: https://github.com/bztsrc/raspi3-tutorial
e Using uart_init(), uart_getc(), uart_send() and uart_puts() routines

e
i#include “uart.h”

i int strcmp(const char *a, const char *b){ ...}
L int main()

H{

// read command

1
|
I
uart_init(); // set up serial console E
|
|

Concurrency support of the OS

] #mclude <stdlib.h>

] ! tinclude <stdio.h>

i volatile int counter = 0;
i int loops;
i void *worker (void *arg) {

inti;

for(i = 0; i < loops; i++) counter ++

1. The main program creates two
i threads using pthread_create()
i 2. Athread as a function running
§ within the same memory
§ space as other functions
~ return NULL} . 3. More than one of them active
int main(int argc, char *argv([]) { | i
loops = atoi (argv[1]); i at a time
pthread_t p1, p2; i 4. Each thread starts runningin a
printf(Initial value : %d\n, counter); : .
; routine called worker()

pthread_create(&p1, NULL, worker, NULL);
pthread_create(&p2, NULL, worker, NULL); 5. It simply increments a counter
pthread_join(&p1, NULL, worker, NULL); .

in a loo
pthread_join(&p2, NULL, worker, NULL); P
printf(“Final value : %d\n”, counter);

return O; }

thread.c "

Concurrency support of the OS

! #mclude <stdlib.h>

] ! #include <stdio.h>

i volatile int counter = 0;

E int loops;

i void *worker (void *arg) {
inti;
for(i = 0; i < loops; i++) counter ++
return NULL; }

int main(int argc, char *argv([]) {
loops = atoi (argv[1]);
pthread_t p1l, p2;
printf(Initial value : %d\n, counter);
pthread_create(&p1, NULL, worker, NULL);
pthread create(&p2, NULL, worker, NULL);
pthread_join(&p1, NULL, worker, NULL);
pthread_join(&p2, NULL, worker, NULL);
printf(“Final value : %d\n”, counter);
return O; }

-

prompt> gcc —o thread thread.c —
Wall —pthread
Prompt> ./thread 1000

What are outputs of this program?

Initial value : 0
Final value: 2000

43

Concurrency support of the OS

] #mclude <stdlib.h>

- ! tinclude <stdio.h>

i volatile int counter = 0;

i int loops;

i void *worker (void *arg) {
inti;
for(i = 0; i < loops; i++) counter ++
return NULL; }

int main(int argc, char *argv([]) {
loops = atoi (argv[1]);
pthread t p1l, p2;
printf(Initial value : %d\n, counter);
pthread_create(&p1, NULL, worker, NULL);
pthread create(&p2, NULL, worker, NULL);
pthread_join(&p1, NULL, worker, NULL);
pthread_join(&p2, NULL, worker, NULL);
printf(“Final value : %d\n”, counter);
return O; }

Prompt> ./thread 100000
Initial value: O

Final value : 143012
Prompt> ./thread 100000
Initial value: O

Final value : 137298

Why are outputs are different in
these two runs ?

Ans: the update of “counter”
doesn’t execute atomically.

44

