
Operating System 
Design and 

Implementation
Lecture 18: Multi-core locks

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1



Acknowledgements and Disclaimer
• Slides was developed in the reference with 

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Onur Mutlu, Computer architecture, ece 447, Carnegie Mellon University

• CSE 506, operating system, 2016, 
https://www.cs.unc.edu/~porter/courses/cse506/s16/slides/sync.pdf

2



Outline

• Locks in Multi-core
• Cache coherence protocol (MSI model)
• MCS lock
• Scalable lock – read-copy-update (RCU)

3



Motivation

• Modern CPUs are multicore
• Applications rely heavily on kernel for networking, filesystem, 

etc.
• If kernel can’t scale across many cores, applications that rely 

on it won’t scale either

4



Problem is sharing

• OS maintains many data structures
• Process table, file descriptor table, buffer cache, scheduler queues, 

etc.
• They depend on locks to maintain invariants
• Applications may contend on locks, limiting scalability

• OS evolution
• Early kernels depended on a single “big lock” to protect kernel 

data
• Later, kernels transitioned to fine-grained locking
• Now, many lock-free approaches are used too

5



Lock problems in Multi-core Processors

• Locks prevent us from harnessing multi-core to improve 
performance (why ?)
• Non-scalable lock (what ?)
• Locking bottleneck caused by interaction with multi-core caching 

(why ?)
• Cache consistency

• Order of reads and writes among MANY memory locations
• Cache coherence

• Data movement caused by reads and writes for a SINGLE memory 
location

6



Write-back cache

• Problems of caches in the presence of multiple processors 
(or cores) ?
• The cache is divided into fixed-sized chunk called “cache-lines”
• Two cores might access the same data
• Therefore, we might have two copies of the same cache line 

present in two different caches
• Core 1 might wish to access data that is dirty in core2’s cache
•  cores/processors can see the incorrect data if hardware does 

not compromise the needs from cores

7



Core 1 reads X

8

Cores Cores

L1 cache L1 cache

L2 cache

Cores Cores

L1 cache L1 cache

L2 cache
…

MemoryX: 0x1234

X: 0x1234

X: 0x1234



Core 1 reads X, Core 1 writes X

9

Cores Cores

L1 cache L1 cache

L2 cache

Cores Cores

L1 cache L1 cache

L2 cache
…

MemoryX: 0x1234

X: 0x1234

X: 0xCAFE



Core 2 reads X

10

Cores Cores

L1 cache L1 cache

L2 cache

Cores Cores

L1 cache L1 cache

L2 cache
…

MemoryX: 0x1234

X: 0x1234

X: 0xCAFE X: 0x1234



Core 2 reads X

11

Cores Cores

L1 cache L1 cache

L2 cache

Cores Cores

L1 cache L1 cache

L2 cache
…

MemoryX: 0x1234

X: 0x1234

X: 0xCAFE X: 0x1234



Processor 1/ Core 1 reads X

12

Cores Cores

L1 cache L1 cache

L2 cache

Cores Cores

L1 cache L1 cache

L2 cache
…

MemoryX: 0x1234

X: 0x1234

X: 0x1234



Processor 2/ Core 1 reads X

13

Cores Cores

L1 cache L1 cache

L2 cache

Cores Cores

L1 cache L1 cache

L2 cache
…

MemoryX: 0x1234

X: 0x1234

X: 0x1234

X: 0x1234

X: 0x1234



Processor 1/ Core 1 writes X

14

Cores Cores

L1 cache L1 cache

L2 cache

Cores Cores

L1 cache L1 cache

L2 cache…

MemoryX: 0xBEEF

X: 0xBEEF

X: 0xBEEF

X: 0x1234

X: 0x1234

Incoherent cache

Stale data



Cache coherence

• Cache coherence protocol
• Ensure that loads from all cores will return the value of the latest 

store to that memory location
• Use cache metadata to track the state of cache data

• Two major approaches 
• Snoopy caches
• Directory based coherence

15



Snoopy cache coherence

• Bus-based “snooping”
• All cores continuously snoop (monitor)

the bus connecting their cores
• If a cache see some messages 

across the bus
• A cache can update the current data 
• Or send the message across the bus

then other processor can pay attention to

• Invalidation
• If a core writes to a data item, all copies of this

data item in other caches are invalidated 16

Cores Cores

L1 cache L1 cache

Memory

Inter-core bus



Core 1 read X, core 2 reads X

17

Cores Cores

L1 cache L1 cache

Memory

Inter-core bus

X: 0x1234

X: 0x1234 X: 0x1234



What happens this time if core 1 writes X ?

• Core 1 cannot directly update the 
its value

• Core 1 has to send out invalidation
message to core 2

• Core 2 sees the invalidation message
• Invalidate its cache line
• Evict that invalided cache line

• What metadata should we need to
support this ?

18

Cores Cores

L1 cache L1 cache

Memory

Inter-core bus

X: 0x1234

X: 0xCAFE X: 0x1234

INV
MSG



MSI cache coherence model

• Cache operations
• Change state
• Send invalidate requests
• Request cache lines in a particular state (fetch)

• A minimal set of states (MSI model)
• Assume a writeback cache
• M: cache line is modified (i.e., dirty)
• S: cache line is shared; appears in multiple caches -> allows every 

core to keep a copy
• I: cache line invalid (i.e., contains invalid data)

19



MSI protocol (1)

• Local read
• A processor wants to read
• Get the data from the data 

source
• The data is not dirty ->

don’t go to M state
• Go to the S state
• The data is shared with

other processors/cores

20

M: cache line is modified (i.e., dirty)
S: cache line is shared; appears in multiple 
caches
I: cache line invalid (i.e., contains invalid data)

M

S I

Local read (shared fetch)



MSI protocol (2)

• Local write
• Since the data in S state
• Get the write hit
• Go to the M state
• Send an invalidated message 

to notify other processors
the data is stale

• If other processor has this
data -> invalidate it

21

M: cache line is modified (i.e., dirty)
S: cache line is shared; appears in multiple 
caches
I: cache line invalid (i.e., contains invalid data)

M

S I

Local write 
(send invalidate)

Local read

Local read (shared fetch)



MSI protocol (3)

• Local read/write
• Current we are in the 

M state
• Local read/write happens
• Keep sitting in the M

state

22

M: cache line is modified (i.e., dirty)
S: cache line is shared; appears in multiple 
caches
I: cache line invalid (i.e., contains invalid data)

M

S I

Local write 
(send invalidate)

Local read

Local read (shared fetch)

Local read/write



MSI protocol (4)

• Local write miss
• Current we are in the 

I state
• We get the write happens
• It is write, so it is better

to go to M state
• Go to get the data from

the data source
• Notify other processors

23

M: cache line is modified (i.e., dirty)
S: cache line is shared; appears in multiple 
caches
I: cache line invalid (i.e., contains invalid data)

M

S I

Local write 
(send invalidate)

Local read

Local read (shared fetch)

Local read/write

Local write 
(fetch modified)



MSI protocol (5)

• Eviction
• Current we are in the 

M state
• Have dirty data in the 

cache that is needed to
be evicted

• Write the dirty back before
evicting

• Eviction also happens in
S state -> no notify other ones

• Switch to I state
24

M: cache line is modified (i.e., dirty)
S: cache line is shared; appears in multiple 
caches
I: cache line invalid (i.e., contains invalid data)

M

S I

Local write 
(send invalidate)

Local read

Local read (shared fetch)

Local read/write

Local write 
(fetch modified)

Eviction
(writeback)

Eviction



MSI protocol (6)

• Invalidate (from remote)
• Current we are in the 

M state
• We see someone on the

remote core is either trying 
to read or write items

• I have the dirty cache line
and see other is writing

• Evict the cache line and go
to I state

25

M: cache line is modified (i.e., dirty)
S: cache line is shared; appears in multiple 
caches
I: cache line invalid (i.e., contains invalid data)

M

S I

Local write 
(send invalidate)

Local read

Local read (shared fetch)

Local read/write

Local write 
(fetch modified)

Eviction
(writeback)

(remote R/W)

Eviction



MSI protocol (7)

• Invalidate (from remote)
• Current we are in the 

S state
• We see someone on the

remote core is either trying 
to read or write items

• It is ok to see others are 
reading data

• However, we need to evict
the staled cache line if we see others
are writing -> go to I state 26

M: cache line is modified (i.e., dirty)
S: cache line is shared; appears in multiple 
caches
I: cache line invalid (i.e., contains invalid data)

M

S I

Local write 
(send invalidate)

Local read

Local read (shared fetch)

Local read/write

Local write 
(fetch modified)

Eviction
(writeback)

(remote R/W)

Eviction
(remote write)



Why locks if we have cache coherence ?

• Cache coherence
• Ensures that cores read fresh data

• Locks
• Avoid lost updates in read-modify-write cycles
• Prevent anyone from seeing partially updated data structures

• How does hardware implement locks ?
• Get the line in M state
• Defer coherence messages
• Do all the steps (read and write)
• Resume handling messages

27



Locking performance criteria

• Assume N cores are waiting for a lock
• How long does it take to hand off from previous to next 

holder ?
• Bottleneck is usually the interconnect

• The measure cost is in terms of # of messages

• What can we hope for ?
• If N cores waiting, get through them all in O(N) time
• Each handoff takes O(1) time; doesn’t increase with N

28



Test & set spinlocks

29



Test & set spinlocks

• Spinning cores repeatedly execute atomic exchange
• Is this a problem ?

• Yes !
• It’s okay if waiting cores waste their own time
• Bad if waiting cores slow lock holder

• Time for critical section and release
• Holder must wait in line for access to bus
• Halder’s handoff takes O(N) time

• O(N) handoff means all N cores take O(N2)
30



Ticket locks (Linux)

• Goal of ticket locks
• Read-only spinning 

rather than repeated 
atomic instructions

• Fairness -> waiter order
preserved

• Key idea
• Assign numbers, wake up one waiter at a time

31



Ticket lock time analysis

• Atomic increment
• O(1) broadcast message
• Just once, not repeated

• Then read-only spin, no cost until next release
• What about release ?

• Invalidate message sent to all cores
• Then O(N) find messages, as they re-read
• Still O(N) handoff work
• But fairness and less bus traffic while spinning

32



How to make locks be scale ?

• TAS and Ticket lock are “non-scalable” locks 
• Cost of handoff scales with the number of waiters

• Goal
• O(1) message release time
• Wake just one core at a time

• Idea
• Have each core spin on a different cache-line

33



MCS locks

• Each CPU has a qnode structure in its local memory (queue 
spin lock)

• A lock is a qnode pointer to the
tail of the list

• Each CPU only spin its own 
“locked” value

34



Acquiring MCS locks

35

• CPU 1 creates a qnode struct
• Main lock executes atomic 

exchange -> store the object
locked value of next pointer (CPU 1)
to the lock of its own struct

• When CPU2 is trying to get lock
• CPU2 found main lock points to CPU1
• The locked value of CPU 2 becomes 1
• CPU2 is locked

• Every CPU is spinning with locked
value of its own struct

https://lwn.net/Articles/590243/



Releasing MCS locks

36

• If next of main lock points to
NULL
• No one uses lock – lock released

• CPU1’s next points to CPU2
• Main lock always points to the 

last item of the entire queue
• Thus, we can know who is the 

next one to get the lock
• After CPU1 completes its work

• Atomic exchange with main lock
• Point itself to NULL

https://lwn.net/Articles/590243/



Read-heavy data structures

• The data read is much more often than modified in kernels
• Network tables: routing, ARP
• File descriptor arrays, most types of system call state
• Read-copy-update (RCU) optimizes for these use cases
• Over 10, 000 RCU API uses in the Linux kernel

• Goal
• Concurrent reads even during updates
• Low space overhead
• Low execution overhead

37



Plan #1: spin locks

• Problem
• Serializes all critical sections
• Read-only critical sections would have to wait for other read-only 

sections to finish

• Idea
• Allow parallel readers but still serialize writers

38



Plan #2: Read-write locks

• A modification to spin locks that allow parallel reads
• Every reader uses CMPXCHG instruction

• S->M cache coherence state transition
• Find + invalidate messages to contend read_lock() and 

read_unlock ()

• If writer holds lock, readers must spin and wait
• Violates goal of concurrent read, even during updates

39



Plan #3 Read-copy-update (RCU)
• Data is accessible through “root pointer”

• Could be index into an array
• Must be atomic

• Reader
• Acquire “root pointer” 

atomically, access data
• Writer

• Read current data, copy
to new data, update new
data, and publish it

• Some readers see old data, other readers see new data
40

https://pdos.csail.mit.edu/6.828/2018/lec/l-rcu.pdf



When to free old objects ?

• At any given moment, readers could be accessing the latest 
copy or older copies of an object
• Safely free objects when they are no longer “reachable”

• Usually only one pointer to an RCU object
• Can’t be copied, stored on the stack, or in registers (except inside 

critical sections)

• Need a “quiescent period”, after which it’s safe to free
• Wait until all cores have passed through a context switch
• Pointer can only be dereferenced inside a critical section
• Read critical sections disable preemption (why?)

41



Quiescent (grace) period

• Reader (1-4) reads the 
pointer fp before t1

• At t2, updater calls
synchronize_rcu (), but
reader (1-4) are in CS

• Grace period
• Wait for the complete

of all readers that are in 
the CS

• Readers refers the new
version fp and old data
of all readers can be freed

42

t1 t2 t3

https://hackmd.io/@sysprog/linux-rcu

reads



Example program using RCU

• rcu_read_lock () and rcu_read_unlock () 
• Used to indicate the start and the end of grace period

43

void foo_read () {
rcu_read_lock ();
foo *fp = global_foo;
if (fp)

do_something (fp->a, fp->b, fp-> c);
rcu_read_unlock ();

}

void foo_update () {
spin_lock (&foo_mutex);
foo *old_fp = global_foo;
global_foo = new_fp;
spin_unlock (&foo_mutex);
synchronize_rcu ();
kfree (old_fp);

}



Publish-subscribe mechanism

44

Publish: The writer update the reference of pointer, publish new data 
Subscribe: The reader safely deletes old data after the grace period

https://github.com/CppCon/CppCon2017/blob/master/Presentations/Read%2C%
20Copy%2C%20Update...%20Then%20What/Read%2C%20Copy%2C%20Update...
%20Then%20What%20-%20Fedor%20Pikus%20-%20CppCon%202017.pdf



RCU memory reclamation

• RCU uses cooperative protocol
• Track when it is safe to reclaim memory (when no reader can 

access it)

• Readers MUST follow these steps to access shared data
• 1) Call rcu_read_lock () to request access
• 2) Get the root pointer 
• 3) Call rcu_read_unlock () to announce the end of access

• Reader may access shared data only between the calls
• rcu_read_lock () and rcu_read_unlock ()

45



RCU memory reclamation

• Writer MUST follow these steps to modify shared data
• 1) Make old shared data inaccessible from the root
• 2) Call synchronize_rcu () to wait for all readers who called 

rcu_read_lock () before step 1 to call rcu_read_unlock ()
• 3) Delete old data and reclaim the memory

• We don’t need to 
• Wait for all readers to exit critical section
• Only wait for those who acquire the old root pointer

46



Disable preemption during RCU read critical 
sections
• If didn’t disable preemption during RCU read critical sections

• Need to wait for all cores to context switch 
• Wouldn’t be an effective quiescent period

• A task could still hold a pointer to an RCU object while it is 
preempted
• Hard to decide when its safe to free
• Unless we wait until all tasks are killed
• Need to define a read critical section such that references to RCU 

objects cannot persist outside the section

47



How to synchronize writes ?

• Against other writers
• Allow only one writer
• Just use normal synchronization like locks

• Against readers (memory order matters)
• Writers must fully finish writes to new object before updating 

pointer
• Readers must not reorder reads such that contents of an object 

are read before its pointer
• rcu_dereference() and rcu_assign_pointer() automatically insert 

the appropriate compiler and memory barriers
48



RCU APIs

• rcu_read_lock(): Begin an RCU critical section
• rcu_read_unlock(): End of an RCU critical section
• synchronize_rcu(): wait for existing RCU critical sections to complete
• call_rcu (callback, argument): call the callback when existing RCU 

critical sections complete
• rcu_dereference (pointer): Signal the intent to dereference a pointer 

in an RCU critical section
• rcu_dereference_protected(pointer, check): signals the intent to 

dereference a pointer outside of an RCU critical section
• rcu_assign_pointer(pointer_addr, pointer): Assign a value to a 

pointer that is read in RCU critical sections
49



Example RCU usage (reader)

50



Example RCU usage (writer)

51



Does RCU achieve its goals ?

• Goal: concurrent reads even during updates ?
• Yes ! Reads are never stalled by updates

• Goal: low space overhead ?
• Yes ! A RCU pointer is the same size as an ordinary pointer
• No extra synchronization data is required
• However, objects can’t be freed until quiescent period has passed. 

Forcing this to happen incurs overhead

52



Does RCU achieve its goals ?

• Goal: low execution overhead ?
• For readers, RCU has practically no execution overhead
• For writers, a slight overhead due to allocation, free, and copying
• Fine-grained locking can help to make updates concurrent

53



Summary

• The performance of locks should be scalable in multi-cores
• Multi-core caching exhibits the bottleneck of performance 

scalability of locks
• MCS lock – queue spin lock
• RCU enables zero-cost read-only access 

• Very useful for read-mostly data (extremely common in kernels)

54


