
Operating System
Capstone

Lecture 2: OS Introduction
Tsung Tai Yeh

Tuesday: 3:30 – 5:20 pm
Classroom: ED-302

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Christopher Hallinan, Embedded Linux Primer, A Practical Real-World Approach,
Prentice Hall, 2010

2

What is the purpose of an OS

• Abstract the hardware
• Convenience and portability

• Multiplex the hardware
• Share the hardware among

multiple applications

• Isolate applications
• Security and privacy issue

• Provide high performance
• Hardware resource management

3

Hardware (CPU, Memory, Storage)

Instruction sets (RISC-V, X86)I/O
Device Driver

Operating System

What is the OS design approach ?

• The small view
• A hardware management library
• Problem of this method ?

• The big view
• Abstraction

• Hide details of underlying hardware
• E.g. processes open and access files instead of issuing raw

commands to hard drive
• Resource management

• Controls how processes share hardware resources (CPU,
memory, disk, etc.) 4

Process 1 Process N …
Operating systems

Hardware

Outline

• Operating system basics
• MIT JOS kernel
• Bootstrap
• Basic Input Output System (BIOS)
• Boot loader
• Unix Shell

5

Anatomy of an Embedded System

6

CPU Processor

Serial
UART

USB
Controller

Ethernet
Controller

FLASHFLASH

Flash memory DRAMDRAM

Main memory

802.11
Chipset

Wireless Modem

Ethernet
(LAN)

USB

Real-Time
(TOD) Clock

Serial
port

A Small OS kernel -JOS

• JOS was from MIT that includes the
skeleton of OS and helps you get
through booting procedure
• Run JOS on QEMU emulator
• Include a boot loader
• Loading the kernel
• Kernel message can be prompt printed

by the small monitor (console)
• QEMU wiki:

https://wiki.qemu.org/Hosts/Linux
• Demo JOS

7

+ as kern/entry.S
+ cc kern/entrypgdir.c
+ cc kern/init.c
+ cc kern/console.c
+ cc kern/monitor.c
+ cc kern/printf.c
+ cc kern/kdebug.c
+ cc lib/printfmt.c
+ cc lib/readline.c
+ cc lib/string.c
+ ld obj/kern/kernel
+ as boot/boot.S
+ cc -Os boot/main.c
+ ld boot/boot
boot block is 390 bytes (max 510)
+ mk obj/kern/kernel.img

git clone https://pdos.csail.mit.edu/6.828/2018/jos.git

The bootstrap

• The contents of emulated PC’s virtual hard disk
• Supplying the file obj/kern/kernel.img as

• The hard disk image contains
• the bootloader (obj/boot/boot)
• the kernel (obj/kernel)

8

Basic Input/Output System (BIOS)

• Basic input/output system (BIOS)
• A set of system-configuration software routines
• Know the low-level details of hardware architecture
• When power is first applied to the computer, BIOS immediately

takes control of the processor
• Stored in Flash memory

• Primary responsibility
• Initialize the hardware
• checking the amount of memory installed
• Load an operating system from the storage device

9

The bootloader
• The bootloader

• The software program that performs same functions as BIOS
• The bootloader’s jobs on power-up

• Initializes hardware components such as memory, I/O, graphics controllers
• Initializes system memory

• In preparation for passing control to the operating system
• Allocates system resources

• Memory and interrupt circuits to peripheral controllers
• Loading the operating system image
• Passing any required startup information

• Total memory size, clock rates, serial port speeds and other low-level hardware specific
configuration data

• Check the bootloader files: boot/boot.S, boot/main.c in JOS
10

What is difference between
bootloader and BIOS ?

Typical Embedded Linux Setup

11

USB/RS-232

Ethernet Hub

Starting the target board

• When power is first applied
• A bootloader in the target board

takes control of the processor
• Initializes low-level hardware

• Processor and memory setup
• Initializes UART and Ethernet

controller
• Configures serial ports

12

Booting the kernel

• Load kernel image
• Uses “tftpboot” instructs

U-Boot to load the kernel
image into memory

• The “bootm” (boot from
memory image) command
instructs U-boot to boot
the kernel

• Unlike the BIOS in a desktop
• The bootloader ceases to exist when the Linux kernel takes control

13

Booting the kernel

• Before issuing a login
prompt
• Linux mounts a root file

system
• A root file system contains

• Application systems
• System libraries
• Utilities that make up a GNU/Linux system

14

First User Space Process: init

• After “init” stage
• The kernel owns all system memory and operates with full

authority over all system resources

• “init” application program
• The Linux kernel spawns after completing internal initialization and

mounting its root file system
• When the kernel start “init”, it is said to be running in user space
• Then, the user space process has restricted access to the system
• Must use kernel system calls to request kernel services

15

INIT: version 2.78 booting

Flash usage

• When booted
• A file system image stored in Flash is read into a Linux

ramdisk block device
• Linux ramdisk block device is mounted as a file system

and accessed only from RAM

• Flash memory layout
• The bootloader is often placed in the top or bottom of the

Flash memory array
• The Linux kernel and ramdisk file system images are compressed
• The bootloader handles the decompression during the boot cycle

16

Bootloader &
configuration

Linux kernel image

Ramdisk File System
Image

Upgrade space

Top of Flash

Memory Management Unit (MMU)

• MMU is a hardware engine
• Enable an operating system to control over its address space and

the address space it allocates to processes

• The purpose of MMU
• Access rights

• Allow an operating system to assign specific memory-access privileges to
specific tasks

• Memory translation
• Allow an operating system to virtualize its address space

17

Address space:
Single user machine
• Early systems

• The OS was set of routines
(a library)

• One running program (a process)
• Starting at physical address 64k

and use the rest of memory
• Life was sure easy
• What are problems of this physical

address space ?

18

Operating system
(code, data, etc.)

Current Program
(code, data, etc.)

0 KB

64 KB

max

Address space:
multiprogramming
• Multiprogramming & Time

sharing
• Assuming a single CPU
• The OS chooses one of the

processes, while the others sit in
the ready queue waiting to run

• What are problem of this
address space ?

19

Operating system
(code, data, etc.)

0 KB

free
64 KB

Process C
(code, data, etc.)

128 KB

Process B
(code, data, etc.)

192 KB

free
256 KB

Process A
(code, data, etc.)

320 KB

free

free

384 KB

448 KB

512 KB

Address space

• It is the running program’s
view of memory in the system

• Stack
• Keep track of where it is in the

function call chain
• Allocate local variables

• Heap
• Used for dynamically-allocated

user-managed memory, malloc()
• Code

• Segments

20https://hackmd.io/@ofAlpaca/r1L5Ecc_7?type=view

Virtualizing memory
• Virtual memory

• Illusion of a large, private, uniform store for multiple running
processes on top of a single, physical memory

• Benefit:
• Efficient use of physical memory

• By presenting the appearance that the system has more memory than is
physical present

• Prevent one process from errantly accessing memory
• The kernel can enforce access rights to each range of system memory that

it allocates to a task or process

21

Case Study: Virtualizing memory

• Calling malloc() to allocate memory

22

#include <stdlib.h>
#include <sys/time.h>
#include <assert.h>
int main(int argc, char *argv[]) {

int *p = malloc (sizeof(int));
assert(p != NULL);
printf(“(%d) address pointed to by p: %p\n”, getpid(), p);
*p = 0;
while(1){

Spin(1);
*p = *p + 1;
printf(“(%d) p: %d\n”, getpid(), *p);

}
return 0; }

What are outputs of
*p ?

Address pointed to by p: 0x200000
P: 1
P: 2
P: 3
P: 4
P: 5
…

mem.c

Prompt> ./mem

Case study: Virtualizing memory

• Process identifier (PID) is
unique per running process

• Each running program has
allocated memory at the
same address (0x200000)

• How to update the value at
0x200000 independently ?
• Each process accesses its

own private virtual address
space

23

Prompt> ./mem &; ./mem &
What are outputs of *p ?

[1] 24113
[2] 24114
(24113) Address pointed to by p: 0x200000
(24114) Address pointed to by p: 0x200000
(24113) P: 1
(24114) P: 1
(24113) P: 2
(24114) P: 2
(24113) P: 3
(24114) P: 3
(24113) P: 4
(24114) P: 4
…

Execution Contexts

• Consider to open a file and issue a read
request
• The read function call begins in user space,

in the C library read() function
• The C library issues a read request to the

kernel
• A context switch from the user to kernel

space
• Inside the kernel, the read requests results in

a hard-drive access requesting the sectors
containing the file’s data

• The hard-drive read is asynchronous issued
24

Application
Program

C Library

Linux Kernel

IDE Driver

Hard
Disk

Read
Request

Execution Contexts cont.

• Consider to open a file and issue a read
request
• When the data is ready, the hardware

interrupts the processor
• When the hard disk has the data ready,

its posts a hardware interrupt
• When the kernel receives the hardware

interrupt, its suspends whatever process
was executing and proceeds to read the
waiting data from the drive

25

Application
Program

C Library

Linux Kernel

IDE Driver

Hard
Disk

Read
Request

How does OS work?

26

Shell vim

Process

1. Instructions: implement the
program’s computation

2. Data: the variables on which
the computation acts

3. Stack: organize the program’s
procedure calls

Each running program is call process

Kernel

User
space

Kernel
space

System call

Applications access beneath
hardware only via system
calls

Device drivers

CPU Storage

Each process can access
only its own memory

Many system calls

27

System call Description
fork() Create a process
exit() Terminate the current process
wait() Wait for a child process to exit
open(filename, flag) Open a file; the flags indicate read/write
read(fd, buf, n) Read n bytes from an open file into buf
write(fd, buf, n) Write n bytes to an open file
close(fd) Release open file fd
dup(fd) Duplicate fd
pipe(p) Create a pipe and return fd’s in p
fstat(fd) Return info about an open file
unlink(filename) Remove a file

Case study 1: How to use system calls ?
• Applications access the hardware only through system calls

• Spin(): A function that repeatedly checks the time and
returns once it has run for a second

28

#include <stdlib.h>
#include <sys/time.h>
#include <assert.h>
int main(int argc, char *argv[]) {

if (argc != 2)
fprint(stderr, “usage: cpu <string>\n”); exit(1);

char *str = argv[1];
while (1){

Spin(1);
printf(“%s\n”, str); }

return 0;
}

How to use system calls ?

• gcc -o cpu cpu.c –Wall
• Prompt> ./cpu “A”
• What do outputs look like?

• A
• A
• A ….

• How to stop this program?
• Control-c in Unix to halt

this program

• How about
• prompt> ./cpu A & ./cpu B & ./cpu C & ./cpu D &

29

#include <stdlib.h>
#include <sys/time.h>
#include <assert.h>
int main(int argc, char *argv[]) {

if (argc != 2)
fprint(stderr, “usage: cpu <string>\n”); exit(1);

char *str = argv[1];
while (1){

Spin(1);
printf(“%s\n”, str); }

return 0;
}

cpu.c

How to trace system call ?

• In Linux
• strace /bin/ls

• “ls” command uses many system calls such as “execve”

30

I/O and File Descriptor

• A file descriptor
• a small integer representing a kernel-managed object (read/write)
• an index into a per-process table
• Every process has a private space of file descriptors start at zero

• A process
• Reads from file descriptor 0 (standard input)
• Write to file descriptor 1 (standard output)
• Write error messages to file descriptor 2 (standard error)

31

I/O and File Descriptor
• The read and write system calls read bytes from and write

bytes to open files named by file descriptors

32

char buf[512]; int n;
for(; ;) {

n = read(0, buf, sizeof(buf));
if(n == 0) break;
if(n < 0) {

fprintf(2, “read error\n”);
exit();

}
if(write(1, buf, n) != n) {

fprintf(2, “write error\n”);
exit();

}
}

1. read (fd, buf, n) reads at most n bytes from
the file descriptor fd, copies them into buf
and return the number of bytes read

2. write(fd, buf, n) writes n bytes from buf to
the file descriptor fd and return the number
of bytes written

3. What does this program fragment work ?
a. Copy data from its standard input to its
standard output.
b. If an error occurs, it writes a message to
the standard error

The first process and system call in JOS
• When the RISC-V computer powers on

• Runs a boot loader in read-only memory
• The boot loader loads kernel into memory
• The CPU executes OS starting at _entry
• The instructions at _entry set up a

stack so that the OS can run C code
• An initial stack: stack0
• The code at _entry loads the stack

pointer register sp with the address
stack0 + 4096

• The loader loads the kernel at physical
address 0x80000000

• The address range 0x0:0x80000000 contains I/O devices
33

https://github.com/mit-pdos/xv6-riscv/blob/riscv/kernel/entry.S

The first process
• The function “start” performs

configurations that switches to
supervisor mode.
• Set the privilege mode to supervisor

in the register “mstatus”
• Set the return address to main by

writing main’s address into the
register “mepc”

• Writing 0 into the page-table register
“satp” to disable virtual address
translation

• “start” returns to supervisor mode by
calling “mret”

34https://github.com/mit-pdos/xv6-riscv/blob/riscv/kernel/start.c

The first process
• After main initializes several devices

and subsystems, it creates the
first process by calling “userinit”
• The first process makes the first

system call
• initcode.S loads the number for

the exec system call, SYS_EXEC
into register a7

• The kernel uses the number in
register a7 to call the desired system
call

• Calls “ecall” to re-enter the kernel 35

https://github.com/mit-pdos/xv6-riscv/blob/riscv/kernel/main.c

The Unix Shell

• It’s the Unix command-line user interface
• Bourne Again Shell (BASH), C Shell, Korn Shell
• Primary purpose is to read commands and run other programs
• Programs can be run in Bash by entering commands at the

command-line prompt
• Advantages

• Automating repetitive tasks

• Bash shell script language
• The shell uses system calls to set up redirection, and pipes …
• ls > file, ls | wc – l

36

Case Study: How to implement “cat < input.txt”?

• The system call “fork” copies the parent’s file descriptor table
along with its memory

• The child starts with exactly the same open files as the parent

37

char *argv[2];

argv[0] = “cat”;
argv[1] = 0;
If(fork() == 0) { // child process

close (0);
open(“input.txt”, O_RDONLY);
exec(“cat”, argv);

}

1. After the child closes file descriptor 0
2. Open uses file descriptor 0 for the newly

opened input.txt
3. The system call “exec” replaces the calling

process’s memory but preserves its file table.

Implement “echo hello; echo world > output”

• Fork copies the file descriptor table, each underlying file
offset is shared between parent and child

38

if (fork() == 0) { // child process
write(1, “hello”, 6);
exit();

} else {
wait();
write(1, “world\n”, 6);

}

1. The file attached to file descriptor 1 will
contain the data “hello world”.

2. The wait system call ensures the parent to
run only after the child is done

3. The write in the parent picks up where the
child’s write left off.

Implement “echo hello; echo world > output”

• The dup system call duplicates an existing file descriptor,
return a new one that refers to the same underlying I/O object.

• Using dup to implement commands: 2>&1
• The 2>&1 tells the shell to give the command a file descriptor 2 that

is a duplicate of descriptor 1
• “ls existing-file non-existing-file > tmp1”
• Both the name of the existing file and the error message for the

non-existing file will show up in the file tmp1
39

fd = dup(1);
write(1, “hello”, 6);
write(fd, “world\n”, 6)

1. Both file descriptors share an offset, just as
the file descriptors duplicated by fork do

Pipes
• A pipe

• A small kernel buffer
as a pair of file descriptors, one
for reading and one for writing

• Provide a way for processes
to communicate

• “dup” system call
• Duplicates an existing file

descriptor, return a new one that
refers to the same underlying
I/O object.

• “echo hello world | wc”
40

int p[2];
char *argv[2];
argv[0] = “wc”;
argv[1] = 0;
pipe(p);
if(fork() == 0) { // child process

close(0);
dup(p[0]);
close(p[0]);
close(p[1]);
exec(“/bin/wc”, argv);

} else { // parent process
close(p[0]);
write(p[1], “hello world\n”, 12);
close(p[1]);

}

How to implement a shell?
• How to implement a shell in rpi3 board in Lab 1 ?

• Follow this tutorial: https://github.com/bztsrc/raspi3-tutorial
• Using uart_init(), uart_getc(), uart_send() and uart_puts() routines

41

#include “uart.h”
int strcmp(const char *a, const char *b){ …}
int main()
{

uart_init(); // set up serial console
// read command
…..
return 0;

}

Concurrency support of the OS

42

#include <stdlib.h>
#include <stdio.h>
volatile int counter = 0;
int loops;
void *worker (void *arg) {

int i;
for(i = 0; i < loops; i++) counter ++
return NULL; }

int main(int argc, char *argv[]) {
loops = atoi (argv[1]);
pthread_t p1, p2;
printf(Initial value : %d\n, counter);
pthread_create(&p1, NULL, worker, NULL);
pthread_create(&p2, NULL, worker, NULL);
pthread_join(&p1, NULL, worker, NULL);
pthread_join(&p2, NULL, worker, NULL);
printf(“Final value : %d\n”, counter);
return 0; }

1. The main program creates two
threads using pthread_create()

2. A thread as a function running
within the same memory
space as other functions

3. More than one of them active
at a time

4. Each thread starts running in a
routine called worker()

5. It simply increments a counter
in a loop

thread.c

Concurrency support of the OS

43

#include <stdlib.h>
#include <stdio.h>
volatile int counter = 0;
int loops;
void *worker (void *arg) {

int i;
for(i = 0; i < loops; i++) counter ++
return NULL; }

int main(int argc, char *argv[]) {
loops = atoi (argv[1]);
pthread_t p1, p2;
printf(Initial value : %d\n, counter);
pthread_create(&p1, NULL, worker, NULL);
pthread_create(&p2, NULL, worker, NULL);
pthread_join(&p1, NULL, worker, NULL);
pthread_join(&p2, NULL, worker, NULL);
printf(“Final value : %d\n”, counter);
return 0; }

prompt> gcc –o thread thread.c –
Wall –pthread
Prompt> ./thread 1000
What are outputs of this program?
Initial value : 0
Final value: 2000

Concurrency support of the OS

44

#include <stdlib.h>
#include <stdio.h>
volatile int counter = 0;
int loops;
void *worker (void *arg) {

int i;
for(i = 0; i < loops; i++) counter ++
return NULL; }

int main(int argc, char *argv[]) {
loops = atoi (argv[1]);
pthread_t p1, p2;
printf(Initial value : %d\n, counter);
pthread_create(&p1, NULL, worker, NULL);
pthread_create(&p2, NULL, worker, NULL);
pthread_join(&p1, NULL, worker, NULL);
pthread_join(&p2, NULL, worker, NULL);
printf(“Final value : %d\n”, counter);
return 0; }

Prompt> ./thread 100000
Initial value: 0
Final value : 143012
Prompt> ./thread 100000
Initial value: 0
Final value : 137298
Why are outputs are different in
these two runs ?

Ans: the update of “counter”
doesn’t execute atomically.

