
Operating System
Design and

Implementation
Lecture 19: File System

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Onur Mutlu, Computer architecture, ece 447, Carnegie Mellon University

• CSE 506, operating system, 2016,
https://www.cs.unc.edu/~porter/courses/cse506/s16/slides/sync.pdf

2

Outline

• File system structures
• Inode
• Superblock …

• Allocating data blocks
• Link file allocation
• Index file allocation
• Multi-level indexed file allocation

• Soft vs. hard link
• File I/O operations

3

File system layers
• User’s viewpoint

• Objects: files, directories, bytes
• Operations: create, read, write

delete, rename, move, seek
• Physical viewpoint

• Objects: sectors, tracks, disks
• Operations: seek, R/W block

• User <-> OS layer
• User library hides many details
• OS can directly R/W user data

• OS <-> Hardware
• I/O registers, interrupts, DMA

4

User
Apps

User
Libs

Open() | Close() | Read() | Write()

Seek() | ReadBlk() | WriteBlk()

Disk Hardware

Trap

I/O Register

DMA

Interrupt
DMA

What do file system users need ?

• Persistence
• Disk provides basic non-volatile storage
• OS can enhance persistence via redundancy

• Speed: Fast access to data
• Handle random access efficiently
• OS can enhance performance via file caching

• Size: can store lots of data
• Sharing/protection (access control)
• Ease of use

• Basic file abstraction (names, offsets, byte streams, …)
• Directories simplify naming and lookup

5

File system abstractions

• File
• Basic container of persistent data

• Directory system
• Hierarchical naming relationships
• Directories are special “files” that index other files

• Common file access patterns
• Sequential: data processed in order, byte/record at a time

• Example: compiler reads a source file
• Random access: address blocks of data based on file offset

• Example: database searches
• Keyed access: address blocks based on “key” values

• Example: accessing hash table implemented by key-value
6

Common file system operations

• Data operations
• Create()
• Delete()
• Open()
• Close()
• Read()
• Write()
• Seek()

• Naming operations
• HardLink()
• SoftLink()
• Rename()

• Attribute operations
• SetAttribute()
• GetAttribute()

7

Attributes include
owner, protection,
last accessed

File system organization

• Blocks
• Divide the disk into

data blocks with commonly-used size of 4KB

• Inode
• The metadata of a file such as the size, access rights, modify time

etc.
• Inode tables – holds an array of on-disk inodes
• E.g. we use 5 out of 64

blocks for inodes
• An inode is commonly

128 or 256 bytes 8https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

File system organization

• Inode
• Assuming 256 bytes per

inode, a 4-KB block can hold 16 inodes, and 80 inodes in this diagram
• The number of inode denotes the maximum number of files we can

have in a file system

• Allocation structures (bitmap)
• Tracking whether inodes or data blocks are free or allocated
• Data bitmap (for the data region)
• Inode bitmap (one for the inode table)
• Each bit of a bitmap is used to indicate whether the data block is free

(0) or in-use (1) 9https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

File system organization

• Superblock
• Contains information

about a file system
• E.g. the number of inodes and data blocks in the file system

• When mounting a file system, the OS reads
• The superblock first
• Initialize various parameters
• Attach the volume to the file-system tree
• When files within the volume are accessed, the system will know

exactly where to look for the needed on-disk structures
10https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

File organization: Inode

• Inode (index node)
• Holds the metadata for

a given file
• Contains all of the information that is needed about a file
• The length, permissions of a file, and the location of a file’s block

• I-number
• Used to calculate where on the disk the corresponding inode is

located
• E.g. the inode table as above takes 20 KB (five 4KB block)

11https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

A file’s metadata (inodes)
• Name

• The only information kept in human readable form
• Identifier (inode number)

• A number that uniquely identifies the file within the file system
• Type

• File type (inode based file, pipe, etc.)
• Location

• Pointer to location of file on device
• Size
• Protection

• Access control info. Owner, group (r, w, x) permissions, etc.
• Monitoring

• Creation time, access time, etc.
12

File organization: inode

• Read inode number 32
• Calculate the offset

into the inode region
• (32 * sizeof(inode)) = 8192

sizeof(inode) = 256
• Inode start at 12 KB (inodeStartAddr) in above case
• Assuming a disk sector is 512 bytes, to fetch the block of inode 32

• The file system issues a read to sector 20 x 1024 / 512 = 40
• Blk = (inumber * sizeof (inode_t)) / blockSize;
• Sector = ((blk * blockSize) + inodeStartAddr) / sectorSize;

13https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

File system data structures

• Kernel (in-mem) structures
• Global open file table
• Per-process open file table
• Free (disk) block list
• Free inode list
• File buffer cache
• Inode cache
• Name cache

• On-disk structures
• Superblock: file system format info
• File: collection of blocks/bytes
• File descriptor (inode): File metadata
• Directory: Special kind of file
• Free block/inode maps

14
https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Key in-memory data structures

• Open file table: shared by all processes with open file
• Open count and “deleted” flag
• Copy of (or pointer to) file’s inode

• Per-process file table: private for each process
• Pointer to entry in global open file table
• Current position in the file (“seek” pointer)
• Access mode (read, write, read-write)

• File buffer cache: cache of file data blocks
• Indexed by file-blocknum pairs (hash structure)
• Used to reduce effective access time of disk operations

15

Key in-memory data structures

• Name cache: cache of recent name lookup results
• Indexed by full filename (hash structure)
• Used to decrease directory traversals for name lookups

16

Key on-disk data structures

• File descriptor (inode)
• Link count
• Security attributes: UID, GID
• Size
• Access/modified times
• “Pointers” to blocks
• …

• Directory file:
• File name (fixed/variable size)
• Inode number
• Length of directory entry

• Free block/inode bitmap
• Superblock 17

https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Buffer/page cache

• Idea
• Keep recently used disk blocks in kernel memory

• Process reads from a file
• If blocks are not in page cache

• Allocate space in page cache
• Initiate a disk read
• Block the process until disk operations complete

• Copy data from page cache to process memory
• Finally, system call returns
• Usually, a process does not see the page cache directly
• mmap() maps page cache pages into process RAM

18

Buffer/page cache

• Process writes to a file
• If blocks are not in the page cache

• Allocate pages
• Initiate disk read
• Block process until disk operations complete

• Copy written data from process RAM to page cache

• Default: writes create dirty pages in the cache, then the
system call returns
• Data gets written to device in the background

19

Finding a file’s inode on disk

• Locate inode for /foo/bar
• 1. Find inode for “/”

• Always in known location
• 2. Read “/” directory into memory
• 3. Find “foo” entry

• If no match, fail lookup
• 4. Load “foo” inode from disk
• 5. Check permissions

• If no permission, fail lookup
• 6. Load “foo” directory blocks
• 7. Find “bar” entry
• 8. Load “bar” inode from disk
• 9. Check permissions 20

1

2

3

4

https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Finding a file’s blocks on disk

• Inode consists of a table
• One entry per block in file
• Entry contains physical block address (e.g., platter 3, cylinder 1,

sector 26)
• To locate data at offset X, read block (X / block_size)

• Wants for inode table ?
• Most files are small
• Most of disk is contained few large files
• Need to efficiently support both sequential and random access
• Want simple inode lookup and management mechanisms

21

Allocating blocks to files

• Contiguous allocation
• Files allocated (only) in contiguous blocks on disk
• Analogous to base-and-bounds memory management

• Linked file allocation
• Maintain a linked list of blocks used to contain file
• At end of each block, add a (hidden) pointer to the next block

• Indexed file allocation
• Maintain array of block numbers in inode

• Multi-level indexed file allocation
• Maintain pointers to blocks full of more block numbers in inode

22

Contiguous allocation

• Files allocated in contiguous blocks on disk
• Maintain ordered list of free blocks

• At create time, find large enough contiguous region to hold file
• Inode contains START and SIZE
• Advantages

• Simple implementation
• Easy offset ->block computation for sequential or random access
• Few seeks

• Disadvantages
• Fragmentation -> analogous to base and bounds
• How do we handle file growth/shrinkage ?

23

Linked file allocation
• Linked list of free blocks

• Allocate any free blocks
• At end of each block, reserve

space for block #
• Inode contains START
• Good points

• Can extend/shrink files easily -> no fragmentation
• Handles sequential accesses somewhat efficiently

• Bad points
• Random access of large files is really inefficient
• Lots of seeks -> non-contiguous blocks

24https://my.eng.utah.edu/~cs5460/slides/Lecture18.pdf

Indexed file allocation

• Inode contains array of block
addresses
• Allocate table at file creation time
• File entries as blocks allocated

• Separate free block bitmap
• Good points

• Can extend/shrink files to a point
• Simple offset->block computation for sequential or random access

• Bad points
• Variable sized inode structures
• Lots of seeks-> non-contiguous blocks

25
https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Multi-level indexed file allocation

• Inode includes
• Fixed-size array of direct blocks
• Small array of indirect blocks
• Double/triple indirect (optional)

• Indirection
• Indirect pointer: points to a block that contains more pointers
• Indirect block: block full of block addresses
• Double indirect block: block full of indirect block addresses

• Use case: ext3
26

https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Multi-level indexed file allocation

• Good points
• Simple offset->block computation

for sequential or random access
• Allow incremental growth/shrinkage
• Fixed size (small) inodes
• Very fast access to (common) small files

• Bad points
• Indirection adds overhead to random access to large files
• Blocks can be spread all over disk -> more seeks

27
https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Multi-level indexed file allocation

• Example: 4.3 BSD file system
• Inode contains 12 direct block addresses
• Inode contains 1 indirect block address
• Inode contains 1 double-indirect block address

• How to support ever larger files ?
• Adds another pointer to the inode (double/triple indirect blocks)

• If block addresses are 4-bytes and blocks are 2048-bytes,
what is maximum file size in this file system ?

28

Multi-level indexed file allocation

• If block addresses are 4-bytes and blocks are 2048-bytes,
what is maximum file size in this file system ?
• Number of block address per block = 2048 / 4 = 512
• Number of blocks mapped by direct blocks = 12 (4.3 BSD file system)
• Number of blocks mapped by indirect block = 512
• Number of blocks mapped by double-indirect block = 5122 = 262144
• Max file size = (12 + 512 + 262144) * 2048 = ~ 513 MB (537,944,064

bytes)

29

Extents
• An extent is simply a disk pointer plus a length (in blocks)

• (starting block, length)
• A length to specify the on-disk location of a file

• Each file is represented by a list of extents
• Pointer-based vs. extent-based

• Pointer-based is flexible but uses a large amount of metadata per file
• Extent-based is less flexible but more compact
• Extent-based work well when there is enough free space on the disk

and files can be laid out contiguously

• Use case: ext4
30

Linking

• Links let us have multiple names to the same file
• An inode uniquely identifies a file for its lifespan

• Does not change when renamed

• Model: inode tracks “links” or references on disk
• Count “1” for every reference on disk
• Created by file names in a directory that point to the inode

• When link count is zero, inode (and contents) deleted
• There is no ‘delete’ system call, only ‘unlink’

31

Hard links

• Hard links
• Two entries point to the

same inode
• Link count tracks

connection
• Decrement link count on delete
• Only delete file when last connection

is deleted
• Problem: cannot cross file systems, unreachable directories

32

bar inode #

“/foo” directory

bar inode #

“/tmp” directory
ln /foo/bar /tmp/moo

2

inode

Soft links

• Soft links
• Adds symbolic “pointer” to

file
• Special flag in directory entry
• Created with symlink () system call
• Only one “real” link to file

• File goes away when its deleted

33

bar inode #

“/foo” directory

bar “/foo/bar”

“/tmp” directory

ln –s /foo/bar /tmp/moo

1

inode

File allocation table (FAT) file system

• FAT file system
• There are no inodes
• Directory entries which store metadata about a file
• Refer directly to the first block of said file
• Impossible to create hard links

34

Mounting a file system

• Locate superblock(s)
• Read file system format information
• Initialize inode cache
• Initialize buffer cache
• Initialize name cache
• Optional: perform sanity checks

• UNIX/ Linux / Mac OS X: fsck

35

Open (‘/foo/bar’) Operation

• Open (“/foo/bar”, O_RDONLY)
• The file system first needs to find the inode for the file bar
• Obtain the full pathname, than traverse the pathname
• All traversals begin at the root of the file system (root directory ‘/’)
• The FS reads the inode of the root directory based on i-number
• The root has no parent, and its inode number is 2 in UNIX
• The FS finds an entry for ‘foo’ from root’s inode
• The FS reads the block including the inode of foo and its dir data
• Finds the inode number of bar
• Read bar’s inode into memory

36

Open (‘/foo/bar’) Operation

• Open (“/foo/bar”, O_RDONLY)
• Once open, the problem can issue a read () to read from the file
• The first read will read the first block of the file
• Consulting the inode to find the location of such a block
• Update the inode with a new last-access time
• Update and in-memory open file table for this file descriptor

• In a open()
• Reading each block requires the file system to

• first consult the inode
• Read the block
• Update the inode’s last-accessed-time 37

Write a file to disk

• Write ()
• Writing to the file may also allocate a block unless the block is

being overwritten
• Need to write data to disk and decide which block to allocate to

the file

• Each write to a file logically generates 5 I/Os
• 1. read the data bitmap (mark the newly-allocated block as used)
• 2. write the bitmap (reflect its new state to disk)
• 3. read and write the inode (update with the new block’s location)
• 4. write the actual block itself

38

File creation

• To create a file
• Allocate an inode
• Allocate space within the directory containing the new file
• One read to the inode bitmap (find a free inode)
• One write to the inode bitmap (make it allocated)
• One write to the new inode itself (initialize it)
• One write to the data of directory (link high-level name of file to

its inode number)
• One read and write to the directory inode to update it
• Additional I/Os if the directory needs to grow to accommodate the

new entry (to the data bitmap and the new directory block)
39

Summary

• File system organization
• Blocks, inode, bitmap, superblocks

• File system data structures
• Open file table, file buffer cache, file descriptor etc.

• Allocating blocks to the file
• Contiguous, linked, index, multi-level indexed file allocation, extent

• Soft vs. hard link

40

